// Copyright 2018 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::collections::HashMap; use std::fs::File; use std::net::SocketAddr; use std::sync::{Arc, RwLock}; use rand::{thread_rng, Rng}; use chrono::prelude::Utc; use core::core; use core::core::hash::{Hash, Hashed}; use core::pow::Difficulty; use util::LOGGER; use peer::Peer; use store::{PeerData, PeerStore, State}; use types::{ Capabilities, ChainAdapter, Direction, Error, NetAdapter, P2PConfig, ReasonForBan, TxHashSetRead, MAX_PEER_ADDRS, }; pub struct Peers { pub adapter: Arc, store: PeerStore, peers: RwLock>>>, dandelion_relay: RwLock>>>, config: P2PConfig, } unsafe impl Send for Peers {} unsafe impl Sync for Peers {} impl Peers { pub fn new(store: PeerStore, adapter: Arc, config: P2PConfig) -> Peers { Peers { adapter, store, config, peers: RwLock::new(HashMap::new()), dandelion_relay: RwLock::new(HashMap::new()), } } /// Adds the peer to our internal peer mapping. Note that the peer is still /// returned so the server can run it. pub fn add_connected(&self, peer: Arc>) -> Result<(), Error> { let peer_data: PeerData; let addr: SocketAddr; { let p = peer.read().unwrap(); peer_data = PeerData { addr: p.info.addr, capabilities: p.info.capabilities, user_agent: p.info.user_agent.clone(), flags: State::Healthy, last_banned: 0, ban_reason: ReasonForBan::None, }; addr = p.info.addr.clone(); } debug!(LOGGER, "Saving newly connected peer {}.", addr); self.save_peer(&peer_data)?; { let mut peers = self.peers.write().unwrap(); peers.insert(addr, peer.clone()); } Ok(()) } // Update the dandelion relay pub fn update_dandelion_relay(&self) { let peers = self.outgoing_connected_peers(); match thread_rng().choose(&peers) { Some(peer) => { // Clear the map and add new relay let dandelion_relay = &self.dandelion_relay; dandelion_relay.write().unwrap().clear(); dandelion_relay .write() .unwrap() .insert(Utc::now().timestamp(), peer.clone()); debug!( LOGGER, "Successfully updated Dandelion relay to: {}", peer.read().unwrap().info.addr ); } None => debug!(LOGGER, "Could not update dandelion relay"), }; } // Get the dandelion relay pub fn get_dandelion_relay(&self) -> HashMap>> { self.dandelion_relay.read().unwrap().clone() } pub fn is_known(&self, addr: &SocketAddr) -> bool { self.peers.read().unwrap().contains_key(addr) } /// Get vec of peers we are currently connected to. pub fn connected_peers(&self) -> Vec>> { let mut res = self .peers .read() .unwrap() .values() .filter(|p| p.read().unwrap().is_connected()) .cloned() .collect::>(); thread_rng().shuffle(&mut res); res } pub fn outgoing_connected_peers(&self) -> Vec>> { let peers = self.connected_peers(); let res = peers .into_iter() .filter(|x| match x.try_read() { Ok(peer) => peer.info.direction == Direction::Outbound, Err(_) => false, }).collect::>(); res } /// Get a peer we're connected to by address. pub fn get_connected_peer(&self, addr: &SocketAddr) -> Option>> { self.peers.read().unwrap().get(addr).map(|p| p.clone()) } /// Number of peers we're currently connected to. pub fn peer_count(&self) -> u32 { self.peers .read() .unwrap() .values() .filter(|p| p.read().unwrap().is_connected()) .count() as u32 } // Return vec of connected peers that currently advertise more work // (total_difficulty) than we do. pub fn more_work_peers(&self) -> Vec>> { let peers = self.connected_peers(); if peers.len() == 0 { return vec![]; } let total_difficulty = self.total_difficulty(); let mut max_peers = peers .into_iter() .filter(|x| match x.try_read() { Ok(peer) => peer.info.total_difficulty > total_difficulty, Err(_) => false, }).collect::>(); thread_rng().shuffle(&mut max_peers); max_peers } // Return vec of connected peers that currently advertise more work // (total_difficulty) than we do and are also full archival nodes. pub fn more_work_archival_peers(&self) -> Vec>> { let peers = self.connected_peers(); if peers.len() == 0 { return vec![]; } let total_difficulty = self.total_difficulty(); let mut max_peers = peers .into_iter() .filter(|x| match x.try_read() { Ok(peer) => { peer.info.total_difficulty > total_difficulty && peer.info.capabilities.contains(Capabilities::FULL_HIST) } Err(_) => false, }).collect::>(); thread_rng().shuffle(&mut max_peers); max_peers } /// Returns single random peer with more work than us. pub fn more_work_peer(&self) -> Option>> { self.more_work_peers().pop() } /// Returns single random archival peer with more work than us. pub fn more_work_archival_peer(&self) -> Option>> { self.more_work_archival_peers().pop() } /// Return vec of connected peers that currently have the most worked /// branch, showing the highest total difficulty. pub fn most_work_peers(&self) -> Vec>> { let peers = self.connected_peers(); if peers.len() == 0 { return vec![]; } let max_total_difficulty = peers .iter() .map(|x| match x.try_read() { Ok(peer) => peer.info.total_difficulty.clone(), Err(_) => Difficulty::zero(), }).max() .unwrap(); let mut max_peers = peers .into_iter() .filter(|x| match x.try_read() { Ok(peer) => peer.info.total_difficulty == max_total_difficulty, Err(_) => false, }).collect::>(); thread_rng().shuffle(&mut max_peers); max_peers } /// Returns single random peer with the most worked branch, showing the /// highest total difficulty. pub fn most_work_peer(&self) -> Option>> { self.most_work_peers().pop() } pub fn is_banned(&self, peer_addr: SocketAddr) -> bool { if let Ok(peer_data) = self.store.get_peer(peer_addr) { if peer_data.flags == State::Banned { return true; } } false } /// Ban a peer, disconnecting it if we're currently connected pub fn ban_peer(&self, peer_addr: &SocketAddr, ban_reason: ReasonForBan) { if let Err(e) = self.update_state(*peer_addr, State::Banned) { error!(LOGGER, "Couldn't ban {}: {:?}", peer_addr, e); } if let Some(peer) = self.get_connected_peer(peer_addr) { debug!(LOGGER, "Banning peer {}", peer_addr); // setting peer status will get it removed at the next clean_peer let peer = peer.write().unwrap(); peer.send_ban_reason(ban_reason); peer.set_banned(); peer.stop(); } } /// Unban a peer, checks if it exists and banned then unban pub fn unban_peer(&self, peer_addr: &SocketAddr) { match self.get_peer(*peer_addr) { Ok(_) => { if self.is_banned(*peer_addr) { if let Err(e) = self.update_state(*peer_addr, State::Healthy) { error!(LOGGER, "Couldn't unban {}: {:?}", peer_addr, e); } } else { error!(LOGGER, "Couldn't unban {}: peer is not banned", peer_addr); } } Err(e) => error!(LOGGER, "Couldn't unban {}: {:?}", peer_addr, e), }; } fn broadcast(&self, obj_name: &str, num_peers: u32, f: F) -> u32 where F: Fn(&Peer) -> Result<(), Error>, { let peers = self.connected_peers(); let mut count = 0; // Iterate over our connected peers. // Try our best to send to at most num_peers peers. for p in peers.iter() { match p.try_read() { Ok(p) => { if p.is_connected() { if let Err(e) = f(&p) { debug!(LOGGER, "Error sending {} to peer: {:?}", obj_name, e); } else { count += 1; } } } Err(_) => (), } if count >= num_peers { break; } } count } /// Broadcasts the provided compact block to PEER_MAX_COUNT of our peers. /// This is only used when initially broadcasting a newly mined block /// from a mining node so we want to broadcast it far and wide. /// A peer implementation may drop the broadcast request /// if it knows the remote peer already has the block. pub fn broadcast_compact_block(&self, b: &core::CompactBlock) { let num_peers = self.config.peer_max_count(); let count = self.broadcast("compact block", num_peers, |p| p.send_compact_block(b)); debug!( LOGGER, "broadcast_compact_block: {}, {} at {}, to {} peers, done.", b.hash(), b.header.pow.total_difficulty, b.header.height, count, ); } /// Broadcasts the provided header to PEER_PREFERRED_COUNT of our peers. /// We may be connected to PEER_MAX_COUNT peers so we only /// want to broadcast to a random subset of peers. /// A peer implementation may drop the broadcast request /// if it knows the remote peer already has the header. pub fn broadcast_header(&self, bh: &core::BlockHeader) { let num_peers = self.config.peer_min_preferred_count(); let count = self.broadcast("header", num_peers, |p| p.send_header(bh)); debug!( LOGGER, "broadcast_header: {}, {} at {}, to {} peers, done.", bh.hash(), bh.pow.total_difficulty, bh.height, count, ); } /// Broadcasts the provided stem transaction to our peer relay. pub fn broadcast_stem_transaction(&self, tx: &core::Transaction) -> Result<(), Error> { let dandelion_relay = self.get_dandelion_relay(); if dandelion_relay.is_empty() { debug!(LOGGER, "No dandelion relay, updating."); self.update_dandelion_relay(); } // If still return an error, let the caller handle this as they see fit. // The caller will "fluff" at this point as the stem phase is finished. if dandelion_relay.is_empty() { return Err(Error::NoDandelionRelay); } for relay in dandelion_relay.values() { let relay = relay.read().unwrap(); if relay.is_connected() { if let Err(e) = relay.send_stem_transaction(tx) { debug!( LOGGER, "Error sending stem transaction to peer relay: {:?}", e ); } } } Ok(()) } /// Broadcasts the provided transaction to PEER_PREFERRED_COUNT of our /// peers. We may be connected to PEER_MAX_COUNT peers so we only /// want to broadcast to a random subset of peers. /// A peer implementation may drop the broadcast request /// if it knows the remote peer already has the transaction. pub fn broadcast_transaction(&self, tx: &core::Transaction) { let num_peers = self.config.peer_min_preferred_count(); let count = self.broadcast("transaction", num_peers, |p| p.send_transaction(tx)); trace!( LOGGER, "broadcast_transaction: {}, to {} peers, done.", tx.hash(), count, ); } /// Ping all our connected peers. Always automatically expects a pong back /// or disconnects. This acts as a liveness test. pub fn check_all(&self, total_difficulty: Difficulty, height: u64) { let peers_map = self.peers.read().unwrap(); for p in peers_map.values() { let p = p.read().unwrap(); if p.is_connected() { let _ = p.send_ping(total_difficulty, height); } } } /// All peer information we have in storage pub fn all_peers(&self) -> Vec { self.store.all_peers() } /// Find peers in store (not necessarily connected) and return their data pub fn find_peers(&self, state: State, cap: Capabilities, count: usize) -> Vec { self.store.find_peers(state, cap, count) } /// Get peer in store by address pub fn get_peer(&self, peer_addr: SocketAddr) -> Result { self.store.get_peer(peer_addr).map_err(From::from) } /// Whether we've already seen a peer with the provided address pub fn exists_peer(&self, peer_addr: SocketAddr) -> Result { self.store.exists_peer(peer_addr).map_err(From::from) } /// Saves updated information about a peer pub fn save_peer(&self, p: &PeerData) -> Result<(), Error> { self.store.save_peer(p).map_err(From::from) } /// Updates the state of a peer in store pub fn update_state(&self, peer_addr: SocketAddr, new_state: State) -> Result<(), Error> { self.store .update_state(peer_addr, new_state) .map_err(From::from) } /// Iterate over the peer list and prune all peers we have /// lost connection to or have been deemed problematic. /// Also avoid connected peer count getting too high. pub fn clean_peers(&self, max_count: usize) { let mut rm = vec![]; // build a list of peers to be cleaned up for peer in self.peers.read().unwrap().values() { let peer_inner = peer.read().unwrap(); if peer_inner.is_banned() { debug!( LOGGER, "clean_peers {:?}, peer banned", peer_inner.info.addr ); rm.push(peer.clone()); } else if !peer_inner.is_connected() { debug!( LOGGER, "clean_peers {:?}, not connected", peer_inner.info.addr ); rm.push(peer.clone()); } } // now clean up peer map based on the list to remove { let mut peers = self.peers.write().unwrap(); for p in rm { let p = p.read().unwrap(); peers.remove(&p.info.addr); } } // ensure we do not have too many connected peers let excess_count = { let peer_count = self.peer_count() as usize; if peer_count > max_count { peer_count - max_count } else { 0 } }; // map peers to addrs in a block to bound how long we keep the read lock for let addrs = { self.connected_peers() .iter() .map(|x| { let p = x.read().unwrap(); p.info.addr.clone() }).collect::>() }; // now remove them taking a short-lived write lock each time // maybe better to take write lock once and remove them all? for x in addrs.iter().take(excess_count) { let mut peers = self.peers.write().unwrap(); peers.remove(x); } } pub fn stop(&self) { let mut peers = self.peers.write().unwrap(); for (_, peer) in peers.drain() { let peer = peer.read().unwrap(); peer.stop(); } } pub fn enough_peers(&self) -> bool { self.connected_peers().len() >= self.config.peer_min_preferred_count() as usize } } impl ChainAdapter for Peers { fn total_difficulty(&self) -> Difficulty { self.adapter.total_difficulty() } fn total_height(&self) -> u64 { self.adapter.total_height() } fn transaction_received(&self, tx: core::Transaction, stem: bool) { self.adapter.transaction_received(tx, stem) } fn block_received(&self, b: core::Block, peer_addr: SocketAddr) -> bool { let hash = b.hash(); if !self.adapter.block_received(b, peer_addr) { // if the peer sent us a block that's intrinsically bad // they are either mistaken or malevolent, both of which require a ban debug!( LOGGER, "Received a bad block {} from {}, the peer will be banned", hash, peer_addr ); self.ban_peer(&peer_addr, ReasonForBan::BadBlock); false } else { true } } fn compact_block_received(&self, cb: core::CompactBlock, peer_addr: SocketAddr) -> bool { let hash = cb.hash(); if !self.adapter.compact_block_received(cb, peer_addr) { // if the peer sent us a block that's intrinsically bad // they are either mistaken or malevolent, both of which require a ban debug!( LOGGER, "Received a bad compact block {} from {}, the peer will be banned", hash, &peer_addr ); self.ban_peer(&peer_addr, ReasonForBan::BadCompactBlock); false } else { true } } fn header_received(&self, bh: core::BlockHeader, peer_addr: SocketAddr) -> bool { if !self.adapter.header_received(bh, peer_addr) { // if the peer sent us a block header that's intrinsically bad // they are either mistaken or malevolent, both of which require a ban self.ban_peer(&peer_addr, ReasonForBan::BadBlockHeader); false } else { true } } fn headers_received(&self, headers: Vec, peer_addr: SocketAddr) -> bool { if !self.adapter.headers_received(headers, peer_addr) { // if the peer sent us a block header that's intrinsically bad // they are either mistaken or malevolent, both of which require a ban self.ban_peer(&peer_addr, ReasonForBan::BadBlockHeader); false } else { true } } fn locate_headers(&self, hs: Vec) -> Vec { self.adapter.locate_headers(hs) } fn get_block(&self, h: Hash) -> Option { self.adapter.get_block(h) } fn txhashset_read(&self, h: Hash) -> Option { self.adapter.txhashset_read(h) } fn txhashset_receive_ready(&self) -> bool { self.adapter.txhashset_receive_ready() } fn txhashset_write(&self, h: Hash, txhashset_data: File, peer_addr: SocketAddr) -> bool { if !self.adapter.txhashset_write(h, txhashset_data, peer_addr) { debug!( LOGGER, "Received a bad txhashset data from {}, the peer will be banned", &peer_addr ); self.ban_peer(&peer_addr, ReasonForBan::BadTxHashSet); false } else { true } } } impl NetAdapter for Peers { /// Find good peers we know with the provided capability and return their /// addresses. fn find_peer_addrs(&self, capab: Capabilities) -> Vec { let peers = self.find_peers(State::Healthy, capab, MAX_PEER_ADDRS as usize); trace!( LOGGER, "find_peer_addrs: {} healthy peers picked", peers.len() ); map_vec!(peers, |p| p.addr) } /// A list of peers has been received from one of our peers. fn peer_addrs_received(&self, peer_addrs: Vec) { trace!(LOGGER, "Received {} peer addrs, saving.", peer_addrs.len()); for pa in peer_addrs { if let Ok(e) = self.exists_peer(pa) { if e { continue; } } let peer = PeerData { addr: pa, capabilities: Capabilities::UNKNOWN, user_agent: "".to_string(), flags: State::Healthy, last_banned: 0, ban_reason: ReasonForBan::None, }; if let Err(e) = self.save_peer(&peer) { error!(LOGGER, "Could not save received peer address: {:?}", e); } } } fn peer_difficulty(&self, addr: SocketAddr, diff: Difficulty, height: u64) { if diff != self.total_difficulty() || height != self.total_height() { trace!( LOGGER, "ping/pong: {}: {} @ {} vs us: {} @ {}", addr, diff, height, self.total_difficulty(), self.total_height() ); } if diff.to_num() > 0 { if let Some(peer) = self.get_connected_peer(&addr) { let mut peer = peer.write().unwrap(); peer.info.total_difficulty = diff; peer.info.height = height; } } } fn is_banned(&self, addr: SocketAddr) -> bool { if let Some(peer) = self.get_connected_peer(&addr) { let peer = peer.write().unwrap(); peer.is_banned() } else { false } } }