// Copyright 2017 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. extern crate env_logger; extern crate grin_core as core; extern crate grin_store as store; extern crate time; use std::fs; use core::ser::*; use core::core::pmmr::{Backend, HashSum, Summable, PMMR}; use core::core::hash::Hashed; #[test] fn sumtree_append() { let (data_dir, elems) = setup(); let mut backend = store::sumtree::PMMRBackend::new(data_dir).unwrap(); // adding first set of 4 elements and sync let mut mmr_size = load(0, &elems[0..4], &mut backend); backend.sync().unwrap(); // adding the rest and sync again mmr_size = load(mmr_size, &elems[4..9], &mut backend); backend.sync().unwrap(); // check the resulting backend store and the computation of the root let hash = Hashed::hash(&elems[0].clone()); let sum = elems[0].sum(); let node_hash = (1 as u64, &sum, hash).hash(); assert_eq!( backend.get(1), Some(HashSum { hash: node_hash, sum: sum, }) ); let sum2 = HashSum::from_summable(1, &elems[0], None::) + HashSum::from_summable(2, &elems[1], None::); let sum4 = sum2 + (HashSum::from_summable(4, &elems[2], None::) + HashSum::from_summable(5, &elems[3], None::)); let sum8 = sum4 + ((HashSum::from_summable(8, &elems[4], None::) + HashSum::from_summable(9, &elems[5], None::)) + (HashSum::from_summable(11, &elems[6], None::) + HashSum::from_summable(12, &elems[7], None::))); let sum9 = sum8 + HashSum::from_summable(16, &elems[8], None::); { let pmmr = PMMR::at(&mut backend, mmr_size); assert_eq!(pmmr.root(), sum9); } } #[test] fn sumtree_prune_compact() { let (data_dir, elems) = setup(); // setup the mmr store with all elements let mut backend = store::sumtree::PMMRBackend::new(data_dir).unwrap(); let mmr_size = load(0, &elems[..], &mut backend); backend.sync().unwrap(); // save the root let root: HashSum; { let pmmr = PMMR::at(&mut backend, mmr_size); root = pmmr.root(); } // pruning some choice nodes { let mut pmmr = PMMR::at(&mut backend, mmr_size); pmmr.prune(1, 1).unwrap(); pmmr.prune(4, 1).unwrap(); pmmr.prune(5, 1).unwrap(); } backend.sync().unwrap(); // check the root { let pmmr = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root()); } // compact backend.check_compact(2).unwrap(); // recheck the root { let pmmr = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root()); } } #[test] fn sumtree_reload() { let (data_dir, elems) = setup(); // set everything up with a first backend let mmr_size: u64; let root: HashSum; { let mut backend = store::sumtree::PMMRBackend::new(data_dir.clone()).unwrap(); mmr_size = load(0, &elems[..], &mut backend); backend.sync().unwrap(); // save the root and prune some nodes so we have prune data { let mut pmmr = PMMR::at(&mut backend, mmr_size); root = pmmr.root(); pmmr.prune(1, 1).unwrap(); pmmr.prune(4, 1).unwrap(); } backend.sync().unwrap(); backend.check_compact(1).unwrap(); backend.sync().unwrap(); // prune some more to get rm log data { let mut pmmr = PMMR::at(&mut backend, mmr_size); pmmr.prune(5, 1).unwrap(); } backend.sync().unwrap(); } // create a new backend and check everything is kosher { let mut backend = store::sumtree::PMMRBackend::new(data_dir).unwrap(); { let pmmr = PMMR::at(&mut backend, mmr_size); assert_eq!(root, pmmr.root()); } assert_eq!(backend.get(5), None); } } #[test] fn sumtree_rewind() { let (data_dir, elems) = setup(); let mut backend = store::sumtree::PMMRBackend::new(data_dir).unwrap(); // adding elements and keeping the corresponding root let mut mmr_size = load(0, &elems[0..4], &mut backend); backend.sync().unwrap(); let root1: HashSum; { let pmmr = PMMR::at(&mut backend, mmr_size); root1 = pmmr.root(); } mmr_size = load(mmr_size, &elems[4..6], &mut backend); backend.sync().unwrap(); let root2: HashSum; { let pmmr = PMMR::at(&mut backend, mmr_size); root2 = pmmr.root(); } mmr_size = load(mmr_size, &elems[6..9], &mut backend); backend.sync().unwrap(); // prune and compact the 2 first elements to spice things up { let mut pmmr = PMMR::at(&mut backend, mmr_size); pmmr.prune(1, 1).unwrap(); pmmr.prune(2, 1).unwrap(); } backend.check_compact(1).unwrap(); backend.sync().unwrap(); // rewind and check the roots still match { let mut pmmr = PMMR::at(&mut backend, mmr_size); pmmr.rewind(9, 3).unwrap(); assert_eq!(pmmr.root(), root2); } backend.sync().unwrap(); { let pmmr = PMMR::at(&mut backend, 10); assert_eq!(pmmr.root(), root2); } { let mut pmmr = PMMR::at(&mut backend, 10); pmmr.rewind(5, 3).unwrap(); assert_eq!(pmmr.root(), root1); } backend.sync().unwrap(); { let pmmr = PMMR::at(&mut backend, 7); assert_eq!(pmmr.root(), root1); } } fn setup() -> (String, Vec) { let _ = env_logger::init(); let t = time::get_time(); let data_dir = format!("./target/{}.{}", t.sec, t.nsec); fs::create_dir_all(data_dir.clone()).unwrap(); let elems = vec![ TestElem([0, 0, 0, 1]), TestElem([0, 0, 0, 2]), TestElem([0, 0, 0, 3]), TestElem([0, 0, 0, 4]), TestElem([0, 0, 0, 5]), TestElem([0, 0, 0, 6]), TestElem([0, 0, 0, 7]), TestElem([0, 0, 0, 8]), TestElem([1, 0, 0, 0]), ]; (data_dir, elems) } fn load(pos: u64, elems: &[TestElem], backend: &mut store::sumtree::PMMRBackend) -> u64 { let mut pmmr = PMMR::at(backend, pos); for elem in elems { pmmr.push(elem.clone(), None::).unwrap(); } pmmr.unpruned_size() } #[derive(Copy, Clone, Debug, PartialEq, Eq)] struct TestElem([u32; 4]); impl Summable for TestElem { type Sum = u64; fn sum(&self) -> u64 { // sums are not allowed to overflow, so we use this simple // non-injective "sum" function that will still be homomorphic self.0[0] as u64 * 0x1000 + self.0[1] as u64 * 0x100 + self.0[2] as u64 * 0x10 + self.0[3] as u64 } fn sum_len() -> usize { 8 } } impl Writeable for TestElem { fn write(&self, writer: &mut W) -> Result<(), Error> { try!(writer.write_u32(self.0[0])); try!(writer.write_u32(self.0[1])); try!(writer.write_u32(self.0[2])); writer.write_u32(self.0[3]) } }