// Copyright 2018 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! Implementation of Cuckoo Cycle designed by John Tromp. Ported to Rust from //! the C and Java code at https://github.com/tromp/cuckoo. Note that only the //! simple miner is included, mostly for testing purposes. John Tromp's Tomato //! miner will be much faster in almost every environment. use pow::common::{self, Edge, EdgeType}; use pow::error::{Error, ErrorKind}; use pow::num::ToPrimitive; use pow::{PoWContext, Proof}; use std::cmp; use std::collections::HashSet; const MAXPATHLEN: usize = 8192; /// Cuckoo cycle context pub struct CuckooContext where T: EdgeType, { edge_bits: u8, siphash_keys: [u64; 4], easiness: T, proof_size: usize, edge_mask: T, graph: Vec, _max_sols: u32, } impl PoWContext for CuckooContext where T: EdgeType, { fn new( edge_bits: u8, proof_size: usize, easiness_pct: u32, max_sols: u32, ) -> Result, Error> { Ok(Box::new(CuckooContext::::new_impl( edge_bits, proof_size, easiness_pct, max_sols, )?)) } fn set_header_nonce( &mut self, header: Vec, nonce: Option, solve: bool, ) -> Result<(), Error> { self.set_header_nonce_impl(header, nonce, solve) } fn find_cycles(&mut self) -> Result, Error> { self.find_cycles_impl() } fn verify(&self, proof: &Proof) -> Result<(), Error> { self.verify_impl(proof) } } impl CuckooContext where T: EdgeType, { /// Create a new cuckoo context with given parameters pub fn new_impl( edge_bits: u8, proof_size: usize, easiness_pct: u32, max_sols: u32, ) -> Result, Error> { let num_edges = 1 << edge_bits; let easiness = to_u64!(easiness_pct) * num_edges / 100; Ok(CuckooContext { edge_bits: edge_bits, siphash_keys: [0; 4], easiness: to_edge!(easiness), proof_size: proof_size, edge_mask: to_edge!(num_edges / 2 - 1), graph: vec![T::zero(); num_edges as usize + 1], _max_sols: max_sols, }) } fn reset(&mut self) -> Result<(), Error> { let num_edges = 1 << self.edge_bits; self.graph = vec![T::zero(); num_edges + 1]; Ok(()) } /// Set the header and optional nonce in the last part of the header /// and create siphash keys pub fn set_header_nonce_impl( &mut self, header: Vec, nonce: Option, solve: bool, ) -> Result<(), Error> { self.siphash_keys = common::set_header_nonce(header, nonce)?; if solve { self.reset()?; } Ok(()) } /// Generates a node in the cuckoo graph generated from our seed. A node is /// simply materialized as a u64 from a nonce and an offset (generally 0 or /// 1). fn new_node(&self, edge: T, uorv: u64) -> Result { common::sipnode::(&self.siphash_keys, edge, &self.edge_mask, uorv, true) } /// Creates a new edge in the cuckoo graph generated by our seed from a /// nonce. Generates two node coordinates from the nonce and links them /// together. fn new_edge(&self, nonce: T) -> Result, Error> { Ok(Edge { u: self.new_node(nonce, 0)?, v: self.new_node(nonce, 1)?, }) } fn path(&self, mut u: T, us: &mut [T]) -> Result { let mut nu = 0; while u != T::zero() { nu += 1; if nu >= MAXPATHLEN { while nu != 0 && us[(nu - 1) as usize] != u { nu -= 1; } return Err(ErrorKind::Path)?; } us[nu as usize] = u; u = self.graph[to_usize!(u)]; } Ok(to_edge!(nu)) } fn update_graph( &mut self, mut nu: usize, us: &[T], mut nv: usize, vs: &[T], ) -> Result<(), Error> { if nu < nv { while nu != 0 { nu -= 1; self.graph[to_usize!(us[nu + 1])] = us[nu]; } self.graph[to_usize!(us[0])] = vs[0]; } else { while nv != 0 { nv -= 1; self.graph[to_usize!(vs[nv + 1])] = vs[nv]; } self.graph[to_usize!(vs[0])] = us[0]; } Ok(()) } fn find_sol( &mut self, mut nu: usize, us: &[T], mut nv: usize, vs: &[T], ) -> Result, Error> { if us[nu] == vs[nv] { let min = cmp::min(nu, nv); nu -= min; nv -= min; while us[nu] != vs[nv] { nu += 1; nv += 1; } if nu + nv + 1 == self.proof_size { self.solution(&us, nu as u64, &vs, nv as u64) } else { Err(ErrorKind::InvalidCycle(nu + nv + 1))? } } else { Err(ErrorKind::NoCycle)? } } fn solution(&mut self, us: &[T], mut nu: u64, vs: &[T], mut nv: u64) -> Result, Error> { let mut cycle = HashSet::new(); cycle.insert(Edge { u: us[0], v: vs[0] }); while nu != 0 { // u's in even position; v's in odd nu = nu - 1; cycle.insert(Edge { u: us[((nu + 1) & !1) as usize], v: us[(nu | 1) as usize], }); } while nv != 0 { // u's in odd position; v's in even nv -= 1; cycle.insert(Edge { u: vs[(nv | 1) as usize], v: vs[((nv + 1) & !1) as usize], }); } let mut n = 0; let mut sol = vec![T::zero(); self.proof_size]; for nonce in 0..to_usize!(self.easiness) { let edge = self.new_edge(to_edge!(nonce))?; if cycle.contains(&edge) { sol[n] = to_edge!(nonce); n += 1; cycle.remove(&edge); } } return if n == self.proof_size { Ok(sol) } else { Err(ErrorKind::NoCycle)? }; } /// Searches for a solution (simple implementation) pub fn find_cycles_impl(&mut self) -> Result, Error> { let mut us = [T::zero(); MAXPATHLEN]; let mut vs = [T::zero(); MAXPATHLEN]; for nonce in 0..to_usize!(self.easiness) { us[0] = self.new_node(to_edge!(nonce), 0)?; vs[0] = self.new_node(to_edge!(nonce), 1)?; let u = self.graph[to_usize!(us[0])]; let v = self.graph[to_usize!(vs[0])]; if us[0] == T::zero() { continue; // ignore duplicate edges } let nu = to_usize!(self.path(u, &mut us)?); let nv = to_usize!(self.path(v, &mut vs)?); let sol = self.find_sol(nu, &us, nv, &vs); match sol { Ok(s) => { let mut proof = Proof::new(map_vec!(s.to_vec(), |&n| n.to_u64().unwrap_or(0))); proof.cuckoo_sizeshift = self.edge_bits; return Ok(vec![proof]); } Err(e) => match e.kind() { ErrorKind::InvalidCycle(_) => continue, ErrorKind::NoCycle => self.update_graph(nu, &us, nv, &vs)?, _ => return Err(e), }, } } Err(ErrorKind::NoSolution)? } /// Assuming increasing nonces all smaller than easiness, verifies the /// nonces form a cycle in a Cuckoo graph. Each nonce generates an edge, we /// build the nodes on both side of that edge and count the connections. pub fn verify_impl(&self, proof: &Proof) -> Result<(), Error> { let easiness = to_u64!(self.easiness); let nonces = &proof.nonces; let mut us = vec![T::zero(); proof.proof_size()]; let mut vs = vec![T::zero(); proof.proof_size()]; for n in 0..proof.proof_size() { if nonces[n] >= easiness || (n != 0 && nonces[n] <= nonces[n - 1]) { return Err(ErrorKind::Verification("edge wrong size".to_owned()))?; } us[n] = self.new_node(to_edge!(nonces[n]), 0)?; vs[n] = self.new_node(to_edge!(nonces[n]), 1)?; } let mut i = 0; let mut count = proof.proof_size(); loop { let mut j = i; for k in 0..proof.proof_size() { // find unique other j with same vs[j] if k != i && vs[k] == vs[i] { if j != i { return Err(ErrorKind::Verification("".to_owned()))?; } j = k; } } if j == i { return Err(ErrorKind::Verification("".to_owned()))?; } i = j; for k in 0..proof.proof_size() { // find unique other i with same us[i] if k != j && us[k] == us[j] { if i != j { return Err(ErrorKind::Verification("".to_owned()))?; } i = k; } } if i == j { return Err(ErrorKind::Verification("".to_owned()))?; } count -= 2; if i == 0 { break; } } match count == 0 { true => Ok(()), false => Err(ErrorKind::Verification("Invalid solution".to_owned()))?, } } } #[cfg(test)] mod test { use super::*; static V1: [u64; 42] = [ 0x3bbd, 0x4e96, 0x1013b, 0x1172b, 0x1371b, 0x13e6a, 0x1aaa6, 0x1b575, 0x1e237, 0x1ee88, 0x22f94, 0x24223, 0x25b4f, 0x2e9f3, 0x33b49, 0x34063, 0x3454a, 0x3c081, 0x3d08e, 0x3d863, 0x4285a, 0x42f22, 0x43122, 0x4b853, 0x4cd0c, 0x4f280, 0x557d5, 0x562cf, 0x58e59, 0x59a62, 0x5b568, 0x644b9, 0x657e9, 0x66337, 0x6821c, 0x7866f, 0x7e14b, 0x7ec7c, 0x7eed7, 0x80643, 0x8628c, 0x8949e, ]; static V2: [u64; 42] = [ 0x5e3a, 0x8a8b, 0x103d8, 0x1374b, 0x14780, 0x16110, 0x1b571, 0x1c351, 0x1c826, 0x28228, 0x2909f, 0x29516, 0x2c1c4, 0x334eb, 0x34cdd, 0x38a2c, 0x3ad23, 0x45ac5, 0x46afe, 0x50f43, 0x51ed6, 0x52ddd, 0x54a82, 0x5a46b, 0x5dbdb, 0x60f6f, 0x60fcd, 0x61c78, 0x63899, 0x64dab, 0x6affc, 0x6b569, 0x72639, 0x73987, 0x78806, 0x7b98e, 0x7c7d7, 0x7ddd4, 0x7fa88, 0x8277c, 0x832d9, 0x8ba6f, ]; static V3: [u64; 42] = [ 0x308b, 0x9004, 0x91fc, 0x983e, 0x9d67, 0xa293, 0xb4cb, 0xb6c8, 0xccc8, 0xdddc, 0xf04d, 0x1372f, 0x16ec9, 0x17b61, 0x17d03, 0x1e3bc, 0x1fb0f, 0x29e6e, 0x2a2ca, 0x2a719, 0x3a078, 0x3b7cc, 0x3c71d, 0x40daa, 0x43e17, 0x46adc, 0x4b359, 0x4c3aa, 0x4ce92, 0x4d06e, 0x51140, 0x565ac, 0x56b1f, 0x58a8b, 0x5e410, 0x5e607, 0x5ebb5, 0x5f8ae, 0x7aeac, 0x7b902, 0x7d6af, 0x7f400, ]; // cuckoo28 at 50% edges of letter 'u' static V4: [u64; 42] = [ 0xf7243, 0x11f130, 0x193812, 0x23b565, 0x279ac3, 0x69b270, 0xe0778f, 0xef51fc, 0x10bf6e8, 0x13ccf7d, 0x1551177, 0x1b6cfd2, 0x1f872c3, 0x2075681, 0x2e23ccc, 0x2e4c0aa, 0x2f607f1, 0x3007eeb, 0x3407e9a, 0x35423f9, 0x39e48bf, 0x45e3bf6, 0x46aa484, 0x47c0fe1, 0x4b1d5a6, 0x4bae0ba, 0x4dfdbaf, 0x5048eda, 0x537da6b, 0x5402887, 0x56b8897, 0x5bd8e8b, 0x622de20, 0x62be5ce, 0x62d538e, 0x6464518, 0x650a6d5, 0x66ec4fa, 0x66f9476, 0x6b1e5f6, 0x6fd5d88, 0x701f37b, ]; #[test] fn cuckoo_context() { let ret = mine20_vectors::(); if let Err(r) = ret { panic!("mine20_vectors u32: Error: {}", r); } let ret = mine20_vectors::(); if let Err(r) = ret { panic!("mine20_vectors u64: Error: {}", r); } let ret = validate20_vectors::(); if let Err(r) = ret { panic!("validate20_vectors u32: Error: {}", r); } let ret = validate20_vectors::(); if let Err(r) = ret { panic!("validate20_vectors u64: Error: {}", r); } let ret = validate_fail::(); if let Err(r) = ret { panic!("validate_fail u32: Error: {}", r); } let ret = validate_fail::(); if let Err(r) = ret { panic!("validate_fail u64: Error: {}", r); } let ret = mine16_validate::(); if let Err(r) = ret { panic!("mine16_validate u32: Error: {}", r); } let ret = mine16_validate::(); if let Err(r) = ret { panic!("mine16_validate u64: Error: {}", r); } } /// Find a 42-cycle on Cuckoo20 at 75% easiness and verify against a few /// known cycle proofs /// generated by other implementations. fn mine20_vectors() -> Result<(), Error> where T: EdgeType, { let mut cuckoo_ctx = CuckooContext::::new(20, 42, 75, 10)?; cuckoo_ctx.set_header_nonce([49].to_vec(), None, true)?; let res = cuckoo_ctx.find_cycles()?; let mut proof = Proof::new(V1.to_vec()); proof.cuckoo_sizeshift = 20; assert_eq!(proof, res[0]); let mut cuckoo_ctx = CuckooContext::::new(20, 42, 70, 10)?; cuckoo_ctx.set_header_nonce([50].to_vec(), None, true)?; let res = cuckoo_ctx.find_cycles()?; let mut proof = Proof::new(V2.to_vec()); proof.cuckoo_sizeshift = 20; assert_eq!(proof, res[0]); //re-use context cuckoo_ctx.set_header_nonce([51].to_vec(), None, true)?; let res = cuckoo_ctx.find_cycles()?; let mut proof = Proof::new(V3.to_vec()); proof.cuckoo_sizeshift = 20; assert_eq!(proof, res[0]); Ok(()) } fn validate20_vectors() -> Result<(), Error> where T: EdgeType, { let mut cuckoo_ctx = CuckooContext::::new(20, 42, 75, 10)?; cuckoo_ctx.set_header_nonce([49].to_vec(), None, false)?; assert!(cuckoo_ctx.verify(&Proof::new(V1.to_vec().clone())).is_ok()); let mut cuckoo_ctx = CuckooContext::::new(20, 42, 70, 10)?; cuckoo_ctx.set_header_nonce([50].to_vec(), None, false)?; assert!(cuckoo_ctx.verify(&Proof::new(V2.to_vec().clone())).is_ok()); cuckoo_ctx.set_header_nonce([51].to_vec(), None, false)?; assert!(cuckoo_ctx.verify(&Proof::new(V3.to_vec().clone())).is_ok()); Ok(()) } fn validate_fail() -> Result<(), Error> where T: EdgeType, { // edge checks let mut cuckoo_ctx = CuckooContext::::new(20, 42, 75, 10)?; cuckoo_ctx.set_header_nonce([49].to_vec(), None, false)?; // edge checks assert!(!cuckoo_ctx.verify(&Proof::new(vec![0; 42])).is_ok()); assert!(!cuckoo_ctx.verify(&Proof::new(vec![0xffff; 42])).is_ok()); // wrong data for proof cuckoo_ctx.set_header_nonce([50].to_vec(), None, false)?; assert!(!cuckoo_ctx.verify(&Proof::new(V1.to_vec().clone())).is_ok()); let mut test_header = [0; 32]; test_header[0] = 24; let mut cuckoo_ctx = CuckooContext::::new(20, 42, 50, 10)?; cuckoo_ctx.set_header_nonce(test_header.to_vec(), None, false)?; assert!(!cuckoo_ctx.verify(&Proof::new(V4.to_vec().clone())).is_ok()); Ok(()) } fn mine16_validate() -> Result<(), Error> where T: EdgeType, { for n in 1..5 { let h = [n; 32]; let mut cuckoo_ctx = CuckooContext::::new(16, 42, 75, 10)?; cuckoo_ctx.set_header_nonce(h.to_vec(), None, false)?; let res = cuckoo_ctx.find_cycles()?; assert!(cuckoo_ctx.verify(&res[0]).is_ok()) } Ok(()) } }