// Copyright 2017 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use std::{error, fmt, num}; use std::cmp::min; use serde::{de, ser}; use byteorder::{BigEndian, ByteOrder}; use blake2::blake2b::blake2b; use util::secp; use util::secp::Secp256k1; use util::secp::key::{PublicKey, SecretKey}; use util; // Size of an identifier in bytes pub const IDENTIFIER_SIZE: usize = 10; /// An ExtKey error #[derive(PartialEq, Eq, Clone, Debug)] pub enum Error { /// The size of the seed is invalid InvalidSeedSize, InvalidSliceSize, InvalidExtendedKey, Secp(secp::Error), ParseIntError(num::ParseIntError), } impl From for Error { fn from(e: secp::Error) -> Error { Error::Secp(e) } } impl From for Error { fn from(e: num::ParseIntError) -> Error { Error::ParseIntError(e) } } // Passthrough Debug to Display, since errors should be user-visible impl fmt::Display for Error { fn fmt(&self, f: &mut fmt::Formatter) -> Result<(), fmt::Error> { f.write_str(error::Error::description(self)) } } impl error::Error for Error { fn cause(&self) -> Option<&error::Error> { None } fn description(&self) -> &str { match *self { Error::InvalidSeedSize => "keychain: seed isn't of size 128, 256 or 512", // TODO change when ser. ext. size is fixed Error::InvalidSliceSize => "keychain: serialized extended key must be of size 73", Error::InvalidExtendedKey => "keychain: the given serialized extended key is invalid", Error::Secp(_) => "keychain: secp error", Error::ParseIntError(_) => "keychain: error parsing int", } } } #[derive(Clone, PartialEq, Eq, Hash)] pub struct Identifier([u8; IDENTIFIER_SIZE]); impl ser::Serialize for Identifier { fn serialize(&self, serializer: S) -> Result where S: ser::Serializer, { serializer.serialize_str(&self.to_hex()) } } impl<'de> de::Deserialize<'de> for Identifier { fn deserialize(deserializer: D) -> Result where D: de::Deserializer<'de>, { deserializer.deserialize_u64(IdentifierVisitor) } } struct IdentifierVisitor; impl<'de> de::Visitor<'de> for IdentifierVisitor { type Value = Identifier; fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result { formatter.write_str("an identifier") } fn visit_str(self, s: &str) -> Result where E: de::Error, { // TODO - error handling here let identifier = Identifier::from_hex(s).unwrap(); Ok(identifier) } } impl Identifier { pub fn zero() -> Identifier { Identifier::from_bytes(&[0; IDENTIFIER_SIZE]) } pub fn from_bytes(bytes: &[u8]) -> Identifier { let mut identifier = [0; IDENTIFIER_SIZE]; for i in 0..min(IDENTIFIER_SIZE, bytes.len()) { identifier[i] = bytes[i]; } Identifier(identifier) } pub fn from_key_id(secp: &Secp256k1, pubkey: &PublicKey) -> Identifier { let bytes = pubkey.serialize_vec(secp, true); let identifier = blake2b(IDENTIFIER_SIZE, &[], &bytes[..]); Identifier::from_bytes(&identifier.as_bytes()) } fn from_hex(hex: &str) -> Result { let bytes = util::from_hex(hex.to_string()).unwrap(); Ok(Identifier::from_bytes(&bytes)) } pub fn to_hex(&self) -> String { util::to_hex(self.0.to_vec()) } } impl AsRef<[u8]> for Identifier { fn as_ref(&self) -> &[u8] { &self.0.as_ref() } } impl ::std::fmt::Debug for Identifier { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { try!(write!(f, "{}(", stringify!(Identifier))); try!(write!(f, "{}", self.to_hex())); write!(f, ")") } } impl fmt::Display for Identifier { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { write!(f, "{}", self.to_hex()) } } /// An ExtendedKey is a secret key which can be used to derive new /// secret keys to blind the commitment of a transaction output. /// To be usable, a secret key should have an amount assigned to it, /// but when the key is derived, the amount is not known and must be /// given. #[derive(Debug, Clone)] pub struct ExtendedKey { /// Depth of the extended key pub depth: u8, /// Child number of the key pub n_child: u32, /// Root key identifier pub root_key_id: Identifier, /// Code of the derivation chain pub chaincode: [u8; 32], /// Actual private key pub key: SecretKey, } impl ExtendedKey { /// Creates a new extended key from a serialized one pub fn from_slice(secp: &Secp256k1, slice: &[u8]) -> Result { // TODO change when ser. ext. size is fixed if slice.len() != 79 { return Err(Error::InvalidSliceSize); } let depth: u8 = slice[0]; let root_key_id = Identifier::from_bytes(&slice[1..11]); let n_child = BigEndian::read_u32(&slice[11..15]); let mut chaincode: [u8; 32] = [0; 32]; (&mut chaincode).copy_from_slice(&slice[15..47]); let key = match SecretKey::from_slice(secp, &slice[47..79]) { Ok(key) => key, Err(_) => return Err(Error::InvalidExtendedKey), }; Ok(ExtendedKey { depth, root_key_id, n_child, chaincode, key, }) } /// Creates a new extended master key from a seed pub fn from_seed(secp: &Secp256k1, seed: &[u8]) -> Result { match seed.len() { 16 | 32 | 64 => (), _ => return Err(Error::InvalidSeedSize), } let derived = blake2b(64, b"Mimble seed", seed); let mut chaincode: [u8; 32] = [0; 32]; (&mut chaincode).copy_from_slice(&derived.as_bytes()[32..]); // TODO Error handling let secret_key = SecretKey::from_slice(&secp, &derived.as_bytes()[0..32]) .expect("Error generating from seed"); let mut ext_key = ExtendedKey { depth: 0, root_key_id: Identifier::zero(), n_child: 0, chaincode: chaincode, key: secret_key, }; ext_key.root_key_id = ext_key.identifier(secp)?; Ok(ext_key) } /// Return the identifier of the key /// which is the blake2b (10 byte) digest of the PublicKey // corresponding to the underlying SecretKey pub fn identifier(&self, secp: &Secp256k1) -> Result { let key_id = PublicKey::from_secret_key(secp, &self.key)?; Ok(Identifier::from_key_id(secp, &key_id)) } /// Derive an extended key from an extended key pub fn derive(&self, secp: &Secp256k1, n: u32) -> Result { let mut n_bytes: [u8; 4] = [0; 4]; BigEndian::write_u32(&mut n_bytes, n); let mut seed = self.key[..].to_vec(); seed.extend_from_slice(&n_bytes); let derived = blake2b(64, &self.chaincode[..], &seed[..]); let mut secret_key = SecretKey::from_slice(&secp, &derived.as_bytes()[0..32]).expect("Error deriving key"); secret_key .add_assign(secp, &self.key) .expect("Error deriving key"); // TODO check if key != 0 ? let mut chain_code: [u8; 32] = [0; 32]; (&mut chain_code).clone_from_slice(&derived.as_bytes()[32..]); Ok(ExtendedKey { depth: self.depth + 1, root_key_id: self.identifier(&secp)?, n_child: n, chaincode: chain_code, key: secret_key, }) } } #[cfg(test)] mod test { use serde_json; use util::secp::Secp256k1; use util::secp::key::SecretKey; use super::{ExtendedKey, Identifier}; use util; fn from_hex(hex_str: &str) -> Vec { util::from_hex(hex_str.to_string()).unwrap() } #[test] fn test_identifier_json_ser_deser() { let hex = "942b6c0bd43bdcb24f3edfe7fadbc77054ecc4f2"; let identifier = Identifier::from_hex(hex).unwrap(); #[derive(Debug, Serialize, Deserialize, PartialEq)] struct HasAnIdentifier { identifier: Identifier, } let has_an_identifier = HasAnIdentifier { identifier }; let json = serde_json::to_string(&has_an_identifier).unwrap(); assert_eq!(json, "{\"identifier\":\"942b6c0bd43bdcb24f3e\"}"); let deserialized: HasAnIdentifier = serde_json::from_str(&json).unwrap(); assert_eq!(deserialized, has_an_identifier); } #[test] fn extkey_from_seed() { // TODO More test vectors let s = Secp256k1::new(); let seed = from_hex("000102030405060708090a0b0c0d0e0f"); let extk = ExtendedKey::from_seed(&s, &seed.as_slice()).unwrap(); let sec = from_hex("c3f5ae520f474b390a637de4669c84d0ed9bbc21742577fac930834d3c3083dd"); let secret_key = SecretKey::from_slice(&s, sec.as_slice()).unwrap(); let chaincode = from_hex("e7298e68452b0c6d54837670896e1aee76b118075150d90d4ee416ece106ae72"); let identifier = from_hex("83e59c48297b78b34b73"); let depth = 0; let n_child = 0; assert_eq!(extk.key, secret_key); assert_eq!( extk.identifier(&s).unwrap(), Identifier::from_bytes(identifier.as_slice()) ); assert_eq!( extk.root_key_id, Identifier::from_bytes(identifier.as_slice()) ); assert_eq!(extk.chaincode, chaincode.as_slice()); assert_eq!(extk.depth, depth); assert_eq!(extk.n_child, n_child); } #[test] fn extkey_derivation() { // TODO More test vectors let s = Secp256k1::new(); let seed = from_hex("000102030405060708090a0b0c0d0e0f"); let extk = ExtendedKey::from_seed(&s, &seed.as_slice()).unwrap(); let derived = extk.derive(&s, 0).unwrap(); let sec = from_hex("d75f70beb2bd3b56f9b064087934bdedee98e4b5aae6280c58b4eff38847888f"); let secret_key = SecretKey::from_slice(&s, sec.as_slice()).unwrap(); let chaincode = from_hex("243cb881e1549e714db31d23af45540b13ad07941f64a786bbf3313b4de1df52"); let root_key_id = from_hex("83e59c48297b78b34b73"); let identifier = from_hex("0185adb4d8b730099c93"); let depth = 1; let n_child = 0; assert_eq!(derived.key, secret_key); assert_eq!( derived.identifier(&s).unwrap(), Identifier::from_bytes(identifier.as_slice()) ); assert_eq!( derived.root_key_id, Identifier::from_bytes(root_key_id.as_slice()) ); assert_eq!(derived.chaincode, chaincode.as_slice()); assert_eq!(derived.depth, depth); assert_eq!(derived.n_child, n_child); } }