// Copyright 2021 The Grin Developers // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. pub mod common; use self::core::core::{transaction, Weighting}; use self::core::global; use self::keychain::{ExtKeychain, Keychain}; use self::pool::TxSource; use crate::common::*; use grin_core as core; use grin_keychain as keychain; use grin_pool as pool; use grin_util as util; use std::sync::Arc; /// Test we can add some txs to the pool (both stempool and txpool). #[test] fn test_the_transaction_pool() { util::init_test_logger(); global::set_local_chain_type(global::ChainTypes::AutomatedTesting); global::set_local_accept_fee_base(1); let keychain: ExtKeychain = Keychain::from_random_seed(false).unwrap(); let db_root = "target/.transaction_pool"; clean_output_dir(db_root.into()); let genesis = genesis_block(&keychain); let chain = Arc::new(init_chain(db_root, genesis)); // Initialize a new pool with our chain adapter. let mut pool = init_transaction_pool(Arc::new(ChainAdapter { chain: chain.clone(), })); // mine past HF4 to see effect of set_local_accept_fee_base add_some_blocks(&chain, 4 * 3, &keychain); let header = chain.head_header().unwrap(); let header_1 = chain.get_header_by_height(1).unwrap(); let initial_tx = test_transaction_spending_coinbase( &keychain, &header_1, vec![500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400], ); // Add this tx to the pool (stem=false, direct to txpool). { pool.add_to_pool(test_source(), initial_tx, false, &header) .unwrap(); assert_eq!(pool.total_size(), 1); } // Test adding a tx that "double spends" an output currently spent by a tx // already in the txpool. In this case we attempt to spend the original coinbase twice. { let tx = test_transaction_spending_coinbase(&keychain, &header, vec![501]); assert!(pool.add_to_pool(test_source(), tx, false, &header).is_err()); } // tx1 spends some outputs from the initial test tx. let tx1 = test_transaction(&keychain, vec![500, 600], vec![469, 569]); // tx2 spends some outputs from both tx1 and the initial test tx. let tx2 = test_transaction(&keychain, vec![469, 700], vec![498]); { // Check we have a single initial tx in the pool. assert_eq!(pool.total_size(), 1); // First, add a simple tx directly to the txpool (stem = false). pool.add_to_pool(test_source(), tx1.clone(), false, &header) .unwrap(); assert_eq!(pool.total_size(), 2); // Add another tx spending outputs from the previous tx. pool.add_to_pool(test_source(), tx2.clone(), false, &header) .unwrap(); assert_eq!(pool.total_size(), 3); } // Test adding the exact same tx multiple times (same kernel signature). // This will fail for stem=false during tx aggregation due to duplicate // outputs and duplicate kernels. { assert!(pool .add_to_pool(test_source(), tx1.clone(), false, &header) .is_err()); } // Test adding a duplicate tx with the same input and outputs. // Note: not the *same* tx, just same underlying inputs/outputs. { let tx1a = test_transaction(&keychain, vec![500, 600], vec![469, 569]); assert!(pool .add_to_pool(test_source(), tx1a, false, &header) .is_err()); } // Test adding a tx attempting to spend a non-existent output. { let bad_tx = test_transaction(&keychain, vec![10_001], vec![9_900]); assert!(pool .add_to_pool(test_source(), bad_tx, false, &header) .is_err()); } // Test adding a tx that would result in a duplicate output (conflicts with // output from tx2). For reasons of security all outputs in the UTXO set must // be unique. Otherwise spending one will almost certainly cause the other // to be immediately stolen via a "replay" tx. { let tx = test_transaction(&keychain, vec![900], vec![498]); assert!(pool.add_to_pool(test_source(), tx, false, &header).is_err()); } // Confirm the tx pool correctly identifies an invalid tx (already spent). { let tx3 = test_transaction(&keychain, vec![500], vec![467]); assert!(pool .add_to_pool(test_source(), tx3, false, &header) .is_err()); assert_eq!(pool.total_size(), 3); } // Now add a couple of txs to the stempool (stem = true). { let tx = test_transaction(&keychain, vec![569], vec![538]); pool.add_to_pool(test_source(), tx, true, &header).unwrap(); let tx2 = test_transaction(&keychain, vec![538], vec![507]); pool.add_to_pool(test_source(), tx2, true, &header).unwrap(); assert_eq!(pool.total_size(), 3); assert_eq!(pool.stempool.size(), 2); } // Check we can take some entries from the stempool and "fluff" them into the // txpool. This also exercises multi-kernel txs. { let agg_tx = pool .stempool .all_transactions_aggregate(None) .unwrap() .unwrap(); assert_eq!(agg_tx.kernels().len(), 2); pool.add_to_pool(test_source(), agg_tx, false, &header) .unwrap(); assert_eq!(pool.total_size(), 4); assert!(pool.stempool.is_empty()); } // Adding a duplicate tx to the stempool will result in it being fluffed. // This handles the case of the stem path having a cycle in it. { let tx = test_transaction(&keychain, vec![507], vec![476]); pool.add_to_pool(test_source(), tx.clone(), true, &header) .unwrap(); assert_eq!(pool.total_size(), 4); assert_eq!(pool.txpool.size(), 4); assert_eq!(pool.stempool.size(), 1); // Duplicate stem tx so fluff, adding it to txpool and removing it from stempool. pool.add_to_pool(test_source(), tx.clone(), true, &header) .unwrap(); assert_eq!(pool.total_size(), 5); assert_eq!(pool.txpool.size(), 5); assert!(pool.stempool.is_empty()); } // Now check we can correctly deaggregate a multi-kernel tx based on current // contents of the txpool. // We will do this be adding a new tx to the pool // that is a superset of a tx already in the pool. { let tx4 = test_transaction(&keychain, vec![800], vec![769]); // tx1 and tx2 are already in the txpool (in aggregated form) // tx4 is the "new" part of this aggregated tx that we care about let agg_tx = transaction::aggregate(&[tx1.clone(), tx2.clone(), tx4]).unwrap(); agg_tx.validate(Weighting::AsTransaction).unwrap(); pool.add_to_pool(test_source(), agg_tx, false, &header) .unwrap(); assert_eq!(pool.total_size(), 6); let entry = pool.txpool.entries.last().unwrap(); assert_eq!(entry.tx.kernels().len(), 1); assert_eq!(entry.src, TxSource::Deaggregate); } // Check we cannot "double spend" an output spent in a previous block. // We use the initial coinbase output here for convenience. { let double_spend_tx = test_transaction_spending_coinbase(&keychain, &header, vec![1000]); // check we cannot add a double spend to the stempool assert!(pool .add_to_pool(test_source(), double_spend_tx.clone(), true, &header) .is_err()); // check we cannot add a double spend to the txpool assert!(pool .add_to_pool(test_source(), double_spend_tx.clone(), false, &header) .is_err()); } // Cleanup db directory clean_output_dir(db_root.into()); }