mirror of
https://github.com/mimblewimble/grin.git
synced 2025-01-20 19:11:08 +03:00
Prunable and easy to store MMR impl
This commit is contained in:
parent
ae9a9c8938
commit
d32ab967f0
1 changed files with 698 additions and 0 deletions
698
core/src/core/pmmr.rs
Normal file
698
core/src/core/pmmr.rs
Normal file
|
@ -0,0 +1,698 @@
|
|||
// Copyright 2016 The Grin Developers
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
//! Persistent and prunable Merkle Mountain Range implementation. For a high
|
||||
//! level description of MMRs, see:
|
||||
//!
|
||||
//! https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
|
||||
//!
|
||||
//! This implementation is built in two major parts:
|
||||
//!
|
||||
//! 1. A set of low-level functions that allow navigation within an arbitrary
|
||||
//! sized binary tree traversed in postorder. To realize why this us useful,
|
||||
//! we start with the standard height sequence in a MMR: 0010012001... This is
|
||||
//! in fact identical to the postorder traversal (left-right-top) of a binary
|
||||
//! tree. In addition postorder traversal is independent of the height of the
|
||||
//! tree. This allows us, with a few primitive, to get the height of any node
|
||||
//! in the MMR from its position in the sequence, as well as calculate the
|
||||
//! position of siblings, parents, etc. As all those functions only rely on
|
||||
//! binary operations, they're extremely fast. For more information, see the
|
||||
//! doc on bintree_jump_left_sibling.
|
||||
//! 2. The implementation of a prunable MMR sum tree using the above. Each leaf
|
||||
//! is required to be Summable and Hashed. Tree roots can be trivially and
|
||||
//! efficiently calculated without materializing the full tree. The underlying
|
||||
//! (Hash, Sum) pais are stored in a Backend implementation that can either be
|
||||
//! a simple Vec or a database.
|
||||
|
||||
use std::clone::Clone;
|
||||
use std::fmt::Debug;
|
||||
use std::marker::PhantomData;
|
||||
use std::ops::{self, Deref};
|
||||
|
||||
use core::hash::{Hash, Hashed};
|
||||
use ser::{self, Readable, Reader, Writeable, Writer};
|
||||
|
||||
/// Trait for an element of the tree that has a well-defined sum and hash that
|
||||
/// the tree can sum over
|
||||
pub trait Summable {
|
||||
/// The type of the sum
|
||||
type Sum: Clone + ops::Add<Output = Self::Sum> + Readable + Writeable;
|
||||
|
||||
/// Obtain the sum of the element
|
||||
fn sum(&self) -> Self::Sum;
|
||||
|
||||
/// Length of the Sum type when serialized. Can be used as a hint by
|
||||
/// underlying storages.
|
||||
fn sum_len(&self) -> usize;
|
||||
}
|
||||
|
||||
/// An empty sum that takes no space, to store elements that do not need summing
|
||||
/// but can still leverage the hierarchical hashing.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
pub struct NullSum;
|
||||
impl ops::Add for NullSum {
|
||||
type Output = NullSum;
|
||||
fn add(self, _: NullSum) -> NullSum {
|
||||
NullSum
|
||||
}
|
||||
}
|
||||
|
||||
impl Readable for NullSum {
|
||||
fn read(_: &mut Reader) -> Result<NullSum, ser::Error> {
|
||||
Ok(NullSum)
|
||||
}
|
||||
}
|
||||
|
||||
impl Writeable for NullSum {
|
||||
fn write<W: Writer>(&self, _: &mut W) -> Result<(), ser::Error> {
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
/// Wrapper for a type that allows it to be inserted in a tree without summing
|
||||
pub struct NoSum<T>(T);
|
||||
impl<T> Summable for NoSum<T> {
|
||||
type Sum = NullSum;
|
||||
fn sum(&self) -> NullSum {
|
||||
NullSum
|
||||
}
|
||||
fn sum_len(&self) -> usize {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/// A utility type to handle (Hash, Sum) pairs more conveniently. The addition
|
||||
/// of two HashSums is the (Hash(h1|h2), h1 + h2) HashSum.
|
||||
#[derive(Debug, Clone, PartialEq, Eq)]
|
||||
pub struct HashSum<T> where T: Summable {
|
||||
pub hash: Hash,
|
||||
pub sum: T::Sum,
|
||||
}
|
||||
|
||||
impl<T> HashSum<T> where T: Summable + Writeable {
|
||||
pub fn from_summable(idx: u64, elmt: T) -> HashSum<T> {
|
||||
let hash = Hashed::hash(&elmt);
|
||||
let sum = elmt.sum();
|
||||
let node_hash = (idx, &sum, hash).hash();
|
||||
HashSum {
|
||||
hash: node_hash,
|
||||
sum: sum,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Readable for HashSum<T> where T: Summable {
|
||||
fn read(r: &mut Reader) -> Result<HashSum<T>, ser::Error> {
|
||||
Ok(HashSum {
|
||||
hash: Hash::read(r)?,
|
||||
sum: T::Sum::read(r)?,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Writeable for HashSum<T> where T: Summable {
|
||||
fn write<W: Writer>(&self, w: &mut W) -> Result<(), ser::Error> {
|
||||
self.hash.write(w)?;
|
||||
self.sum.write(w)
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> ops::Add for HashSum<T> where T: Summable {
|
||||
type Output = HashSum<T>;
|
||||
fn add(self, other: HashSum<T>) -> HashSum<T> {
|
||||
HashSum {
|
||||
hash: (self.hash, other.hash).hash(),
|
||||
sum: self.sum + other.sum,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Storage backend for the MMR, just needs to be indexed by order of insertion.
|
||||
/// The remove operation can be a no-op for unoptimized backends.
|
||||
pub trait Backend<T> where T: Summable {
|
||||
/// Append the provided HashSums to the backend storage.
|
||||
fn append(&self, data: Vec<HashSum<T>>);
|
||||
/// Get a HashSum by insertion position
|
||||
fn get(&self, position: u64) -> Option<HashSum<T>>;
|
||||
/// Remove HashSums by insertion position
|
||||
fn remove(&self, positions: Vec<u64>);
|
||||
}
|
||||
|
||||
/// Prunable Merkle Mountain Range implementation. All positions within the tree
|
||||
/// start at 1 as they're postorder tree traversal positions rather than array
|
||||
/// indices.
|
||||
///
|
||||
/// Heavily relies on navigation operations within a binary tree. In particular,
|
||||
/// all the implementation needs to keep track of the MMR structure is how far
|
||||
/// we are in the sequence of nodes making up the MMR.
|
||||
struct PMMR<T, B> where T: Summable, B: Backend<T> {
|
||||
last_pos: u64,
|
||||
backend: B,
|
||||
// only needed for parameterizing Backend
|
||||
summable: PhantomData<T>,
|
||||
}
|
||||
|
||||
impl<T, B> PMMR<T, B> where T: Summable + Writeable + Debug + Clone, B: Backend<T> {
|
||||
|
||||
/// Build a new prunable Merkle Mountain Range using the provided backend.
|
||||
pub fn new(backend: B) -> PMMR<T, B> {
|
||||
PMMR {
|
||||
last_pos: 0,
|
||||
backend: backend,
|
||||
summable: PhantomData,
|
||||
}
|
||||
}
|
||||
|
||||
/// Computes the root of the MMR. Find all the peaks in the current
|
||||
/// tree and "bags" them to get a single peak.
|
||||
pub fn root(&self) -> HashSum<T> {
|
||||
let peaks_pos = peaks(self.last_pos);
|
||||
let peaks: Vec<Option<HashSum<T>>> = map_vec!(peaks_pos, |&pi| self.backend.get(pi));
|
||||
|
||||
let mut ret = None;
|
||||
for peak in peaks {
|
||||
ret = match (ret, peak) {
|
||||
(None, x) => x,
|
||||
(Some(hsum), None) => Some(hsum),
|
||||
(Some(lhsum), Some(rhsum)) => Some(lhsum + rhsum)
|
||||
}
|
||||
}
|
||||
ret.expect("no root, invalid tree")
|
||||
}
|
||||
|
||||
/// Push a new Summable element in the MMR. Computes new related peaks at
|
||||
/// the same time if applicable.
|
||||
pub fn push(&mut self, elmt: T) -> u64 {
|
||||
let elmt_pos = self.last_pos + 1;
|
||||
let mut current_hashsum = HashSum::from_summable(elmt_pos, elmt);
|
||||
let mut to_append = vec![current_hashsum.clone()];
|
||||
let mut height = 0;
|
||||
let mut pos = elmt_pos;
|
||||
|
||||
// we look ahead one position in the MMR, if the expected node has a higher
|
||||
// height it means we have to build a higher peak by summing with a previous
|
||||
// sibling. we do it iteratively in case the new peak itself allows the
|
||||
// creation of another parent.
|
||||
while bintree_postorder_height(pos+1) > height {
|
||||
let left_sibling = bintree_jump_left_sibling(pos);
|
||||
let left_hashsum = self.backend.get(left_sibling)
|
||||
.expect("missing left sibling in tree, should not have been pruned");
|
||||
current_hashsum = left_hashsum + current_hashsum;
|
||||
|
||||
to_append.push(current_hashsum.clone());
|
||||
height += 1;
|
||||
pos += 1;
|
||||
}
|
||||
|
||||
// append all the new nodes and update the MMR index
|
||||
self.backend.append(to_append);
|
||||
self.last_pos = pos;
|
||||
elmt_pos
|
||||
}
|
||||
|
||||
/// Prune an element from the tree given its index. Note that to be able to
|
||||
/// provide that position and prune, consumers of this API are expected to
|
||||
/// keep an index of elements to positions in the tree. Prunes parent
|
||||
/// nodes as well when they become childless.
|
||||
pub fn prune(&self, position: u64) {
|
||||
let prunable_height = bintree_postorder_height(position);
|
||||
if prunable_height > 0 {
|
||||
// only leaves can be pruned
|
||||
return;
|
||||
}
|
||||
|
||||
// loop going up the tree, from node to parent, as long as we stay inside
|
||||
// the tree.
|
||||
let mut to_prune = vec![];
|
||||
let mut current = position;
|
||||
while current+1 < self.last_pos {
|
||||
let current_height = bintree_postorder_height(current);
|
||||
let next_height = bintree_postorder_height(current+1);
|
||||
|
||||
// compare the node's height to the next height, if the next is higher
|
||||
// we're on the right hand side of the subtree (otherwise we're on the
|
||||
// left)
|
||||
let sibling: u64;
|
||||
let parent: u64;
|
||||
if next_height > prunable_height {
|
||||
sibling = bintree_jump_left_sibling(current);
|
||||
parent = current + 1;
|
||||
} else {
|
||||
sibling = bintree_jump_right_sibling(current);
|
||||
parent = sibling + 1;
|
||||
}
|
||||
|
||||
if parent > self.last_pos {
|
||||
// can't prune when our parent isn't here yet
|
||||
break;
|
||||
}
|
||||
to_prune.push(current);
|
||||
|
||||
// if we have a pruned sibling, we can continue up the tree
|
||||
// otherwise we're done
|
||||
if let None = self.backend.get(sibling) {
|
||||
current = parent;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
self.backend.remove(to_prune);
|
||||
}
|
||||
|
||||
/// Total size of the tree, including intermediary nodes an ignoring any
|
||||
/// pruning.
|
||||
pub fn unpruned_size(&self) -> u64 {
|
||||
self.last_pos
|
||||
}
|
||||
}
|
||||
|
||||
/// Gets the postorder traversal index of all peaks in a MMR given the last
|
||||
/// node's position. Starts with the top peak, which is always on the left
|
||||
/// side of the range, and navigates toward lower siblings toward the right
|
||||
/// of the range.
|
||||
fn peaks(num: u64) -> Vec<u64> {
|
||||
|
||||
// detecting an invalid mountain range, when siblings exist but no parent
|
||||
// exists
|
||||
if bintree_postorder_height(num+1) > bintree_postorder_height(num) {
|
||||
return vec![];
|
||||
}
|
||||
|
||||
// our top peak is always on the leftmost side of the tree and leftmost trees
|
||||
// have for index a binary values with all 1s (i.e. 11, 111, 1111, etc.)
|
||||
let mut top = 1;
|
||||
while (top - 1) <= num {
|
||||
top = top << 1;
|
||||
}
|
||||
top = (top >> 1) - 1;
|
||||
if top == 0 {
|
||||
return vec![1];
|
||||
}
|
||||
|
||||
let mut peaks = vec![top];
|
||||
|
||||
// going down the range, next peaks are right neighbors of the top. if one
|
||||
// doesn't exist yet, we go down to a smaller peak to the left
|
||||
let mut peak = top;
|
||||
'outer: loop {
|
||||
peak = bintree_jump_right_sibling(peak);
|
||||
//println!("peak {}", peak);
|
||||
while peak > num {
|
||||
match bintree_move_down_left(peak) {
|
||||
Some(p) => peak = p,
|
||||
None => break 'outer,
|
||||
}
|
||||
}
|
||||
peaks.push(peak);
|
||||
}
|
||||
|
||||
peaks
|
||||
}
|
||||
|
||||
/// The height of a node in a full binary tree from its postorder traversal
|
||||
/// index. This function is the base on which all others, as well as the MMR,
|
||||
/// are built.
|
||||
///
|
||||
/// We first start by noticing that the insertion order of a node in a MMR [1]
|
||||
/// is identical to the height of a node in a binary tree traversed in
|
||||
/// postorder. Specifically, we want to be able to generate the following
|
||||
/// sequence:
|
||||
///
|
||||
/// // [0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 1, 2, 3, 0, 0, 1, ...]
|
||||
///
|
||||
/// Which turns out to start as the heights in the (left, right, top)
|
||||
/// -postorder- traversal of the following tree:
|
||||
///
|
||||
/// // 3
|
||||
/// // / \
|
||||
/// // / \
|
||||
/// // / \
|
||||
/// // 2 2
|
||||
/// // / \ / \
|
||||
/// // / \ / \
|
||||
/// // 1 1 1 1
|
||||
/// // / \ / \ / \ / \
|
||||
/// // 0 0 0 0 0 0 0 0
|
||||
///
|
||||
/// If we extend this tree up to a height of 4, we can continue the sequence,
|
||||
/// and for an infinitely high tree, we get the infinite sequence of heights
|
||||
/// in the MMR.
|
||||
///
|
||||
/// So to generate the MMR height sequence, we want a function that, given an
|
||||
/// index in that sequence, gets us the height in the tree. This allows us to
|
||||
/// build the sequence not only to infinite, but also at any index, without the
|
||||
/// need to materialize the beginning of the sequence.
|
||||
///
|
||||
/// To see how to get the height of a node at any position in the postorder
|
||||
/// traversal sequence of heights, we start by rewriting the previous tree with
|
||||
/// each the position of every node written in binary:
|
||||
///
|
||||
///
|
||||
/// // 1111
|
||||
/// // / \
|
||||
/// // / \
|
||||
/// // / \
|
||||
/// // / \
|
||||
/// // 111 1110
|
||||
/// // / \ / \
|
||||
/// // / \ / \
|
||||
/// // 11 110 1010 1101
|
||||
/// // / \ / \ / \ / \
|
||||
/// // 1 10 100 101 1000 1001 1011 1100
|
||||
///
|
||||
/// The height of a node is the number of 1 digits on the leftmost branch of
|
||||
/// the tree, minus 1. For example, 1111 has 4 ones, so its height is `4-1=3`.
|
||||
///
|
||||
/// To get the height of any node (say 1101), we need to travel left in the
|
||||
/// tree, get the leftmost node and count the ones. To travel left, we just
|
||||
/// need to subtract the position by it's most significant bit, mins one. For
|
||||
/// example to get from 1101 to 110 we subtract it by (1000-1) (`13-(8-1)=5`).
|
||||
/// Then to to get 110 to 11, we subtract it by (100-1) ('6-(4-1)=3`).
|
||||
///
|
||||
/// By applying this operation recursively, until we get a number that, in
|
||||
/// binary, is all ones, and then counting the ones, we can get the height of
|
||||
/// any node, from its postorder traversal position. Which is the order in which
|
||||
/// nodes are added in a MMR.
|
||||
///
|
||||
/// [1] https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
|
||||
fn bintree_postorder_height(num: u64) -> u64 {
|
||||
let mut h = num;
|
||||
while !all_ones(h) {
|
||||
h = bintree_jump_left(h);
|
||||
}
|
||||
most_significant_pos(h) - 1
|
||||
}
|
||||
|
||||
/// Calculates the position of the top-left child of a parent node in the
|
||||
/// postorder traversal of a full binary tree.
|
||||
fn bintree_move_down_left(num: u64) -> Option<u64> {
|
||||
let height = bintree_postorder_height(num);
|
||||
if height == 0 {
|
||||
return None;
|
||||
}
|
||||
Some(num - (1 << height))
|
||||
}
|
||||
|
||||
|
||||
/// Calculates the position of the right sibling of a node a subtree in the
|
||||
/// postorder traversal of a full binary tree.
|
||||
fn bintree_jump_right_sibling(num: u64) -> u64 {
|
||||
num + (1 << (bintree_postorder_height(num) + 1)) - 1
|
||||
}
|
||||
|
||||
/// Calculates the position of the left sibling of a node a subtree in the
|
||||
/// postorder traversal of a full binary tree.
|
||||
fn bintree_jump_left_sibling(num: u64) -> u64 {
|
||||
num - ((1 << (bintree_postorder_height(num) + 1)) - 1)
|
||||
}
|
||||
|
||||
/// Calculates the position of of a node to the left of the provided one when
|
||||
/// jumping from the largest rightmost tree to its left equivalent in the
|
||||
/// postorder traversal of a full binary tree.
|
||||
fn bintree_jump_left(num: u64) -> u64 {
|
||||
num - ((1 << (most_significant_pos(num) - 1)) - 1)
|
||||
}
|
||||
|
||||
// Check if the binary representation of a number is all ones.
|
||||
fn all_ones(num: u64) -> bool {
|
||||
if num == 0 {
|
||||
return false;
|
||||
}
|
||||
let mut bit = 1;
|
||||
while num >= bit {
|
||||
if num & bit == 0 {
|
||||
return false;
|
||||
}
|
||||
bit = bit << 1;
|
||||
}
|
||||
true
|
||||
}
|
||||
|
||||
// Get the position of the most significant bit in a number.
|
||||
fn most_significant_pos(num: u64) -> u64 {
|
||||
let mut pos = 0;
|
||||
let mut bit = 1;
|
||||
while num >= bit {
|
||||
bit = bit << 1;
|
||||
pos += 1;
|
||||
}
|
||||
pos
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use super::*;
|
||||
use core::hash::{Hash, Hashed};
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
#[test]
|
||||
fn some_all_ones() {
|
||||
for n in vec![1, 7, 255] {
|
||||
assert!(all_ones(n), "{} should be all ones", n);
|
||||
}
|
||||
for n in vec![6, 9, 128] {
|
||||
assert!(!all_ones(n), "{} should not be all ones", n);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn some_most_signif() {
|
||||
assert_eq!(most_significant_pos(0), 0);
|
||||
assert_eq!(most_significant_pos(1), 1);
|
||||
assert_eq!(most_significant_pos(6), 3);
|
||||
assert_eq!(most_significant_pos(7), 3);
|
||||
assert_eq!(most_significant_pos(8), 4);
|
||||
assert_eq!(most_significant_pos(128), 8);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn first_50_mmr_heights() {
|
||||
let first_100_str =
|
||||
"0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 4 \
|
||||
0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 4 5 \
|
||||
0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 0 0 1 0 0 1 2 0 0 1 0 0 1 2 3 4 0 0 1 0 0";
|
||||
let first_100 = first_100_str.split(' ').map(|n| n.parse::<u64>().unwrap());
|
||||
let mut count = 1;
|
||||
for n in first_100 {
|
||||
assert_eq!(n, bintree_postorder_height(count), "expected {}, got {}",
|
||||
n, bintree_postorder_height(count));
|
||||
count += 1;
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn some_peaks() {
|
||||
let empty: Vec<u64> = vec![];
|
||||
assert_eq!(peaks(1), vec![1]);
|
||||
assert_eq!(peaks(2), empty);
|
||||
assert_eq!(peaks(3), vec![3]);
|
||||
assert_eq!(peaks(4), vec![3, 4]);
|
||||
assert_eq!(peaks(11), vec![7, 10, 11]);
|
||||
assert_eq!(peaks(22), vec![15, 22]);
|
||||
assert_eq!(peaks(32), vec![31, 32]);
|
||||
assert_eq!(peaks(35), vec![31, 34, 35]);
|
||||
assert_eq!(peaks(42), vec![31, 38, 41, 42]);
|
||||
}
|
||||
|
||||
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
||||
struct TestElem([u32; 4]);
|
||||
impl Summable for TestElem {
|
||||
type Sum = u64;
|
||||
fn sum(&self) -> u64 {
|
||||
// sums are not allowed to overflow, so we use this simple
|
||||
// non-injective "sum" function that will still be homomorphic
|
||||
self.0[0] as u64 * 0x1000 + self.0[1] as u64 * 0x100 + self.0[2] as u64 * 0x10 +
|
||||
self.0[3] as u64
|
||||
}
|
||||
fn sum_len(&self) -> usize {
|
||||
4
|
||||
}
|
||||
}
|
||||
|
||||
impl Writeable for TestElem {
|
||||
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), ser::Error> {
|
||||
try!(writer.write_u32(self.0[0]));
|
||||
try!(writer.write_u32(self.0[1]));
|
||||
try!(writer.write_u32(self.0[2]));
|
||||
writer.write_u32(self.0[3])
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone)]
|
||||
struct VecBackend {
|
||||
elems: Arc<Mutex<Vec<Option<HashSum<TestElem>>>>>,
|
||||
}
|
||||
impl Backend<TestElem> for VecBackend {
|
||||
fn append(&self, data: Vec<HashSum<TestElem>>) {
|
||||
let mut elems = self.elems.lock().unwrap();
|
||||
elems.append(&mut map_vec!(data, |d| Some(d.clone())));
|
||||
}
|
||||
fn get(&self, position: u64) -> Option<HashSum<TestElem>> {
|
||||
let elems = self.elems.lock().unwrap();
|
||||
elems[(position-1) as usize].clone()
|
||||
}
|
||||
fn remove(&self, positions: Vec<u64>) {
|
||||
let mut elems = self.elems.lock().unwrap();
|
||||
for n in positions {
|
||||
elems[(n-1) as usize] = None
|
||||
}
|
||||
}
|
||||
}
|
||||
impl VecBackend {
|
||||
fn used_size(&self) -> usize {
|
||||
let elems = self.elems.lock().unwrap();
|
||||
let mut usz = elems.len();
|
||||
for elem in elems.deref() {
|
||||
if elem.is_none() {
|
||||
usz -= 1;
|
||||
}
|
||||
}
|
||||
usz
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn pmmr_push_root() {
|
||||
let elems = [
|
||||
TestElem([0, 0, 0, 1]),
|
||||
TestElem([0, 0, 0, 2]),
|
||||
TestElem([0, 0, 0, 3]),
|
||||
TestElem([0, 0, 0, 4]),
|
||||
TestElem([0, 0, 0, 5]),
|
||||
TestElem([0, 0, 0, 6]),
|
||||
TestElem([0, 0, 0, 7]),
|
||||
TestElem([0, 0, 0, 8]),
|
||||
TestElem([1, 0, 0, 0]),
|
||||
];
|
||||
|
||||
let ba = VecBackend{elems: Arc::new(Mutex::new(vec![]))};
|
||||
let mut pmmr = PMMR::new(ba.clone());
|
||||
|
||||
// one element
|
||||
pmmr.push(elems[0]);
|
||||
let hash = Hashed::hash(&elems[0]);
|
||||
let sum = elems[0].sum();
|
||||
let node_hash = (1 as u64, &sum, hash).hash();
|
||||
assert_eq!(pmmr.root(), HashSum{hash: node_hash, sum: sum});
|
||||
assert_eq!(pmmr.unpruned_size(), 1);
|
||||
|
||||
// two elements
|
||||
pmmr.push(elems[1]);
|
||||
let sum2 = HashSum::from_summable(1, elems[0]) + HashSum::from_summable(2, elems[1]);
|
||||
assert_eq!(pmmr.root(), sum2);
|
||||
assert_eq!(pmmr.unpruned_size(), 3);
|
||||
|
||||
// three elements
|
||||
pmmr.push(elems[2]);
|
||||
let sum3 = sum2.clone() + HashSum::from_summable(4, elems[2]);
|
||||
assert_eq!(pmmr.root(), sum3);
|
||||
assert_eq!(pmmr.unpruned_size(), 4);
|
||||
|
||||
// four elements
|
||||
pmmr.push(elems[3]);
|
||||
let sum4 = sum2 + (HashSum::from_summable(4, elems[2]) + HashSum::from_summable(5, elems[3]));
|
||||
assert_eq!(pmmr.root(), sum4);
|
||||
assert_eq!(pmmr.unpruned_size(), 7);
|
||||
|
||||
// five elements
|
||||
pmmr.push(elems[4]);
|
||||
let sum5 = sum4.clone() + HashSum::from_summable(8, elems[4]);
|
||||
assert_eq!(pmmr.root(), sum5);
|
||||
assert_eq!(pmmr.unpruned_size(), 8);
|
||||
|
||||
// six elements
|
||||
pmmr.push(elems[5]);
|
||||
let sum6 = sum4.clone() + (HashSum::from_summable(8, elems[4]) + HashSum::from_summable(9, elems[5]));
|
||||
assert_eq!(pmmr.root(), sum6.clone());
|
||||
assert_eq!(pmmr.unpruned_size(), 10);
|
||||
|
||||
// seven elements
|
||||
pmmr.push(elems[6]);
|
||||
let sum7 = sum6 + HashSum::from_summable(11, elems[6]);
|
||||
assert_eq!(pmmr.root(), sum7);
|
||||
assert_eq!(pmmr.unpruned_size(), 11);
|
||||
|
||||
// eight elements
|
||||
pmmr.push(elems[7]);
|
||||
let sum8 = sum4 + ((HashSum::from_summable(8, elems[4]) + HashSum::from_summable(9, elems[5])) + (HashSum::from_summable(11, elems[6]) + HashSum::from_summable(12, elems[7])));
|
||||
assert_eq!(pmmr.root(), sum8);
|
||||
assert_eq!(pmmr.unpruned_size(), 15);
|
||||
|
||||
// nine elements
|
||||
pmmr.push(elems[8]);
|
||||
let sum9 = sum8 + HashSum::from_summable(16, elems[8]);
|
||||
assert_eq!(pmmr.root(), sum9);
|
||||
assert_eq!(pmmr.unpruned_size(), 16);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn pmmr_prune() {
|
||||
let elems = [
|
||||
TestElem([0, 0, 0, 1]),
|
||||
TestElem([0, 0, 0, 2]),
|
||||
TestElem([0, 0, 0, 3]),
|
||||
TestElem([0, 0, 0, 4]),
|
||||
TestElem([0, 0, 0, 5]),
|
||||
TestElem([0, 0, 0, 6]),
|
||||
TestElem([0, 0, 0, 7]),
|
||||
TestElem([0, 0, 0, 8]),
|
||||
TestElem([1, 0, 0, 0]),
|
||||
];
|
||||
|
||||
let ba = VecBackend{elems: Arc::new(Mutex::new(vec![]))};
|
||||
let mut pmmr = PMMR::new(ba.clone());
|
||||
for elem in &elems[..] {
|
||||
pmmr.push(*elem);
|
||||
}
|
||||
let orig_root = pmmr.root();
|
||||
let orig_sz = ba.used_size();
|
||||
|
||||
// pruning a leaf with no parent should do nothing
|
||||
pmmr.prune(16);
|
||||
assert_eq!(orig_root, pmmr.root());
|
||||
assert_eq!(ba.used_size(), orig_sz);
|
||||
|
||||
// pruning leaves with no shared parent just removes 1 element
|
||||
pmmr.prune(2);
|
||||
assert_eq!(orig_root, pmmr.root());
|
||||
assert_eq!(ba.used_size(), orig_sz - 1);
|
||||
|
||||
pmmr.prune(4);
|
||||
assert_eq!(orig_root, pmmr.root());
|
||||
assert_eq!(ba.used_size(), orig_sz - 2);
|
||||
|
||||
// pruning a non-leaf node has no effect
|
||||
pmmr.prune(3);
|
||||
assert_eq!(orig_root, pmmr.root());
|
||||
assert_eq!(ba.used_size(), orig_sz - 2);
|
||||
|
||||
// pruning sibling removes subtree
|
||||
pmmr.prune(5);
|
||||
assert_eq!(orig_root, pmmr.root());
|
||||
assert_eq!(ba.used_size(), orig_sz - 4);
|
||||
|
||||
// pruning all leaves under level >1 removes all subtree
|
||||
pmmr.prune(1);
|
||||
assert_eq!(orig_root, pmmr.root());
|
||||
assert_eq!(ba.used_size(), orig_sz - 7);
|
||||
|
||||
// pruning everything should only leave us the peaks
|
||||
for n in 1..16 {
|
||||
pmmr.prune(n);
|
||||
}
|
||||
assert_eq!(orig_root, pmmr.root());
|
||||
assert_eq!(ba.used_size(), 2);
|
||||
}
|
||||
}
|
Loading…
Reference in a new issue