add test to demonstrate pair of "half" kernels sharing same public excess (#3314)

* cleanup how we handle key splitting for transaction offset
add test to demonstrate a pair of transaction halves sharing same kernel excess

* cleanup

* cleanup
This commit is contained in:
Antioch Peverell 2020-05-28 15:26:18 +01:00 committed by GitHub
parent b570ac9925
commit a8b8dc3a7f
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 170 additions and 88 deletions

View file

@ -199,47 +199,58 @@ where
} }
/// Builds a complete transaction. /// Builds a complete transaction.
/// NOTE: We only use this in tests (for convenience).
/// In the real world we use signature aggregation across multiple participants.
pub fn transaction<K, B>( pub fn transaction<K, B>(
features: KernelFeatures, features: KernelFeatures,
elems: Vec<Box<Append<K, B>>>, elems: Vec<Box<Append<K, B>>>,
keychain: &K, keychain: &K,
builder: &B, builder: &B,
) -> Result<Transaction, Error> ) -> Result<Transaction, Error>
where
K: Keychain,
B: ProofBuild,
{
let mut kernel = TxKernel::with_features(features);
// Construct the message to be signed.
let msg = kernel.msg_to_sign()?;
// Generate kernel public excess and associated signature.
let excess = BlindingFactor::rand(&keychain.secp());
let skey = excess.secret_key(&keychain.secp())?;
kernel.excess = keychain.secp().commit(0, skey)?;
let pubkey = &kernel.excess.to_pubkey(&keychain.secp())?;
kernel.excess_sig = aggsig::sign_with_blinding(&keychain.secp(), &msg, &excess, Some(&pubkey))?;
kernel.verify()?;
transaction_with_kernel(elems, kernel, excess, keychain, builder)
}
/// Build a complete transaction with the provided kernel and corresponding private excess.
/// NOTE: Only used in tests (for convenience).
/// Cannot recommend passing private excess around like this in the real world.
pub fn transaction_with_kernel<K, B>(
elems: Vec<Box<Append<K, B>>>,
kernel: TxKernel,
excess: BlindingFactor,
keychain: &K,
builder: &B,
) -> Result<Transaction, Error>
where where
K: Keychain, K: Keychain,
B: ProofBuild, B: ProofBuild,
{ {
let mut ctx = Context { keychain, builder }; let mut ctx = Context { keychain, builder };
let (mut tx, sum) = elems let (tx, sum) = elems
.iter() .iter()
.fold(Ok((Transaction::empty(), BlindSum::new())), |acc, elem| { .fold(Ok((Transaction::empty(), BlindSum::new())), |acc, elem| {
elem(&mut ctx, acc) elem(&mut ctx, acc)
})?; })?;
let blind_sum = ctx.keychain.blind_sum(&sum)?; let blind_sum = ctx.keychain.blind_sum(&sum)?;
// Split the key so we can generate an offset for the tx. // Update tx with new kernel and offset.
let split = blind_sum.split(&keychain.secp())?; let mut tx = tx.replace_kernel(kernel);
let k1 = split.blind_1; tx.offset = blind_sum.split(&excess, &keychain.secp())?;
let k2 = split.blind_2;
let mut kern = TxKernel::with_features(features);
// Construct the message to be signed.
let msg = kern.msg_to_sign()?;
// Generate kernel excess and excess_sig using the split key k1.
let skey = k1.secret_key(&keychain.secp())?;
kern.excess = ctx.keychain.secp().commit(0, skey)?;
let pubkey = &kern.excess.to_pubkey(&keychain.secp())?;
kern.excess_sig = aggsig::sign_with_blinding(&keychain.secp(), &msg, &k1, Some(&pubkey))?;
// Store the kernel offset (k2) on the tx.
// Commitments will sum correctly when accounting for the offset.
tx.offset = k2;
// Set the kernel on the tx.
let tx = tx.replace_kernel(kern);
Ok(tx) Ok(tx)
} }

View file

@ -24,7 +24,7 @@ use self::core::core::{
aggregate, deaggregate, KernelFeatures, Output, Transaction, TxKernel, Weighting, aggregate, deaggregate, KernelFeatures, Output, Transaction, TxKernel, Weighting,
}; };
use self::core::libtx::build::{self, initial_tx, input, output, with_excess}; use self::core::libtx::build::{self, initial_tx, input, output, with_excess};
use self::core::libtx::ProofBuilder; use self::core::libtx::{aggsig, ProofBuilder};
use self::core::{global, ser}; use self::core::{global, ser};
use crate::common::{new_block, tx1i1o, tx1i2o, tx2i1o}; use crate::common::{new_block, tx1i1o, tx1i2o, tx2i1o};
use grin_core as core; use grin_core as core;
@ -148,6 +148,81 @@ fn build_tx_kernel() {
assert_eq!(2, tx.fee()); assert_eq!(2, tx.fee());
} }
// Proof of concept demonstrating we can build two transactions that share
// the *same* kernel public excess. This is a key part of building a transaction as two
// "halves" for NRD kernels.
// Note: In a real world scenario multiple participants would build the kernel signature
// using signature aggregation. No party would see the full private kernel excess and
// the halves would need to be constructed with carefully crafted individual offsets to
// adjust the excess as required.
// For the sake of convenience we are simply constructing the kernel directly and we have access
// to the full private excess.
#[test]
fn build_two_half_kernels() {
test_setup();
let keychain = ExtKeychain::from_random_seed(false).unwrap();
let builder = ProofBuilder::new(&keychain);
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
// build kernel with associated private excess
let mut kernel = TxKernel::with_features(KernelFeatures::Plain { fee: 2 });
// Construct the message to be signed.
let msg = kernel.msg_to_sign().unwrap();
// Generate a kernel with public excess and associated signature.
let excess = BlindingFactor::rand(&keychain.secp());
let skey = excess.secret_key(&keychain.secp()).unwrap();
kernel.excess = keychain.secp().commit(0, skey).unwrap();
let pubkey = &kernel.excess.to_pubkey(&keychain.secp()).unwrap();
kernel.excess_sig =
aggsig::sign_with_blinding(&keychain.secp(), &msg, &excess, Some(&pubkey)).unwrap();
kernel.verify().unwrap();
let tx1 = build::transaction_with_kernel(
vec![input(10, key_id1), output(8, key_id2.clone())],
kernel.clone(),
excess.clone(),
&keychain,
&builder,
)
.unwrap();
let tx2 = build::transaction_with_kernel(
vec![input(8, key_id2), output(6, key_id3)],
kernel.clone(),
excess.clone(),
&keychain,
&builder,
)
.unwrap();
assert_eq!(
tx1.validate(Weighting::AsTransaction, verifier_cache()),
Ok(()),
);
assert_eq!(
tx2.validate(Weighting::AsTransaction, verifier_cache()),
Ok(()),
);
// The transactions share an identical kernel.
assert_eq!(tx1.kernels()[0], tx2.kernels()[0]);
// The public kernel excess is shared between both "halves".
assert_eq!(tx1.kernels()[0].excess(), tx2.kernels()[0].excess());
// Each transaction is built from different inputs and outputs.
// The offset differs to compensate for the shared excess commitments.
assert!(tx1.offset != tx2.offset);
// For completeness, these are different transactions.
assert!(tx1.hash() != tx2.hash());
}
// Combine two transactions into one big transaction (with multiple kernels) // Combine two transactions into one big transaction (with multiple kernels)
// and check it still validates. // and check it still validates.
#[test] #[test]

View file

@ -12,15 +12,15 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
//! Keychain trait and its main supporting types. The Identifier is a
//! semi-opaque structure (just bytes) to track keys within the Keychain.
//! BlindingFactor is a useful wrapper around a private key to help with
//! commitment generation.
use rand::thread_rng; use rand::thread_rng;
use std::cmp::min; use std::cmp::min;
use std::convert::TryFrom; use std::convert::TryFrom;
use std::io::Cursor; use std::io::Cursor;
use std::ops::Add;
/// Keychain trait and its main supporting types. The Identifier is a
/// semi-opaque structure (just bytes) to track keys within the Keychain.
/// BlindingFactor is a useful wrapper around a private key to help with
/// commitment generation.
use std::{error, fmt}; use std::{error, fmt};
use crate::blake2::blake2b::blake2b; use crate::blake2::blake2b::blake2b;
@ -28,10 +28,9 @@ use crate::extkey_bip32::{self, ChildNumber};
use serde::{de, ser}; //TODO: Convert errors to use ErrorKind use serde::{de, ser}; //TODO: Convert errors to use ErrorKind
use crate::util::secp::constants::SECRET_KEY_SIZE; use crate::util::secp::constants::SECRET_KEY_SIZE;
use crate::util::secp::key::{PublicKey, SecretKey}; use crate::util::secp::key::{PublicKey, SecretKey, ZERO_KEY};
use crate::util::secp::pedersen::Commitment; use crate::util::secp::pedersen::Commitment;
use crate::util::secp::{self, Message, Secp256k1, Signature}; use crate::util::secp::{self, Message, Secp256k1, Signature};
use crate::util::static_secp_instance;
use crate::util::ToHex; use crate::util::ToHex;
use zeroize::Zeroize; use zeroize::Zeroize;
@ -242,34 +241,8 @@ impl AsRef<[u8]> for BlindingFactor {
} }
} }
impl Add for BlindingFactor {
type Output = Result<BlindingFactor, Error>;
// Convenient (and robust) way to add two blinding_factors together.
// Handles "zero" blinding_factors correctly.
//
// let bf = (bf1 + bf2)?;
//
fn add(self, other: BlindingFactor) -> Self::Output {
let secp = static_secp_instance();
let secp = secp.lock();
let keys = vec![self, other]
.into_iter()
.filter(|x| *x != BlindingFactor::zero())
.filter_map(|x| x.secret_key(&secp).ok())
.collect::<Vec<_>>();
if keys.is_empty() {
Ok(BlindingFactor::zero())
} else {
let sum = secp.blind_sum(keys, vec![])?;
Ok(BlindingFactor::from_secret_key(sum))
}
}
}
impl BlindingFactor { impl BlindingFactor {
pub fn from_secret_key(skey: secp::key::SecretKey) -> BlindingFactor { pub fn from_secret_key(skey: SecretKey) -> BlindingFactor {
BlindingFactor::from_slice(&skey.as_ref()) BlindingFactor::from_slice(&skey.as_ref())
} }
@ -281,7 +254,15 @@ impl BlindingFactor {
} }
pub fn zero() -> BlindingFactor { pub fn zero() -> BlindingFactor {
BlindingFactor::from_secret_key(secp::key::ZERO_KEY) BlindingFactor::from_secret_key(ZERO_KEY)
}
pub fn is_zero(&self) -> bool {
self.0 == ZERO_KEY.as_ref()
}
pub fn rand(secp: &Secp256k1) -> BlindingFactor {
BlindingFactor::from_secret_key(SecretKey::new(secp, &mut thread_rng()))
} }
pub fn from_hex(hex: &str) -> Result<BlindingFactor, Error> { pub fn from_hex(hex: &str) -> Result<BlindingFactor, Error> {
@ -289,14 +270,29 @@ impl BlindingFactor {
Ok(BlindingFactor::from_slice(&bytes)) Ok(BlindingFactor::from_slice(&bytes))
} }
pub fn secret_key(&self, secp: &Secp256k1) -> Result<secp::key::SecretKey, Error> { // Handle "zero" blinding_factor correctly, by returning the "zero" key.
if *self == BlindingFactor::zero() { // We need this for some of the tests.
// TODO - need this currently for tx tests pub fn secret_key(&self, secp: &Secp256k1) -> Result<SecretKey, Error> {
// the "zero" secret key is not actually a valid secret_key if self.is_zero() {
// and secp lib checks this Ok(ZERO_KEY)
Ok(secp::key::ZERO_KEY)
} else { } else {
secp::key::SecretKey::from_slice(secp, &self.0).map_err(Error::Secp) SecretKey::from_slice(secp, &self.0).map_err(Error::Secp)
}
}
// Convenient (and robust) way to add two blinding_factors together.
// Handles "zero" blinding_factors correctly.
pub fn add(&self, other: &BlindingFactor, secp: &Secp256k1) -> Result<BlindingFactor, Error> {
let keys = vec![self, other]
.into_iter()
.filter(|x| !x.is_zero())
.filter_map(|x| x.secret_key(&secp).ok())
.collect::<Vec<_>>();
if keys.is_empty() {
Ok(BlindingFactor::zero())
} else {
let sum = secp.blind_sum(keys, vec![])?;
Ok(BlindingFactor::from_secret_key(sum))
} }
} }
@ -306,26 +302,19 @@ impl BlindingFactor {
/// This prevents an actor from being able to sum a set of inputs, outputs /// This prevents an actor from being able to sum a set of inputs, outputs
/// and kernels from a block to identify and reconstruct a particular tx /// and kernels from a block to identify and reconstruct a particular tx
/// from a block. You would need both k1, k2 to do this. /// from a block. You would need both k1, k2 to do this.
pub fn split(&self, secp: &Secp256k1) -> Result<SplitBlindingFactor, Error> { pub fn split(
let skey_1 = secp::key::SecretKey::new(secp, &mut thread_rng()); &self,
blind_1: &BlindingFactor,
// use blind_sum to subtract skey_1 from our key (to give k = k1 + k2) secp: &Secp256k1,
) -> Result<BlindingFactor, Error> {
// use blind_sum to subtract skey_1 from our key such that skey = skey_1 + skey_2
let skey = self.secret_key(secp)?; let skey = self.secret_key(secp)?;
let skey_2 = secp.blind_sum(vec![skey], vec![skey_1.clone()])?; let skey_1 = blind_1.secret_key(secp)?;
let skey_2 = secp.blind_sum(vec![skey], vec![skey_1])?;
let blind_1 = BlindingFactor::from_secret_key(skey_1); Ok(BlindingFactor::from_secret_key(skey_2))
let blind_2 = BlindingFactor::from_secret_key(skey_2);
Ok(SplitBlindingFactor { blind_1, blind_2 })
} }
} }
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct SplitBlindingFactor {
pub blind_1: BlindingFactor,
pub blind_2: BlindingFactor,
}
/// Accumulator to compute the sum of blinding factors. Keeps track of each /// Accumulator to compute the sum of blinding factors. Keeps track of each
/// factor as well as the "sign" with which they should be combined. /// factor as well as the "sign" with which they should be combined.
#[derive(Clone, Debug, PartialEq)] #[derive(Clone, Debug, PartialEq)]
@ -557,16 +546,17 @@ mod test {
assert!(all_zeros) assert!(all_zeros)
} }
// split a key, sum the split keys and confirm the sum matches the original key
#[test] #[test]
fn split_blinding_factor() { fn split_blinding_factor() {
let secp = Secp256k1::new(); let secp = Secp256k1::new();
let skey_in = SecretKey::new(&secp, &mut thread_rng()); let skey_in = SecretKey::new(&secp, &mut thread_rng());
let blind = BlindingFactor::from_secret_key(skey_in.clone()); let blind = BlindingFactor::from_secret_key(skey_in.clone());
let split = blind.split(&secp).unwrap(); let blind_1 = BlindingFactor::rand(&secp);
let blind_2 = blind.split(&blind_1, &secp).unwrap();
// split a key, sum the split keys and confirm the sum matches the original key let mut skey_sum = blind_1.secret_key(&secp).unwrap();
let mut skey_sum = split.blind_1.secret_key(&secp).unwrap(); let skey_2 = blind_2.secret_key(&secp).unwrap();
let skey_2 = split.blind_2.secret_key(&secp).unwrap();
skey_sum.add_assign(&secp, &skey_2).unwrap(); skey_sum.add_assign(&secp, &skey_2).unwrap();
assert_eq!(skey_in, skey_sum); assert_eq!(skey_in, skey_sum);
} }

View file

@ -29,6 +29,7 @@ use grin_util as util;
use std::cmp::Reverse; use std::cmp::Reverse;
use std::collections::{HashMap, HashSet}; use std::collections::{HashMap, HashSet};
use std::sync::Arc; use std::sync::Arc;
use util::static_secp_instance;
pub struct Pool<B, V> pub struct Pool<B, V>
where where
@ -272,7 +273,12 @@ where
header: &BlockHeader, header: &BlockHeader,
) -> Result<BlockSums, PoolError> { ) -> Result<BlockSums, PoolError> {
let overage = tx.overage(); let overage = tx.overage();
let offset = (header.total_kernel_offset() + tx.offset.clone())?;
let offset = {
let secp = static_secp_instance();
let secp = secp.lock();
header.total_kernel_offset().add(&tx.offset, &secp)
}?;
let block_sums = self.blockchain.get_block_sums(&header.hash())?; let block_sums = self.blockchain.get_block_sums(&header.hash())?;