[WIP] Wallet refactor - part 3 (#1072)

* Beginning to rework aggsig library workflow

* more refactoring of transaction api

* whoever does round 1 first creates offset

* slate finalisation now context-free, so anyone can do it

* remove concept of transaction phase

* remove slate phase enum

* update actual send/receive code with new transaction lib workflow
This commit is contained in:
Yeastplume 2018-05-21 16:28:11 +01:00 committed by GitHub
parent 4bbaa8d05f
commit 85285473bd
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
15 changed files with 901 additions and 1102 deletions

6
Cargo.lock generated
View file

@ -778,7 +778,7 @@ dependencies = [
"byteorder 1.2.1 (registry+https://github.com/rust-lang/crates.io-index)",
"lazy_static 0.2.11 (registry+https://github.com/rust-lang/crates.io-index)",
"rand 0.3.22 (registry+https://github.com/rust-lang/crates.io-index)",
"secp256k1zkp 0.7.1 (git+https://github.com/mimblewimble/rust-secp256k1-zkp?tag=grin_integration_16)",
"secp256k1zkp 0.7.1 (git+https://github.com/mimblewimble/rust-secp256k1-zkp?tag=grin_integration_19)",
"serde 1.0.35 (registry+https://github.com/rust-lang/crates.io-index)",
"serde_derive 1.0.35 (registry+https://github.com/rust-lang/crates.io-index)",
"slog 2.1.1 (registry+https://github.com/rust-lang/crates.io-index)",
@ -1584,7 +1584,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
[[package]]
name = "secp256k1zkp"
version = "0.7.1"
source = "git+https://github.com/mimblewimble/rust-secp256k1-zkp?tag=grin_integration_16#792660cb47acc1dafd509ff068275f86b57564d6"
source = "git+https://github.com/mimblewimble/rust-secp256k1-zkp?tag=grin_integration_19#800e9b3ea4a8b2df7b999980ae78b224a6ad07ce"
dependencies = [
"arrayvec 0.3.25 (registry+https://github.com/rust-lang/crates.io-index)",
"gcc 0.3.54 (registry+https://github.com/rust-lang/crates.io-index)",
@ -2472,7 +2472,7 @@ dependencies = [
"checksum same-file 1.0.2 (registry+https://github.com/rust-lang/crates.io-index)" = "cfb6eded0b06a0b512c8ddbcf04089138c9b4362c2f696f3c3d76039d68f3637"
"checksum scoped-tls 0.1.1 (registry+https://github.com/rust-lang/crates.io-index)" = "8674d439c964889e2476f474a3bf198cc9e199e77499960893bac5de7e9218a4"
"checksum scopeguard 0.3.3 (registry+https://github.com/rust-lang/crates.io-index)" = "94258f53601af11e6a49f722422f6e3425c52b06245a5cf9bc09908b174f5e27"
"checksum secp256k1zkp 0.7.1 (git+https://github.com/mimblewimble/rust-secp256k1-zkp?tag=grin_integration_16)" = "<none>"
"checksum secp256k1zkp 0.7.1 (git+https://github.com/mimblewimble/rust-secp256k1-zkp?tag=grin_integration_19)" = "<none>"
"checksum semver 0.9.0 (registry+https://github.com/rust-lang/crates.io-index)" = "1d7eb9ef2c18661902cc47e535f9bc51b78acd254da71d375c2f6720d9a40403"
"checksum semver-parser 0.7.0 (registry+https://github.com/rust-lang/crates.io-index)" = "388a1df253eca08550bef6c72392cfe7c30914bf41df5269b68cbd6ff8f570a3"
"checksum sequence_trie 0.2.1 (registry+https://github.com/rust-lang/crates.io-index)" = "c915714ca833b1d4d6b8f6a9d72a3ff632fe45b40a8d184ef79c81bec6327eed"

View file

@ -13,20 +13,20 @@
// limitations under the License.
//! Transactions
use std::cmp::Ordering;
use std::cmp::max;
use std::collections::HashSet;
use std::io::Cursor;
use std::{error, fmt};
use util::secp::pedersen::{Commitment, ProofMessage, RangeProof};
use util::secp::{self, Message, Signature};
use util::{kernel_sig_msg, static_secp_instance};
use util::secp::pedersen::{Commitment, ProofMessage, RangeProof};
use std::collections::HashSet;
use std::cmp::max;
use std::cmp::Ordering;
use std::{error, fmt};
use std::io::Cursor;
use consensus;
use consensus::VerifySortOrder;
use core::BlockHeader;
use core::Committed;
use core::global;
use core::BlockHeader;
use core::hash::{Hash, Hashed, ZERO_HASH};
use core::pmmr::MerkleProof;
use keychain;
@ -188,15 +188,8 @@ impl TxKernel {
let secp = secp.lock().unwrap();
let sig = &self.excess_sig;
// Verify aggsig directly in libsecp
let pubkeys = &self.excess.to_two_pubkeys(&secp);
let mut valid = false;
for i in 0..pubkeys.len() {
valid = secp::aggsig::verify_single(&secp, &sig, &msg, None, &pubkeys[i], false);
if valid {
break;
}
}
if !valid {
let pubkey = &self.excess.to_pubkey(&secp)?;
if !secp::aggsig::verify_single(&secp, &sig, &msg, None, &pubkey, false) {
return Err(secp::Error::IncorrectSignature);
}
Ok(())
@ -400,8 +393,9 @@ impl Transaction {
/// To verify transaction kernels we check that -
/// * all kernels have an even fee
/// * sum of input/output commitments matches sum of kernel commitments after applying offset
/// * each kernel sig is valid (i.e. tx commitments sum to zero, given above is true)
/// * sum of input/output commitments matches sum of kernel commitments
/// after applying offset * each kernel sig is valid (i.e. tx commitments
/// sum to zero, given above is true)
fn verify_kernels(&self) -> Result<(), Error> {
// Verify all the output rangeproofs.
// Note: this is expensive.
@ -480,10 +474,11 @@ impl Transaction {
}
/// We can verify the Merkle proof (for coinbase inputs) here in isolation.
/// But we cannot check the following as we need data from the index and the PMMR.
/// So we must be sure to check these at the appropriate point during block validation.
/// * node is in the correct pos in the PMMR
/// * block is the correct one (based on output_root from block_header via the index)
/// But we cannot check the following as we need data from the index and
/// the PMMR. So we must be sure to check these at the appropriate point
/// during block validation. * node is in the correct pos in the PMMR
/// * block is the correct one (based on output_root from block_header
/// via the index)
fn verify_inputs(&self) -> Result<(), Error> {
let coinbase_inputs = self.inputs
.iter()
@ -704,7 +699,8 @@ pub struct Input {
/// Currently we only care about this for coinbase outputs.
pub block_hash: Option<Hash>,
/// The Merkle Proof that shows the output being spent by this input
/// existed and was unspent at the time of this block (proof of inclusion in output_root)
/// existed and was unspent at the time of this block (proof of inclusion
/// in output_root)
pub merkle_proof: Option<MerkleProof>,
}
@ -761,9 +757,9 @@ impl Readable for Input {
}
/// The input for a transaction, which spends a pre-existing unspent output.
/// The input commitment is a reproduction of the commitment of the output being spent.
/// Input must also provide the original output features and the hash of the block
/// the output originated from.
/// The input commitment is a reproduction of the commitment of the output
/// being spent. Input must also provide the original output features and the
/// hash of the block the output originated from.
impl Input {
/// Build a new input from the data required to identify and verify an
/// output being spent.
@ -781,9 +777,10 @@ impl Input {
}
}
/// The input commitment which _partially_ identifies the output being spent.
/// In the presence of a fork we need additional info to uniquely identify the output.
/// Specifically the block hash (to correctly calculate lock_height for coinbase outputs).
/// The input commitment which _partially_ identifies the output being
/// spent. In the presence of a fork we need additional info to uniquely
/// identify the output. Specifically the block hash (to correctly
/// calculate lock_height for coinbase outputs).
pub fn commitment(&self) -> Commitment {
self.commit.clone()
}
@ -795,29 +792,33 @@ impl Input {
block_hash.unwrap_or(Hash::default())
}
/// Convenience function to return the (optional) merkle_proof for this input.
/// Will return the "empty" Merkle proof if we do not have one.
/// We currently only care about the Merkle proof for inputs spending coinbase outputs.
/// Convenience function to return the (optional) merkle_proof for this
/// input. Will return the "empty" Merkle proof if we do not have one.
/// We currently only care about the Merkle proof for inputs spending
/// coinbase outputs.
pub fn merkle_proof(&self) -> MerkleProof {
let merkle_proof = self.merkle_proof.clone();
merkle_proof.unwrap_or(MerkleProof::empty())
}
/// Verify the maturity of an output being spent by an input.
/// Only relevant for spending coinbase outputs currently (locked for 1,000 confirmations).
/// Only relevant for spending coinbase outputs currently (locked for 1,000
/// confirmations).
///
/// The proof associates the output with the root by its hash (and pos) in the MMR.
/// The proof shows the output existed and was unspent at the time the output_root was built.
/// The root associates the proof with a specific block header with that output_root.
/// So the proof shows the output was unspent at the time of the block
/// and is at least as old as that block (may be older).
/// The proof associates the output with the root by its hash (and pos) in
/// the MMR. The proof shows the output existed and was unspent at the
/// time the output_root was built. The root associates the proof with a
/// specific block header with that output_root. So the proof shows the
/// output was unspent at the time of the block and is at least as old as
/// that block (may be older).
///
/// We can verify maturity of the output being spent by -
///
/// * verifying the Merkle Proof produces the correct root for the given hash (from MMR)
/// * verifying the root matches the output_root in the block_header
/// * verifying the hash matches the node hash in the Merkle Proof
/// * finally verify maturity rules based on height of the block header
/// * verifying the Merkle Proof produces the correct root for the given
/// hash (from MMR) * verifying the root matches the output_root in the
/// block_header * verifying the hash matches the node hash in the Merkle
/// Proof * finally verify maturity rules based on height of the block
/// header
///
pub fn verify_maturity(
&self,
@ -962,7 +963,8 @@ impl Output {
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq)]
pub struct OutputIdentifier {
/// Output features (coinbase vs. regular transaction output)
/// We need to include this when hashing to ensure coinbase maturity can be enforced.
/// We need to include this when hashing to ensure coinbase maturity can be
/// enforced.
pub features: OutputFeatures,
/// Output commitment
pub commit: Commitment,
@ -1121,8 +1123,8 @@ impl ProofMessageElements {
true
}
/// Whether our remainder is zero (as it should be if the BF and nonce used to unwind
/// are correct
/// Whether our remainder is zero (as it should be if the BF and nonce used
/// to unwind are correct
pub fn zeroes_correct(&self) -> bool {
for i in 0..self.zeroes.len() {
if self.zeroes[i] != 0 {

View file

@ -27,15 +27,15 @@ extern crate grin_wallet as wallet;
mod framework;
use std::{thread, time};
use std::sync::{Arc, Mutex};
use framework::{LocalServerContainer, LocalServerContainerConfig};
use std::sync::{Arc, Mutex};
use std::{thread, time};
use util::LOGGER;
/// Start 1 node mining and two wallets, then send a few
/// transactions from one to the other
//#[test]
#[test]
fn basic_wallet_transactions() {
let test_name_dir = "test_servers";
core::global::set_mining_mode(core::global::ChainTypes::AutomatedTesting);

View file

@ -20,6 +20,6 @@ zip = "0.2"
[dependencies.secp256k1zkp]
git = "https://github.com/mimblewimble/rust-secp256k1-zkp"
tag = "grin_integration_16"
tag = "grin_integration_19"
#path = "../../rust-secp256k1-zkp"
features = ["bullet-proof-sizing"]

View file

@ -12,18 +12,18 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use futures::{Future, Stream};
use failure::ResultExt;
use futures::{Future, Stream};
use hyper;
use hyper::{Method, Request};
use hyper::header::ContentType;
use tokio_core::reactor;
use hyper::{Method, Request};
use libwallet::transaction::Slate;
use serde_json;
use tokio_core::reactor;
use types::*;
use core::core::Transaction;
use util::LOGGER;
use std::io;
use types::*;
use util::LOGGER;
/// Call the wallet API to create a coinbase output for the given block_fees.
/// Will retry based on default "retry forever with backoff" behavior.
@ -40,7 +40,7 @@ pub fn create_coinbase(url: &str, block_fees: &BlockFees) -> Result<CbData, Erro
}
}
pub fn send_partial_tx(url: &str, partial_tx: &PartialTx, fluff: bool) -> Result<PartialTx, Error> {
pub fn send_slate(url: &str, slate: &Slate, fluff: bool) -> Result<Slate, Error> {
let mut core = reactor::Core::new().context(ErrorKind::Hyper)?;
let client = hyper::Client::new(&core.handle());
@ -55,54 +55,20 @@ pub fn send_partial_tx(url: &str, partial_tx: &PartialTx, fluff: bool) -> Result
url_pool.parse::<hyper::Uri>().context(ErrorKind::Hyper)?,
);
req.headers_mut().set(ContentType::json());
let json = serde_json::to_string(&partial_tx).context(ErrorKind::Hyper)?;
let json = serde_json::to_string(&slate).context(ErrorKind::Hyper)?;
req.set_body(json);
let work = client.request(req).and_then(|res| {
res.body().concat2().and_then(move |body| {
let tx: PartialTx =
let slate: Slate =
serde_json::from_slice(&body).map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
Ok(tx)
Ok(slate)
})
});
let res = core.run(work).context(ErrorKind::Hyper)?;
Ok(res)
}
///TODO: Factor this out with above later, this version just returns a Transaction instead
///of a partial TX
pub fn send_partial_tx_final(
url: &str,
partial_tx: &PartialTx,
fluff: bool,
) -> Result<Transaction, Error> {
let mut core = reactor::Core::new().context(ErrorKind::Hyper)?;
let client = hyper::Client::new(&core.handle());
// In case we want to do an express send
let mut url_pool = url.to_owned();
if fluff {
url_pool = format!("{}{}", url, "?fluff");
}
let mut req = Request::new(
Method::Post,
url_pool.parse::<hyper::Uri>().context(ErrorKind::Hyper)?,
);
req.headers_mut().set(ContentType::json());
let json = serde_json::to_string(&partial_tx).context(ErrorKind::Hyper)?;
req.set_body(json);
let work = client.request(req).and_then(|res| {
res.body().concat2().and_then(move |body| {
let tx: Transaction =
serde_json::from_slice(&body).map_err(|e| io::Error::new(io::ErrorKind::Other, e))?;
Ok(tx)
})
});
let res = core.run(work).context(ErrorKind::Hyper)?;
Ok(res)
}
/// Makes a single request to the wallet API to create a new coinbase output.
fn single_create_coinbase(url: &str, block_fees: &BlockFees) -> Result<CbData, Error> {
let mut core =

View file

@ -17,13 +17,23 @@ use rand::thread_rng;
use uuid::Uuid;
use core::core::{amount_to_hr_string, Committed, Transaction};
use libwallet::{aggsig, build};
use keychain::{BlindSum, BlindingFactor, Identifier, Keychain};
use types::*;
use util::{secp, LOGGER};
use util::secp::key::{PublicKey, SecretKey};
use util::secp::Signature;
use failure::ResultExt;
use keychain::{BlindSum, BlindingFactor, Identifier, Keychain};
use libwallet::{aggsig, build};
use types::*;
use util::secp::Signature;
use util::secp::key::{PublicKey, SecretKey};
use util::{secp, LOGGER};
/// Get our next available key
pub fn new_output_key(
config: &WalletConfig,
keychain: &Keychain,
) -> Result<(Identifier, u32), Error> {
WalletData::with_wallet(&config.data_file_dir, |wallet_data| {
next_available_key(&wallet_data, keychain)
})
}
/// Get next available key in the wallet
pub fn next_available_key(wallet_data: &WalletData, keychain: &Keychain) -> (Identifier, u32) {

View file

@ -14,19 +14,146 @@
//! Selection of inputs for building transactions
use core::core::{amount_to_hr_string, Committed, Transaction};
use libwallet::{aggsig, build};
use keychain::{BlindSum, BlindingFactor, Identifier, Keychain};
use types::*;
use util::{secp, LOGGER};
use util::secp::key::{PublicKey, SecretKey};
use util::secp::Signature;
use failure::ResultExt;
use grinwallet::keys;
use keychain::{Identifier, Keychain};
use libwallet::{aggsig, build, transaction};
use types::*;
/// Initialise a transaction on the sender side, returns a corresponding
/// libwallet transaction slate with the appropriate inputs selected,
/// and saves the private wallet identifiers of our selected outputs
/// into our transaction context
pub fn build_send_tx_slate(
config: &WalletConfig,
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
num_participants: usize,
amount: u64,
current_height: u64,
minimum_confirmations: u64,
lock_height: u64,
max_outputs: usize,
selection_strategy_is_use_all: bool,
) -> Result<(transaction::Slate, impl FnOnce() -> Result<(), Error>), Error> {
let (elems, inputs, change_id, amount, fee) = select_send_tx(
config,
keychain,
amount,
current_height,
minimum_confirmations,
lock_height,
max_outputs,
selection_strategy_is_use_all,
)?;
// Create public slate
let mut slate = transaction::Slate::blank(num_participants);
slate.amount = amount;
slate.height = current_height;
slate.lock_height = lock_height;
slate.fee = fee;
let blinding = slate.add_transaction_elements(keychain, elems)?;
// Create our own private context
let mut context = context_manager.create_context(
keychain.secp(),
&slate.id,
blinding.secret_key(keychain.secp()).unwrap(),
);
// Store our private identifiers for each input
for input in inputs {
context.add_input(&input.key_id);
}
// Store change output
if change_id.is_some() {
context.add_output(&change_id.unwrap());
}
let lock_inputs = context.get_inputs().clone();
let _lock_outputs = context.get_outputs().clone();
let data_file_dir = config.data_file_dir.clone();
// Return a closure to acquire wallet lock and lock the coins being spent
// so we avoid accidental double spend attempt.
let update_sender_wallet_fn = move || {
WalletData::with_wallet(&data_file_dir, |wallet_data| {
for id in lock_inputs {
let coin = wallet_data.get_output(&id).unwrap().clone();
wallet_data.lock_output(&coin);
}
// probably just want to leave as unconfirmed for now
// or create a new status
/*for id in lock_outputs {
let coin = wallet_data.get_output(&id).unwrap().clone();
wallet_data.lock_output(&coin);
}*/ })
};
context_manager.save_context(context);
Ok((slate, update_sender_wallet_fn))
}
/// Creates a new output in the wallet for the recipient,
/// returning the key of the fresh output and a closure
/// that actually performs the addition of the output to the
/// wallet
pub fn build_recipient_output_with_slate(
config: &WalletConfig,
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
slate: &mut transaction::Slate,
) -> Result<(Identifier, impl FnOnce() -> Result<(), Error>), Error> {
// Create a potential output for this transaction
let (key_id, derivation) = keys::new_output_key(config, keychain)?;
let data_file_dir = config.data_file_dir.clone();
let root_key_id = keychain.root_key_id();
let key_id_inner = key_id.clone();
let amount = slate.amount;
let blinding =
slate.add_transaction_elements(keychain, vec![build::output(amount, key_id.clone())])?;
// Add blinding sum to our context
let mut context = context_manager.create_context(
keychain.secp(),
&slate.id,
blinding.secret_key(keychain.secp()).unwrap(),
);
context.add_output(&key_id);
// Create closure that adds the output to recipient's wallet
// (up to the caller to decide when to do)
let wallet_add_fn = move || {
WalletData::with_wallet(&data_file_dir, |wallet_data| {
wallet_data.add_output(OutputData {
root_key_id: root_key_id,
key_id: key_id_inner,
n_child: derivation,
value: amount,
status: OutputStatus::Unconfirmed,
height: 0,
lock_height: 0,
is_coinbase: false,
block: None,
merkle_proof: None,
});
})
};
context_manager.save_context(context);
Ok((key_id, wallet_add_fn))
}
/// Builds a transaction to send to someone from the HD seed associated with the
/// wallet and the amount to send. Handles reading through the wallet data file,
/// selecting outputs to spend and building the change.
pub fn build_send_tx(
pub fn select_send_tx(
config: &WalletConfig,
keychain: &Keychain,
amount: u64,
@ -37,11 +164,11 @@ pub fn build_send_tx(
selection_strategy_is_use_all: bool,
) -> Result<
(
Transaction,
BlindingFactor,
Vec<Box<build::Append>>,
Vec<OutputData>,
Option<Identifier>,
u64,
u64, // amount
u64, // fee
),
Error,
> {
@ -121,9 +248,7 @@ pub fn build_send_tx(
// on tx being sent (based on current chain height via api).
parts.push(build::with_lock_height(lock_height));
let (tx, blind) = build::partial_transaction(parts, &keychain).context(ErrorKind::Keychain)?;
Ok((tx, blind, coins, change_key, amount_with_fee))
Ok((parts, coins, change_key, amount, fee))
}
/// coins proof count

View file

@ -12,18 +12,17 @@
// See the License for the specific language governing permissions and
// limitations under the License.
/// Aggsig library definitions
use std::collections::HashMap;
use util::secp::key::{PublicKey, SecretKey};
use util::secp::{self, aggsig, Message, Secp256k1, Signature};
use util::secp::pedersen::Commitment;
use util::kernel_sig_msg;
use uuid::Uuid;
use keychain::Keychain;
use keychain::extkey::Identifier;
use keychain::blind::BlindingFactor;
use keychain::extkey::Identifier;
use libwallet::error::Error;
use util::kernel_sig_msg;
use util::secp::key::{PublicKey, SecretKey};
use util::secp::pedersen::Commitment;
use util::secp::{self, aggsig, Message, Secp256k1, Signature};
use uuid::Uuid;
#[derive(Clone, Debug)]
/// Holds the context for a single aggsig transaction
@ -36,16 +35,37 @@ pub struct Context {
/// (basically a SecretKey)
pub sec_nonce: SecretKey,
/// If I'm the sender, store change key
/// TODO: remove in favor of outputs below
pub change_key: Option<Identifier>,
/// store my outputs between invocations
pub output_ids: Vec<Identifier>,
/// store my inputs
pub input_ids: Vec<Identifier>,
/// store the calculated fee
pub fee: u64,
}
/*impl Context {
/// Create a new context with defaults
pub fn new(
secp: &secp::Secp256k1,
sec_key: SecretKey,
) -> Context {
Context {
sec_key: sec_key,
sec_nonce: aggsig::export_secnonce_single(secp).unwrap(),
change_key: None,
input_ids: vec![],
output_ids: vec![],
fee: 0,
},
}*/
#[derive(Clone, Debug)]
/// Holds many contexts, to support multiple transactions hitting a wallet receiver
/// at once
/// Holds many contexts, to support multiple transactions hitting a wallet
/// receiver at once
/// TODO: Remove context manager in favour of context.. keeping multiple
/// transactions separate is a wallet-specific concern
pub struct ContextManager {
contexts: HashMap<Uuid, Context>,
}
@ -74,6 +94,7 @@ impl ContextManager {
transaction_id: transaction_id.clone(),
sec_nonce: aggsig::export_secnonce_single(secp).unwrap(),
change_key: None,
input_ids: vec![],
output_ids: vec![],
fee: 0,
},
@ -105,6 +126,17 @@ impl Context {
self.output_ids.clone()
}
/// Tracks IDs of my inputs into the transaction
/// be kept between invocations
pub fn add_input(&mut self, input_id: &Identifier) {
self.input_ids.push(input_id.clone());
}
/// Returns all stored input identifiers
pub fn get_inputs(&self) -> Vec<Identifier> {
self.input_ids.clone()
}
/// Returns private key, private nonce
pub fn get_private_keys(&self) -> (SecretKey, SecretKey) {
(self.sec_key.clone(), self.sec_nonce.clone())
@ -118,9 +150,10 @@ impl Context {
)
}
/// Note 'secnonce' here is used to perform the signature, while 'pubnonce' just allows you to
/// provide a custom public nonce to include while calculating e
/// nonce_sum is the sum used to decide whether secnonce should be inverted during sig time
/// Note 'secnonce' here is used to perform the signature, while 'pubnonce'
/// just allows you to provide a custom public nonce to include while
/// calculating e nonce_sum is the sum used to decide whether secnonce
/// should be inverted during sig time
pub fn sign_single(
&self,
secp: &Secp256k1,
@ -164,6 +197,7 @@ impl Context {
verify_single(secp, sig, &msg, Some(&nonce_sum), pubkey, true)
}
///TODO: Remove when below is integrated
pub fn calculate_partial_sig(
&self,
secp: &Secp256k1,
@ -187,19 +221,36 @@ impl Context {
)
}
pub fn calculate_partial_sig_with_nonce_sum(
&self,
secp: &Secp256k1,
nonce_sum: &PublicKey,
fee: u64,
lock_height: u64,
) -> Result<Signature, Error> {
// Add public nonces kR*G + kS*G
let (_, sec_nonce) = self.get_private_keys();
let msg = secp::Message::from_slice(&kernel_sig_msg(fee, lock_height))?;
//Now calculate signature using message M=fee, nonce in e=nonce_sum
self.sign_single(
secp,
&msg,
Some(&sec_nonce),
Some(&nonce_sum),
Some(&nonce_sum),
)
}
/// Helper function to calculate final signature
pub fn calculate_final_sig(
&self,
secp: &Secp256k1,
their_sig: &Signature,
our_sig: &Signature,
their_pub_nonce: &PublicKey,
part_sigs: Vec<&Signature>,
nonce_sum: &PublicKey,
) -> Result<Signature, Error> {
// Add public nonces kR*G + kS*G
let (_, sec_nonce) = self.get_private_keys();
let mut nonce_sum = their_pub_nonce.clone();
let _ = nonce_sum.add_exp_assign(secp, &sec_nonce);
let sig = aggsig::add_signatures_single(&secp, their_sig, our_sig, &nonce_sum)?;
let sig = aggsig::add_signatures_single(&secp, part_sigs, &nonce_sum)?;
Ok(sig)
}
@ -218,6 +269,19 @@ impl Context {
// Contextless functions
/// Verifies a partial sig given all public nonces used in the round
pub fn verify_partial_sig(
secp: &Secp256k1,
sig: &Signature,
pub_nonce_sum: &PublicKey,
pubkey: &PublicKey,
fee: u64,
lock_height: u64,
) -> bool {
let msg = secp::Message::from_slice(&kernel_sig_msg(fee, lock_height)).unwrap();
verify_single(secp, sig, &msg, Some(&pub_nonce_sum), pubkey, true)
}
/// Just a simple sig, creates its own nonce, etc
pub fn sign_from_key_id(
secp: &Secp256k1,
@ -238,16 +302,21 @@ pub fn verify_single_from_commit(
commit: &Commitment,
) -> bool {
// Extract the pubkey, unfortunately we need this hack for now, (we just hope
// one is valid) TODO: Create better secp256k1 API to do this
let pubkeys = commit.to_two_pubkeys(secp);
let mut valid = false;
for i in 0..pubkeys.len() {
valid = aggsig::verify_single(secp, &sig, &msg, None, &pubkeys[i], false);
if valid {
break;
}
}
valid
// one is valid)
let pubkey = commit.to_pubkey(secp).unwrap();
aggsig::verify_single(secp, &sig, &msg, None, &pubkey, false)
}
/// Verify a sig, with built message
pub fn verify_sig_build_msg(
secp: &Secp256k1,
sig: &Signature,
pubkey: &PublicKey,
fee: u64,
lock_height: u64,
) -> bool {
let msg = secp::Message::from_slice(&kernel_sig_msg(fee, lock_height)).unwrap();
verify_single(secp, sig, &msg, None, pubkey, true)
}
//Verifies an aggsig signature
@ -262,6 +331,17 @@ pub fn verify_single(
aggsig::verify_single(secp, sig, msg, pubnonce, pubkey, is_partial)
}
/// Adds signatures
pub fn add_signatures(
secp: &Secp256k1,
part_sigs: Vec<&Signature>,
nonce_sum: &PublicKey,
) -> Result<Signature, Error> {
// Add public nonces kR*G + kS*G
let sig = aggsig::add_signatures_single(&secp, part_sigs, &nonce_sum)?;
Ok(sig)
}
/// Just a simple sig, creates its own nonce, etc
pub fn sign_with_blinding(
secp: &Secp256k1,

View file

@ -18,455 +18,384 @@ use rand::thread_rng;
use uuid::Uuid;
use core::core::{amount_to_hr_string, Committed, Transaction};
use keychain::{BlindSum, BlindingFactor, Keychain};
use libwallet::{aggsig, build};
use keychain::{BlindSum, BlindingFactor, Identifier, Keychain};
use types::*; // TODO: Remove this?
use util::{secp, LOGGER};
use util::secp::key::{PublicKey, SecretKey};
//TODO: Remove these from here, replace with libwallet error
use types::{tx_fee, Error, ErrorKind};
use util::secp::Signature;
use util::secp::key::{PublicKey, SecretKey};
use util::{secp, LOGGER};
use failure::ResultExt;
// TODO: None of these functions should care about the wallet implementation,
/// Public data for each participant in the slate
/// Initiate a transaction for the aggsig exchange
/// with the given transaction data
pub fn sender_initiation(
keychain: &Keychain,
tx_id: &Uuid,
context_manager: &mut aggsig::ContextManager,
current_height: u64,
//TODO: Make this nicer, remove wallet-specific OutputData type
tx_data: (
Transaction,
BlindingFactor,
Vec<OutputData>,
Option<Identifier>,
u64,
),
) -> Result<PartialTx, Error> {
let lock_height = current_height;
let (tx, blind, coins, _change_key, amount_with_fee) = tx_data;
// TODO - wrap this up in build_send_tx or even the build() call?
// Generate a random kernel offset here
// and subtract it from the blind_sum so we create
// the aggsig context with the "split" key
let kernel_offset =
BlindingFactor::from_secret_key(SecretKey::new(&keychain.secp(), &mut thread_rng()));
let blind_offset = keychain
.blind_sum(&BlindSum::new()
.add_blinding_factor(blind)
.sub_blinding_factor(kernel_offset))
.unwrap();
//
// -Sender picks random blinding factors for all outputs it participates in,
// computes total blinding excess xS -Sender picks random nonce kS
// -Sender posts inputs, outputs, Message M=fee, xS * G and kS * G to Receiver
//
let skey = blind_offset
.secret_key(&keychain.secp())
.context(ErrorKind::Keychain)?;
// Create a new aggsig context
let mut context = context_manager.create_context(keychain.secp(), &tx_id, skey);
for coin in coins {
context.add_output(&coin.key_id);
}
let partial_tx = build_partial_tx(
&context,
keychain,
amount_with_fee,
lock_height,
kernel_offset,
None,
tx,
);
context_manager.save_context(context);
Ok(partial_tx)
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct ParticipantData {
/// Id of participant in the transaction. (For now, 0=sender, 1=rec)
pub id: u64,
/// Public key corresponding to private blinding factor
pub public_blind_excess: PublicKey,
/// Public key corresponding to private nonce
pub public_nonce: PublicKey,
/// Public partial signature
pub part_sig: Option<Signature>,
}
/// Receive Part 1 of interactive transactions from sender, Sender Initiation
/// Return result of part 2, Recipient Initation, to sender
/// -Receiver receives inputs, outputs xS * G and kS * G
/// -Receiver picks random blinding factors for all outputs being received,
/// computes total blinding
/// excess xR
/// -Receiver picks random nonce kR
/// -Receiver computes Schnorr challenge e = H(M | kR * G + kS * G)
/// -Receiver computes their part of signature, sR = kR + e * xR
/// -Receiver responds with sR, blinding excess xR * G, public nonce kR * G
impl ParticipantData {
/// A helper to return whether this paricipant
/// has completed round 1 and round 2;
/// Round 1 has to be completed before instantiation of this struct
/// anyhow, and for each participant consists of:
/// -Inputs added to transaction
/// -Outputs added to transaction
/// -Public signature nonce chosen and added
/// -Public contribution to blinding factor chosen and added
/// Round 2 can only be completed after all participants have
/// performed round 1, and adds:
/// -Part sig is filled out
pub fn is_complete(&self) -> bool {
self.part_sig.is_some()
}
}
pub fn recipient_initiation(
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
partial_tx: &PartialTx,
output_key_id: &Identifier,
) -> Result<PartialTx, Error> {
let (amount, _lock_height, _sender_pub_blinding, sender_pub_nonce, kernel_offset, _sig, tx) =
read_partial_tx(keychain, partial_tx)?;
/// A 'Slate' is passed around to all parties to build up all of the public
/// tranaction data needed to create a finalised tranaction. Callers can pass
/// the slate around by whatever means they choose, (but we can provide some
/// binary or JSON serialisation helpers here).
// double check the fee amount included in the partial tx
// we don't necessarily want to just trust the sender
// we could just overwrite the fee here (but we won't) due to the sig
let fee = tx_fee(
tx.inputs.len(),
tx.outputs.len() + 1,
tx.input_proofs_count(),
None,
);
if fee > tx.fee() {
return Err(ErrorKind::FeeDispute {
sender_fee: tx.fee(),
recipient_fee: fee,
})?;
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct Slate {
/// The number of participants intended to take part in this transaction
pub num_participants: usize,
/// Unique transaction ID, selected by sender
pub id: Uuid,
/// The core transaction data:
/// inputs, outputs, kernels, kernel offset
pub tx: Transaction,
/// base amount (excluding fee)
pub amount: u64,
/// fee amount
pub fee: u64,
/// Block height for the transaction
pub height: u64,
/// Lock height
pub lock_height: u64,
/// Participant data, each participant in the transaction will
/// insert their public data here. For now, 0 is sender and 1
/// is receiver, though this will change for multi-party
pub participant_data: Vec<ParticipantData>,
}
impl Slate {
/// Create a new slate
pub fn blank(num_participants: usize) -> Slate {
Slate {
num_participants: num_participants,
id: Uuid::new_v4(),
tx: Transaction::empty(),
amount: 0,
fee: 0,
height: 0,
lock_height: 0,
participant_data: vec![],
}
}
if fee > amount {
info!(
LOGGER,
"Rejected the transfer because transaction fee ({}) exceeds received amount ({}).",
amount_to_hr_string(fee),
amount_to_hr_string(amount)
/// Adds selected inputs and outputs to the slate's transaction
/// Returns blinding factor
pub fn add_transaction_elements(
&mut self,
keychain: &Keychain,
mut elems: Vec<Box<build::Append>>,
) -> Result<BlindingFactor, Error> {
// Append to the exiting transaction
if self.tx.kernels.len() != 0 {
elems.insert(0, build::initial_tx(self.tx.clone()));
}
let (tx, blind) =
build::partial_transaction(elems, &keychain).context(ErrorKind::Keychain)?;
self.tx = tx;
Ok(blind)
}
/// Completes callers part of round 1, adding public key info
/// to the slate
pub fn fill_round_1(
&mut self,
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
participant_id: usize,
) -> Result<(), Error> {
// Whoever does this first generates the offset
if self.tx.offset == BlindingFactor::zero() {
self.generate_offset(keychain, context_manager)?;
}
self.add_participant_info(keychain, context_manager, participant_id, None)?;
Ok(())
}
/// Completes caller's part of round 2, completing signatures
pub fn fill_round_2(
&mut self,
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
participant_id: usize,
) -> Result<(), Error> {
self.check_fees()?;
self.verify_part_sigs(keychain.secp())?;
let context = context_manager.get_context(&self.id);
let sig_part = context
.calculate_partial_sig_with_nonce_sum(
keychain.secp(),
&self.pub_nonce_sum(keychain.secp()),
self.fee,
self.lock_height,
)
.unwrap();
self.participant_data[participant_id].part_sig = Some(sig_part);
Ok(())
}
/// Creates the final signature, callable by either the sender or recipient
/// (after phase 3: sender confirmation)
/// TODO: Only callable by receiver at the moment
pub fn finalize(&mut self, keychain: &Keychain) -> Result<(), Error> {
let final_sig = self.finalize_signature(keychain)?;
self.finalize_transaction(keychain, &final_sig)
}
/// Return the sum of public nonces
fn pub_nonce_sum(&self, secp: &secp::Secp256k1) -> PublicKey {
let pub_nonces = self.participant_data
.iter()
.map(|p| &p.public_nonce)
.collect();
PublicKey::from_combination(secp, pub_nonces).unwrap()
}
/// Return the sum of public blinding factors
fn pub_blind_sum(&self, secp: &secp::Secp256k1) -> PublicKey {
let pub_blinds = self.participant_data
.iter()
.map(|p| &p.public_blind_excess)
.collect();
PublicKey::from_combination(secp, pub_blinds).unwrap()
}
/// Return vector of all partial sigs
fn part_sigs(&self) -> Vec<&Signature> {
self.participant_data
.iter()
.map(|p| p.part_sig.as_ref().unwrap())
.collect()
}
/// Adds participants public keys to the slate data
/// and saves participant's transaction context
/// sec_key can be overriden to replace the blinding
/// factor (by whoever split the offset)
fn add_participant_info(
&mut self,
keychain: &Keychain,
context_manager: &aggsig::ContextManager,
id: usize,
part_sig: Option<Signature>,
) -> Result<(), Error> {
let context = context_manager.get_context(&self.id);
// Add our public key and nonce to the slate
let (pub_key, pub_nonce) = context.get_public_keys(keychain.secp());
self.participant_data.push(ParticipantData {
id: id as u64,
public_blind_excess: pub_key,
public_nonce: pub_nonce,
part_sig: part_sig,
});
Ok(())
}
/// Somebody involved needs to generate an offset with their private key
/// For now, we'll have the transaction initiator be responsible for it
/// Return offset private key
fn generate_offset(
&mut self,
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
) -> Result<(), Error> {
// Generate a random kernel offset here
// and subtract it from the blind_sum so we create
// the aggsig context with the "split" key
let mut context = context_manager.get_context(&self.id);
self.tx.offset =
BlindingFactor::from_secret_key(SecretKey::new(&keychain.secp(), &mut thread_rng()));
let blind_offset = keychain
.blind_sum(&BlindSum::new()
.add_blinding_factor(BlindingFactor::from_secret_key(context.sec_key))
.sub_blinding_factor(self.tx.offset))
.unwrap();
context.sec_key = blind_offset
.secret_key(&keychain.secp())
.context(ErrorKind::Keychain)?;
context_manager.save_context(context);
Ok(())
}
/// Checks the fees in the transaction in the given slate are valid
fn check_fees(&self) -> Result<(), Error> {
// double check the fee amount included in the partial tx
// we don't necessarily want to just trust the sender
// we could just overwrite the fee here (but we won't) due to the sig
let fee = tx_fee(
self.tx.inputs.len(),
self.tx.outputs.len(),
self.tx.input_proofs_count(),
None,
);
return Err(ErrorKind::FeeExceedsAmount {
sender_amount: amount,
recipient_fee: fee,
})?;
}
let out_amount = amount - tx.fee();
// First step is just to get the excess sum of the outputs we're participating
// in Output and key needs to be stored until transaction finalisation time,
// somehow
// Still handy for getting the blinding sum
let (_, blind_sum) = build::partial_transaction(
vec![build::output(out_amount, output_key_id.clone())],
keychain,
).context(ErrorKind::Keychain)?;
// Create a new aggsig context
// this will create a new blinding sum and nonce, and store them
let blind = blind_sum
.secret_key(&keychain.secp())
.context(ErrorKind::Keychain)?;
debug!(LOGGER, "Creating new aggsig context");
let mut context = context_manager.create_context(keychain.secp(), &partial_tx.id, blind);
context.add_output(output_key_id);
context.fee = tx.fee();
let sig_part = context
.calculate_partial_sig(
keychain.secp(),
&sender_pub_nonce,
tx.fee(),
tx.lock_height(),
)
.unwrap();
// Build the response, which should contain sR, blinding excess xR * G, public
// nonce kR * G
let mut partial_tx = build_partial_tx(
&context,
keychain,
amount,
partial_tx.lock_height,
kernel_offset,
Some(sig_part),
tx,
);
partial_tx.phase = PartialTxPhase::ReceiverInitiation;
context_manager.save_context(context);
Ok(partial_tx)
}
/// -Sender receives xR * G, kR * G, sR
/// -Sender computes Schnorr challenge e = H(M | kR * G + kS * G)
/// -Sender verifies receivers sig, by verifying that kR * G + e * xR * G =
/// sR * G·
/// -Sender computes their part of signature, sS = kS + e * xS
pub fn sender_confirmation(
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
partial_tx: PartialTx,
) -> Result<PartialTx, Error> {
let context = context_manager.get_context(&partial_tx.id);
let (amount, lock_height, recp_pub_blinding, recp_pub_nonce, kernel_offset, sig, tx) =
read_partial_tx(keychain, &partial_tx)?;
let res = context.verify_partial_sig(
&keychain.secp(),
&sig.unwrap(),
&recp_pub_nonce,
&recp_pub_blinding,
tx.fee(),
lock_height,
);
if !res {
error!(LOGGER, "Partial Sig from recipient invalid.");
return Err(ErrorKind::Signature("Partial Sig from recipient invalid."))?;
}
let sig_part = context
.calculate_partial_sig(
&keychain.secp(),
&recp_pub_nonce,
tx.fee(),
tx.lock_height(),
)
.unwrap();
// Build the next stage, containing sS (and our pubkeys again, for the
// recipient's convenience) offset has not been modified during tx building,
// so pass it back in
let mut partial_tx = build_partial_tx(
&context,
keychain,
amount,
lock_height,
kernel_offset,
Some(sig_part),
tx,
);
partial_tx.phase = PartialTxPhase::SenderConfirmation;
context_manager.save_context(context);
Ok(partial_tx)
}
/// Creates the final signature, callable by either the sender or recipient
/// (after phase 3: sender confirmation)
///
/// TODO: takes a partial Tx that just contains the other party's public
/// info at present, but this should be changed to something more appropriate
pub fn finalize_transaction(
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
partial_tx: &PartialTx,
other_partial_tx: &PartialTx,
output_key_id: &Identifier,
output_key_derivation: u32,
) -> Result<Transaction, Error> {
let (
_amount,
_lock_height,
other_pub_blinding,
other_pub_nonce,
kernel_offset,
other_sig_part,
tx,
) = read_partial_tx(keychain, other_partial_tx)?;
let final_sig = create_final_signature(
keychain,
context_manager,
partial_tx,
&other_pub_blinding,
&other_pub_nonce,
&other_sig_part.unwrap(),
)?;
build_final_transaction(
keychain,
partial_tx.amount,
kernel_offset,
&final_sig,
tx.clone(),
output_key_id,
output_key_derivation,
)
}
/// This should be callable by either the sender or receiver
/// once phase 3 is done
///
/// Receive Part 3 of interactive transactions from sender, Sender Confirmation
/// Return Ok/Error
/// -Receiver receives sS
/// -Receiver verifies sender's sig, by verifying that
/// kS * G + e *xS * G = sS* G
/// -Receiver calculates final sig as s=(sS+sR, kS * G+kR * G)
/// -Receiver puts into TX kernel:
///
/// Signature S
/// pubkey xR * G+xS * G
/// fee (= M)
///
/// Returns completed transaction ready for posting to the chain
fn create_final_signature(
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
partial_tx: &PartialTx,
other_pub_blinding: &PublicKey,
other_pub_nonce: &PublicKey,
other_sig_part: &Signature,
) -> Result<Signature, Error> {
let (_amount, _lock_height, _, _, _kernel_offset, _, tx) =
read_partial_tx(keychain, partial_tx)?;
let context = context_manager.get_context(&partial_tx.id);
let res = context.verify_partial_sig(
&keychain.secp(),
&other_sig_part,
&other_pub_nonce,
&other_pub_blinding,
tx.fee(),
tx.lock_height(),
);
if !res {
error!(LOGGER, "Partial Sig from other party invalid.");
return Err(ErrorKind::Signature(
"Partial Sig from other party invalid.",
))?;
}
// Just calculate our sig part again instead of storing
let our_sig_part = context
.calculate_partial_sig(
&keychain.secp(),
&other_pub_nonce,
tx.fee(),
tx.lock_height(),
)
.unwrap();
// And the final signature
let final_sig = context
.calculate_final_sig(
&keychain.secp(),
&other_sig_part,
&our_sig_part,
&other_pub_nonce,
)
.unwrap();
// Calculate the final public key (for our own sanity check)
let final_pubkey = context
.calculate_final_pubkey(&keychain.secp(), &other_pub_blinding)
.unwrap();
// Check our final sig verifies
let res = context.verify_final_sig_build_msg(
&keychain.secp(),
&final_sig,
&final_pubkey,
tx.fee(),
tx.lock_height(),
);
if !res {
error!(LOGGER, "Final aggregated signature invalid.");
return Err(ErrorKind::Signature("Final aggregated signature invalid."))?;
}
Ok(final_sig)
}
/// builds a final transaction after the aggregated sig exchange
fn build_final_transaction(
keychain: &Keychain,
amount: u64,
kernel_offset: BlindingFactor,
excess_sig: &secp::Signature,
tx: Transaction,
output_key_id: &Identifier,
output_key_derivation: u32,
) -> Result<Transaction, Error> {
let root_key_id = keychain.root_key_id();
// double check the fee amount included in the partial tx
// we don't necessarily want to just trust the sender
// we could just overwrite the fee here (but we won't) due to the ecdsa sig
let fee = tx_fee(
tx.inputs.len(),
tx.outputs.len() + 1,
tx.input_proofs_count(),
None,
);
if fee > tx.fee() {
return Err(ErrorKind::FeeDispute {
sender_fee: tx.fee(),
recipient_fee: fee,
})?;
}
if fee > amount {
info!(
LOGGER,
"Rejected the transfer because transaction fee ({}) exceeds received amount ({}).",
amount_to_hr_string(fee),
amount_to_hr_string(amount)
);
return Err(ErrorKind::FeeExceedsAmount {
sender_amount: amount,
recipient_fee: fee,
})?;
}
let out_amount = amount - tx.fee();
// Build final transaction, the sum of which should
// be the same as the exchanged excess values
let mut final_tx = build::transaction(
vec![
build::initial_tx(tx),
build::output(out_amount, output_key_id.clone()),
build::with_offset(kernel_offset),
],
keychain,
).context(ErrorKind::Keychain)?;
// build the final excess based on final tx and offset
let final_excess = {
// TODO - do we need to verify rangeproofs here?
for x in &final_tx.outputs {
x.verify_proof().context(ErrorKind::Transaction)?;
if fee > self.tx.fee() {
return Err(ErrorKind::FeeDispute {
sender_fee: self.tx.fee(),
recipient_fee: fee,
})?;
}
// sum the input/output commitments on the final tx
let overage = final_tx.fee() as i64;
let tx_excess = final_tx
.sum_commitments(overage, None)
if fee > self.amount + self.fee {
info!(
LOGGER,
"Rejected the transfer because transaction fee ({}) exceeds received amount ({}).",
amount_to_hr_string(fee),
amount_to_hr_string(self.amount + self.fee)
);
return Err(ErrorKind::FeeExceedsAmount {
sender_amount: self.amount + self.fee,
recipient_fee: fee,
})?;
}
Ok(())
}
/// Verifies all of the partial signatures in the Slate are valid
fn verify_part_sigs(&self, secp: &secp::Secp256k1) -> Result<(), Error> {
// collect public nonces
for p in self.participant_data.iter() {
if p.is_complete() {
if aggsig::verify_partial_sig(
secp,
p.part_sig.as_ref().unwrap(),
&self.pub_nonce_sum(secp),
&p.public_blind_excess,
self.fee,
self.lock_height,
) == false
{
error!(LOGGER, "Partial Sig invalid.");
return Err(ErrorKind::Signature("Partial Sig invalid."))?;
}
}
}
Ok(())
}
/// This should be callable by either the sender or receiver
/// once phase 3 is done
///
/// Receive Part 3 of interactive transactions from sender, Sender
/// Confirmation Return Ok/Error
/// -Receiver receives sS
/// -Receiver verifies sender's sig, by verifying that
/// kS * G + e *xS * G = sS* G
/// -Receiver calculates final sig as s=(sS+sR, kS * G+kR * G)
/// -Receiver puts into TX kernel:
///
/// Signature S
/// pubkey xR * G+xS * G
/// fee (= M)
///
/// Returns completed transaction ready for posting to the chain
fn finalize_signature(&mut self, keychain: &Keychain) -> Result<Signature, Error> {
self.verify_part_sigs(keychain.secp())?;
let part_sigs = self.part_sigs();
let pub_nonce_sum = self.pub_nonce_sum(keychain.secp());
let final_pubkey = self.pub_blind_sum(keychain.secp());
// get the final signature
let final_sig =
aggsig::add_signatures(&keychain.secp(), part_sigs, &pub_nonce_sum).unwrap();
// Calculate the final public key (for our own sanity check)
// Check our final sig verifies
let res = aggsig::verify_sig_build_msg(
&keychain.secp(),
&final_sig,
&final_pubkey,
self.fee,
self.lock_height,
);
if !res {
error!(LOGGER, "Final aggregated signature invalid.");
return Err(ErrorKind::Signature("Final aggregated signature invalid."))?;
}
Ok(final_sig)
}
/// builds a final transaction after the aggregated sig exchange
fn finalize_transaction(
&mut self,
keychain: &Keychain,
final_sig: &secp::Signature,
) -> Result<(), Error> {
let kernel_offset = self.tx.offset;
self.check_fees()?;
let mut final_tx = self.tx.clone();
// build the final excess based on final tx and offset
let final_excess = {
// TODO - do we need to verify rangeproofs here?
for x in &final_tx.outputs {
x.verify_proof().context(ErrorKind::Transaction)?;
}
// sum the input/output commitments on the final tx
let overage = final_tx.fee() as i64;
let tx_excess = final_tx
.sum_commitments(overage, None)
.context(ErrorKind::Transaction)?;
// subtract the kernel_excess (built from kernel_offset)
let offset_excess = keychain
.secp()
.commit(0, kernel_offset.secret_key(&keychain.secp()).unwrap())
.unwrap();
keychain
.secp()
.commit_sum(vec![tx_excess], vec![offset_excess])
.context(ErrorKind::Transaction)?
};
// update the tx kernel to reflect the offset excess and sig
assert_eq!(final_tx.kernels.len(), 1);
final_tx.kernels[0].excess = final_excess.clone();
final_tx.kernels[0].excess_sig = final_sig.clone();
// confirm the kernel verifies successfully before proceeding
debug!(LOGGER, "Validating final transaction");
final_tx.kernels[0]
.verify()
.context(ErrorKind::Transaction)?;
// subtract the kernel_excess (built from kernel_offset)
let offset_excess = keychain
.secp()
.commit(0, kernel_offset.secret_key(&keychain.secp()).unwrap())
.unwrap();
keychain
.secp()
.commit_sum(vec![tx_excess], vec![offset_excess])
.context(ErrorKind::Transaction)?
};
// confirm the overall transaction is valid (including the updated kernel)
let _ = final_tx.validate().context(ErrorKind::Transaction)?;
// update the tx kernel to reflect the offset excess and sig
assert_eq!(final_tx.kernels.len(), 1);
final_tx.kernels[0].excess = final_excess.clone();
final_tx.kernels[0].excess_sig = excess_sig.clone();
// confirm the kernel verifies successfully before proceeding
debug!(LOGGER, "Validating final transaction");
final_tx.kernels[0]
.verify()
.context(ErrorKind::Transaction)?;
// confirm the overall transaction is valid (including the updated kernel)
let _ = final_tx.validate().context(ErrorKind::Transaction)?;
debug!(
LOGGER,
"Finalized transaction and built output - {:?}, {:?}, {}",
root_key_id.clone(),
output_key_id.clone(),
output_key_derivation,
);
Ok(final_tx)
self.tx = final_tx;
Ok(())
}
}

View file

@ -25,15 +25,14 @@ use std::sync::{Arc, RwLock};
use api;
use core::consensus::reward;
use core::core::{Output, Transaction, TxKernel};
use libwallet::{aggsig, reward, transaction};
use grinwallet::keys;
use core::{global, ser};
use failure::{Fail, ResultExt};
use core::core::{Output, TxKernel};
use core::global;
use failure::Fail;
use grinwallet::{keys, selection};
use keychain::Keychain;
use libwallet::{aggsig, reward, transaction};
use types::*;
use urlencoded::UrlEncodedQuery;
use util::{to_hex, LOGGER};
use util::LOGGER;
/// Dummy wrapper for the hex-encoded serialized transaction.
#[derive(Serialize, Deserialize)]
@ -47,99 +46,27 @@ lazy_static! {
= Arc::new(RwLock::new(aggsig::ContextManager::new()));
}
fn handle_sender_initiation(
fn handle_send(
config: &WalletConfig,
context_manager: &mut aggsig::ContextManager,
keychain: &Keychain,
partial_tx: &PartialTx,
) -> Result<PartialTx, Error> {
// Create a potential output for this transaction
let (key_id, derivation) = WalletData::with_wallet(&config.data_file_dir, |wallet_data| {
keys::next_available_key(&wallet_data, keychain)
})?;
let partial_tx =
transaction::recipient_initiation(keychain, context_manager, partial_tx, &key_id)?;
let mut context = context_manager.get_context(&partial_tx.id);
context.add_output(&key_id);
// Add the output to our wallet
let _ = WalletData::with_wallet(&config.data_file_dir, |wallet_data| {
wallet_data.add_output(OutputData {
root_key_id: keychain.root_key_id(),
key_id: key_id.clone(),
n_child: derivation,
value: partial_tx.amount - context.fee,
status: OutputStatus::Unconfirmed,
height: 0,
lock_height: 0,
is_coinbase: false,
block: None,
merkle_proof: None,
});
})?;
context_manager.save_context(context);
Ok(partial_tx)
}
fn handle_sender_confirmation(
config: &WalletConfig,
context_manager: &mut aggsig::ContextManager,
keychain: &Keychain,
partial_tx: &PartialTx,
fluff: bool,
) -> Result<Transaction, Error> {
let context = context_manager.get_context(&partial_tx.id);
// Get output we created in earlier step
// TODO: will just be one for now, support multiple later
let output_vec = context.get_outputs();
slate: &mut transaction::Slate,
) -> Result<(), Error> {
// create an output using the amount in the slate
let (_, receiver_create_fn) =
selection::build_recipient_output_with_slate(config, keychain, context_manager, slate)
.unwrap();
let root_key_id = keychain.root_key_id();
// operate within a lock on wallet data
let (key_id, derivation) = WalletData::with_wallet(&config.data_file_dir, |wallet_data| {
let (key_id, derivation) = keys::retrieve_existing_key(&wallet_data, output_vec[0].clone());
// fill public keys
let _ = slate.fill_round_1(&keychain, context_manager, 1)?;
wallet_data.add_output(OutputData {
root_key_id: root_key_id.clone(),
key_id: key_id.clone(),
n_child: derivation,
value: partial_tx.amount - context.fee,
status: OutputStatus::Unconfirmed,
height: 0,
lock_height: 0,
is_coinbase: false,
block: None,
merkle_proof: None,
});
// perform partial sig
let _ = slate.fill_round_2(&keychain, context_manager, 1)?;
(key_id, derivation)
})?;
// Save output in wallet
let _ = receiver_create_fn();
// In this case partial_tx contains other party's pubkey info
let final_tx = transaction::finalize_transaction(
keychain,
context_manager,
partial_tx,
partial_tx,
&key_id,
derivation,
)?;
let tx_hex = to_hex(ser::ser_vec(&final_tx).unwrap());
let url;
if fluff {
url = format!(
"{}/v1/pool/push?fluff",
config.check_node_api_http_addr.as_str()
);
} else {
url = format!("{}/v1/pool/push", config.check_node_api_http_addr.as_str());
}
api::client::post(url.as_str(), &TxWrapper { tx_hex: tx_hex }).context(ErrorKind::Node)?;
Ok(final_tx)
Ok(())
}
/// Component used to receive coins, implements all the receiving end of the
@ -152,56 +79,23 @@ pub struct WalletReceiver {
impl Handler for WalletReceiver {
fn handle(&self, req: &mut Request) -> IronResult<Response> {
let struct_body = req.get::<bodyparser::Struct<PartialTx>>();
let struct_body = req.get::<bodyparser::Struct<transaction::Slate>>();
let mut fluff = false;
if let Ok(params) = req.get_ref::<UrlEncodedQuery>() {
if let Some(_) = params.get("fluff") {
fluff = true;
}
}
if let Ok(Some(partial_tx)) = struct_body {
if let Ok(Some(mut slate)) = struct_body {
let mut acm = AGGSIG_CONTEXT_MANAGER.write().unwrap();
match partial_tx.phase {
PartialTxPhase::SenderInitiation => {
let resp_tx = handle_sender_initiation(
&self.config,
&mut acm,
&self.keychain,
&partial_tx,
).map_err(|e| {
error!(LOGGER, "Phase 1 Sender Initiation -> Problematic partial tx, looks like this: {:?}", partial_tx);
e.context(api::ErrorKind::Internal(
"Error processing partial transaction".to_owned(),
))
})
.unwrap();
let json = serde_json::to_string(&resp_tx).unwrap();
Ok(Response::with((status::Ok, json)))
}
PartialTxPhase::SenderConfirmation => {
let resp_tx = handle_sender_confirmation(
&self.config,
&mut acm,
&self.keychain,
&partial_tx,
fluff,
).map_err(|e| {
error!(LOGGER, "Phase 3 Sender Confirmation -> Problematic partial tx, looks like this: {:?}", partial_tx);
e.context(api::ErrorKind::Internal(
"Error processing partial transaction".to_owned(),
))
})
.unwrap();
let json = serde_json::to_string(&resp_tx).unwrap();
Ok(Response::with((status::Ok, json)))
}
_ => {
error!(LOGGER, "Unhandled Phase: {:?}", partial_tx);
Ok(Response::with((status::BadRequest, "Unhandled Phase")))
}
}
let _ = handle_send(&self.config, &self.keychain, &mut acm, &mut slate)
.map_err(|e| {
error!(
LOGGER,
"Handling send -> Problematic slate, looks like this: {:?}", slate
);
e.context(api::ErrorKind::Internal(
"Error processing partial transaction".to_owned(),
))
})
.unwrap();
let json = serde_json::to_string(&slate).unwrap();
Ok(Response::with((status::Ok, json)))
} else {
Ok(Response::with((status::BadRequest, "")))
}

View file

@ -12,26 +12,24 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use uuid::Uuid;
use api;
use client;
use checker;
use client;
use core::core::amount_to_hr_string;
use libwallet::{aggsig, build, transaction};
use grinwallet::selection;
use core::ser;
use failure::ResultExt;
use grinwallet::selection;
use keychain::{Identifier, Keychain};
use libwallet::{aggsig, build};
use receiver::TxWrapper;
use types::*;
use util::LOGGER;
use util;
use failure::ResultExt;
use util::LOGGER;
/// Issue a new transaction to the provided sender by spending some of our
/// wallet
/// Outputs. The destination can be "stdout" (for command line) (currently disabled) or a URL to the
/// recipients wallet receiver (to be implemented).
/// Outputs. The destination can be "stdout" (for command line) (currently
/// disabled) or a URL to the recipients wallet receiver (to be implemented).
pub fn issue_send_tx(
config: &WalletConfig,
keychain: &Keychain,
@ -42,11 +40,18 @@ pub fn issue_send_tx(
selection_strategy_is_use_all: bool,
fluff: bool,
) -> Result<(), Error> {
// TODO: Stdout option, probably in a separate implementation
if &dest[..4] != "http" {
panic!(
"dest formatted as {} but send -d expected stdout or http://IP:port",
dest
);
}
checker::refresh_outputs(config, keychain)?;
// Create a new aggsig context
let mut context_manager = aggsig::ContextManager::new();
let tx_id = Uuid::new_v4();
// Get lock height
let chain_tip = checker::get_tip_from_node(config)?;
@ -56,125 +61,77 @@ pub fn issue_send_tx(
let lock_height = current_height;
let tx_data = selection::build_send_tx(
// Sender selects outputs into a new slate and save our corresponding IDs in
// their transaction context. The secret key in our transaction context will be
// randomly selected. This returns the public slate, and a closure that locks
// our inputs and outputs once we're convinced the transaction exchange went
// according to plan
// This function is just a big helper to do all of that, in theory
// this process can be split up in any way
let (mut slate, sender_lock_fn) = selection::build_send_tx_slate(
config,
keychain,
&mut context_manager,
2,
amount,
current_height,
minimum_confirmations,
lock_height,
max_outputs,
selection_strategy_is_use_all,
)?;
).unwrap();
let partial_tx = transaction::sender_initiation(
keychain,
&tx_id,
&mut context_manager,
current_height,
tx_data,
)?;
let context = context_manager.get_context(&tx_id);
// Closure to acquire wallet lock and lock the coins being spent
// so we avoid accidental double spend attempt.
let update_wallet = || {
WalletData::with_wallet(&config.data_file_dir, |wallet_data| {
for id in context.get_outputs().clone() {
let coin = wallet_data.get_output(&id).unwrap().clone();
wallet_data.lock_output(&coin);
}
})
};
// Closure to acquire wallet lock and delete the change output in case of tx
// failure.
let rollback_wallet = || {
WalletData::with_wallet(&config.data_file_dir, |wallet_data| {
match context.change_key.clone() {
Some(change) => {
info!(LOGGER, "cleaning up unused change output from wallet");
wallet_data.delete_output(&change);
}
None => info!(LOGGER, "No change output to clean from wallet"),
}
})
};
// TODO: stdout option removed for now, as it won't work very will with this
// version of aggsig exchange
/*if dest == "stdout" {
let json_tx = serde_json::to_string_pretty(&partial_tx).unwrap();
update_wallet()?;
println!("{}", json_tx);
} else */
if &dest[..4] != "http" {
WalletData::with_wallet(&config.data_file_dir, |wallet_data| {
match context.change_key.clone() {
Some(change) => {
info!(LOGGER, "cleaning up unused change output from wallet");
wallet_data.delete_output(&change);
}
None => info!(LOGGER, "No change output to clean from wallet"),
}
}).unwrap();
panic!(
"dest formatted as {} but send -d expected stdout or http://IP:port",
dest
);
}
// Generate a kernel offset and subtract from our context's secret key. Store
// the offset in the slate's transaction kernel, and adds our public key
// information to the slate
let _ = slate
.fill_round_1(keychain, &mut context_manager, 0)
.unwrap();
let url = format!("{}/v1/receive/transaction", &dest);
debug!(LOGGER, "Posting partial transaction to {}", url);
let res = client::send_partial_tx(&url, &partial_tx, fluff);
if let Err(e) = res {
match e.kind() {
ErrorKind::FeeExceedsAmount {
sender_amount,
recipient_fee,
} => error!(
let mut slate = match client::send_slate(&url, &slate, fluff) {
Ok(s) => s,
Err(e) => {
match e.kind() {
ErrorKind::FeeExceedsAmount {
sender_amount,
recipient_fee,
} => error!(
LOGGER,
"Recipient rejected the transfer because transaction fee ({}) exceeded amount ({}).",
amount_to_hr_string(recipient_fee),
amount_to_hr_string(sender_amount)
),
_ => error!(
LOGGER,
"Recipient rejected the transfer because transaction fee ({}) exceeded amount ({}).",
amount_to_hr_string(recipient_fee),
amount_to_hr_string(sender_amount)
"Communication with receiver failed on SenderInitiation send. Aborting transaction"
),
_ => error!(
LOGGER,
"Communication with receiver failed on SenderInitiation send. Aborting transaction"
),
}
return Err(e);
}
rollback_wallet()?;
return Err(e);
};
let _ = slate.fill_round_2(keychain, &mut context_manager, 0)?;
// Final transaction can be built by anyone at this stage
slate.finalize(keychain)?;
// So let's post it
let tx_hex = util::to_hex(ser::ser_vec(&slate.tx).unwrap());
let url;
if fluff {
url = format!(
"{}/v1/pool/push?fluff",
config.check_node_api_http_addr.as_str()
);
} else {
url = format!("{}/v1/pool/push", config.check_node_api_http_addr.as_str());
}
api::client::post(url.as_str(), &TxWrapper { tx_hex: tx_hex }).context(ErrorKind::Node)?;
let partial_tx =
transaction::sender_confirmation(keychain, &mut context_manager, res.unwrap())?;
// And send again, expecting completed transaction as result this time
let res = client::send_partial_tx_final(&url, &partial_tx, fluff);
if let Err(e) = res {
match e.kind() {
ErrorKind::FeeExceedsAmount {sender_amount, recipient_fee} =>
error!(
LOGGER,
"Recipient rejected the transfer because transaction fee ({}) exceeded amount ({}).",
amount_to_hr_string(recipient_fee),
amount_to_hr_string(sender_amount)
),
_ => error!(LOGGER, "Communication with receiver failed on SenderConfirmation send. Aborting transaction"),
}
rollback_wallet()?;
return Err(e);
}
// Not really necessary here
context_manager.save_context(context.clone());
// All good so
update_wallet()?;
// All good so, lock our outputs
sender_lock_fn()?;
Ok(())
}
@ -227,8 +184,8 @@ pub fn issue_burn_tx(
#[cfg(test)]
mod test {
use libwallet::build;
use keychain::Keychain;
use libwallet::build;
#[test]
// demonstrate that input.commitment == referenced output.commitment

View file

@ -14,17 +14,15 @@
use blake2;
use rand::{thread_rng, Rng};
use std::cmp::min;
use std::collections::HashMap;
use std::convert::From;
use std::fmt;
use std::fmt::Display;
use uuid::Uuid;
use std::convert::From;
use std::fs::{self, File};
use std::io::{Read, Write};
use std::path::Path;
use std::path::MAIN_SEPARATOR;
use std::collections::HashMap;
use std::cmp::min;
use libwallet::aggsig;
use std::path::Path;
use serde;
use serde_json;
@ -38,13 +36,8 @@ use core::consensus;
use core::core::Transaction;
use core::core::hash::Hash;
use core::core::pmmr::MerkleProof;
use core::ser;
use keychain;
use keychain::BlindingFactor;
use util;
use util::secp;
use util::secp::Signature;
use util::secp::key::PublicKey;
use util::LOGGER;
const DAT_FILE: &'static str = "wallet.dat";
@ -644,9 +637,10 @@ impl WalletData {
}
/// Select spendable coins from the wallet.
/// Default strategy is to spend the maximum number of outputs (up to max_outputs).
/// Alternative strategy is to spend smallest outputs first but only as many as necessary.
/// When we introduce additional strategies we should pass something other than a bool in.
/// Default strategy is to spend the maximum number of outputs (up to
/// max_outputs). Alternative strategy is to spend smallest outputs first
/// but only as many as necessary. When we introduce additional strategies
/// we should pass something other than a bool in.
pub fn select_coins(
&self,
root_key_id: keychain::Identifier,
@ -751,120 +745,6 @@ impl WalletData {
}
}
/// Define the stages of a transaction
#[derive(Serialize, Deserialize, Debug, Clone)]
pub enum PartialTxPhase {
SenderInitiation,
ReceiverInitiation,
SenderConfirmation,
ReceiverConfirmation,
}
/// Helper in serializing the information required during an interactive aggsig
/// transaction
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct PartialTx {
pub phase: PartialTxPhase,
pub id: Uuid,
pub amount: u64,
pub lock_height: u64,
pub public_blind_excess: String,
pub public_nonce: String,
pub kernel_offset: String,
pub part_sig: String,
pub tx: String,
}
/// Builds a PartialTx
/// aggsig_tx_context should contain the private key/nonce pair
/// the resulting partial tx will contain the corresponding public keys
pub fn build_partial_tx(
context: &aggsig::Context,
keychain: &keychain::Keychain,
receive_amount: u64,
lock_height: u64,
kernel_offset: BlindingFactor,
part_sig: Option<secp::Signature>,
tx: Transaction,
) -> PartialTx {
let (pub_excess, pub_nonce) = context.get_public_keys(keychain.secp());
let mut pub_excess = pub_excess.serialize_vec(keychain.secp(), true).clone();
let len = pub_excess.clone().len();
let pub_excess: Vec<_> = pub_excess.drain(0..len).collect();
let mut pub_nonce = pub_nonce.serialize_vec(keychain.secp(), true);
let len = pub_nonce.clone().len();
let pub_nonce: Vec<_> = pub_nonce.drain(0..len).collect();
PartialTx {
phase: PartialTxPhase::SenderInitiation,
id: context.transaction_id,
amount: receive_amount,
lock_height: lock_height,
public_blind_excess: util::to_hex(pub_excess),
public_nonce: util::to_hex(pub_nonce),
kernel_offset: kernel_offset.to_hex(),
part_sig: match part_sig {
None => String::from("00"),
Some(p) => util::to_hex(p.serialize_der(&keychain.secp())),
},
tx: util::to_hex(ser::ser_vec(&tx).unwrap()),
}
}
/// Reads a partial transaction into the amount, sum of blinding
/// factors and the transaction itself.
pub fn read_partial_tx(
keychain: &keychain::Keychain,
partial_tx: &PartialTx,
) -> Result<
(
u64,
u64,
PublicKey,
PublicKey,
BlindingFactor,
Option<Signature>,
Transaction,
),
Error,
> {
let blind_bin = util::from_hex(partial_tx.public_blind_excess.clone())
.context(ErrorKind::GenericError("Could not decode HEX"))?;
let blinding = PublicKey::from_slice(keychain.secp(), &blind_bin[..])
.context(ErrorKind::GenericError("Could not construct public key"))?;
let nonce_bin = util::from_hex(partial_tx.public_nonce.clone())
.context(ErrorKind::GenericError("Could not decode HEX"))?;
let nonce = PublicKey::from_slice(keychain.secp(), &nonce_bin[..])
.context(ErrorKind::GenericError("Could not construct public key"))?;
let kernel_offset = BlindingFactor::from_hex(&partial_tx.kernel_offset.clone())
.context(ErrorKind::GenericError("Could not decode HEX"))?;
let sig_bin = util::from_hex(partial_tx.part_sig.clone())
.context(ErrorKind::GenericError("Could not decode HEX"))?;
let sig = match sig_bin.len() {
1 => None,
_ => Some(Signature::from_der(keychain.secp(), &sig_bin[..])
.context(ErrorKind::GenericError("Could not create signature"))?),
};
let tx_bin = util::from_hex(partial_tx.tx.clone())
.context(ErrorKind::GenericError("Could not decode HEX"))?;
let tx = ser::deserialize(&mut &tx_bin[..]).context(ErrorKind::GenericError(
"Could not deserialize transaction, invalid format.",
))?;
Ok((
partial_tx.amount,
partial_tx.lock_height,
blinding,
nonce,
kernel_offset,
sig,
tx,
))
}
/// Amount in request to build a coinbase output.
#[derive(Serialize, Deserialize, Debug, Clone)]
pub enum WalletReceiveRequest {

View file

@ -13,8 +13,8 @@
// limitations under the License.
//! Common functions to facilitate wallet, walletlib and transaction testing
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::collections::hash_map::Entry;
extern crate grin_api as api;
extern crate grin_chain as chain;
@ -24,18 +24,18 @@ extern crate grin_wallet as wallet;
extern crate time;
use chain::Chain;
use core::core::{Output, OutputFeatures, OutputIdentifier, Transaction, TxKernel};
use core::core::hash::Hashed;
use core::core::{Output, OutputFeatures, OutputIdentifier, Transaction, TxKernel};
use core::{consensus, global, pow};
use keychain::Keychain;
use wallet::types::{BlockIdentifier, Error, ErrorKind, MerkleProofWrapper, OutputStatus,
WalletConfig, WalletData};
use wallet::{checker, BlockFees};
use keychain::Keychain;
use util::secp::pedersen;
/// Mostly for testing, refreshes output state against a local chain instance instead of
/// via an http API call
/// Mostly for testing, refreshes output state against a local chain instance
/// instead of via an http API call
pub fn refresh_output_state_local(
config: &WalletConfig,
keychain: &Keychain,
@ -58,8 +58,9 @@ pub fn refresh_output_state_local(
}
/// Return the spendable wallet balance from the local chain
/// (0:total, 1:amount_awaiting_confirmation, 2:confirmed but locked, 3:currently_spendable,
/// 4:locked total) TODO: Should be a wallet lib function with nicer return values
/// (0:total, 1:amount_awaiting_confirmation, 2:confirmed but locked,
/// 3:currently_spendable, 4:locked total) TODO: Should be a wallet lib
/// function with nicer return values
pub fn get_wallet_balances(
config: &WalletConfig,
keychain: &Keychain,
@ -135,8 +136,8 @@ pub fn add_block_with_reward(chain: &Chain, txs: Vec<&Transaction>, reward: (Out
chain.validate(false).unwrap();
}
/// adds a reward output to a wallet, includes that reward in a block, mines the block
/// and adds it to the chain, with option transactions included.
/// adds a reward output to a wallet, includes that reward in a block, mines
/// the block and adds it to the chain, with option transactions included.
/// Helpful for building up precise wallet balances for testing.
pub fn award_block_to_wallet(
chain: &Chain,

View file

@ -20,11 +20,11 @@ extern crate grin_wallet as wallet;
extern crate rand;
extern crate uuid;
use uuid::Uuid;
use util::{kernel_sig_msg, secp};
use util::secp::key::SecretKey;
use util::secp::pedersen::ProofMessage;
use keychain::{BlindSum, BlindingFactor, Keychain};
use util::secp::key::{PublicKey, SecretKey};
use util::secp::pedersen::ProofMessage;
use util::{kernel_sig_msg, secp};
use uuid::Uuid;
use wallet::libwallet::{aggsig, proof};
use rand::thread_rng;
@ -151,12 +151,16 @@ fn aggsig_sender_receiver_interaction() {
let our_sig_part = cx.calculate_partial_sig(&keychain.secp(), &sender_pub_nonce, 0, 0)
.unwrap();
let combined_nonces = PublicKey::from_combination(
keychain.secp(),
vec![&sender_pub_nonce, &cx.get_public_keys(keychain.secp()).1],
).unwrap();
// Receiver now generates final signature from the two parts
let final_sig = cx.calculate_final_sig(
&keychain.secp(),
&sender_sig_part,
&our_sig_part,
&sender_pub_nonce,
vec![&sender_sig_part, &our_sig_part],
&combined_nonces,
).unwrap();
// Receiver calculates the final public key (to verify sig later)
@ -322,12 +326,16 @@ fn aggsig_sender_receiver_interaction_offset() {
let our_sig_part = cx.calculate_partial_sig(&keychain.secp(), &sender_pub_nonce, 0, 0)
.unwrap();
let combined_nonces = PublicKey::from_combination(
keychain.secp(),
vec![&sender_pub_nonce, &cx.get_public_keys(keychain.secp()).1],
).unwrap();
// Receiver now generates final signature from the two parts
let final_sig = cx.calculate_final_sig(
&keychain.secp(),
&sender_sig_part,
&our_sig_part,
&sender_pub_nonce,
vec![&sender_sig_part, &our_sig_part],
&combined_nonces,
).unwrap();
// Receiver calculates the final public key (to verify sig later)

View file

@ -20,6 +20,7 @@ extern crate grin_wallet as wallet;
extern crate rand;
#[macro_use]
extern crate slog;
extern crate serde;
extern crate time;
extern crate uuid;
@ -28,16 +29,13 @@ mod common;
use std::fs;
use std::sync::Arc;
use uuid::Uuid;
use chain::Chain;
use chain::types::*;
use core::{global, pow};
use core::global::ChainTypes;
use wallet::libwallet::{aggsig, transaction};
use wallet::grinwallet::{keys, selection};
use wallet::types::{OutputData, OutputStatus, WalletData};
use core::{global, pow};
use util::LOGGER;
use wallet::grinwallet::selection;
use wallet::libwallet::aggsig;
fn clean_output_dir(test_dir: &str) {
let _ = fs::remove_dir_all(test_dir);
@ -57,32 +55,42 @@ fn setup(test_dir: &str, chain_dir: &str) -> Chain {
).unwrap()
}
/// Build a transaction between 2 parties
#[cfg(test)]
/// Build and test new version of sending API
#[test]
fn build_transaction() {
let chain = setup("test_output", "build_transaction/.grin");
let wallet1 = common::create_wallet("test_output/build_transaction/wallet1");
let wallet2 = common::create_wallet("test_output/build_transaction/wallet2");
fn build_transaction_2() {
let chain = setup("test_output", "build_transaction_2/.grin");
let wallet1 = common::create_wallet("test_output/build_transaction_2/wallet1");
let wallet2 = common::create_wallet("test_output/build_transaction_2/wallet2");
common::award_blocks_to_wallet(&chain, &wallet1, 10);
// Wallet 1 has 600 Grins, wallet 2 has 0. Create a transaction that sends
// 300 Grins from wallet 1 to wallet 2, using libwallet
// Sender creates a new aggsig context
// SENDER (create sender initiation)
let mut sender_context_manager = aggsig::ContextManager::new();
let tx_id = Uuid::new_v4();
// Get lock height
let chain_tip = chain.head().unwrap();
let amount = 300_000_000_000;
// ensure outputs we're selecting are up to date
let res = common::refresh_output_state_local(&wallet1.0, &wallet1.1, &chain);
let amount = 300_000_000_000;
// Select our outputs
let tx_data = selection::build_send_tx(
if let Err(e) = res {
panic!("Unable to refresh sender wallet outputs: {}", e);
}
// TRANSACTION WORKFLOW STARTS HERE
// Sender creates a new aggsig context
let mut sender_context_manager = aggsig::ContextManager::new();
// Sender selects outputs into a new slate and save our corresponding IDs in
// their transaction context. The secret key in our transaction context will be
// randomly selected. This returns the public slate, and a closure that locks
// our inputs and outputs once we're convinced the transaction exchange went
// according to plan
// This function is just a big helper to do all of that, in theory
// this process can be split up in any way
let (mut slate, sender_lock_fn) = selection::build_send_tx_slate(
&wallet1.0,
&wallet1.1,
&mut sender_context_manager,
2,
amount,
chain_tip.height,
3,
@ -91,135 +99,74 @@ fn build_transaction() {
true,
).unwrap();
if let Err(e) = res {
panic!("Unable to refresh sender wallet outputs: {}", e);
}
// Generate a kernel offset and subtract from our context's secret key. Store
// the offset in the slate's transaction kernel, and adds our public key
// information to the slate
let _ = slate
.fill_round_1(&wallet1.1, &mut sender_context_manager, 0)
.unwrap();
let partial_tx = transaction::sender_initiation(
&wallet1.1,
&tx_id,
&mut sender_context_manager,
chain_tip.height,
tx_data,
).unwrap();
let sender_context = sender_context_manager.get_context(&tx_id);
// TODO: Might make more sense to do this before the transaction
// building call
// Closure to acquire wallet lock and lock the coins being spent
// so we avoid accidental double spend attempt.
let update_sender_wallet = || {
WalletData::with_wallet(&wallet1.0.data_file_dir, |wallet_data| {
for id in sender_context.get_outputs().clone() {
let coin = wallet_data.get_output(&id).unwrap().clone();
wallet_data.lock_output(&coin);
}
})
};
debug!(LOGGER, "PartialTx after step 1: sender initiation");
debug!(LOGGER, "Transaction Slate after step 1: sender initiation");
debug!(LOGGER, "-----------------------------------------");
debug!(LOGGER, "{:?}", partial_tx);
debug!(LOGGER, "{:?}", slate);
// RECIPIENT (Handle sender initiation)
let mut recipient_context_manager = aggsig::ContextManager::new();
// Create a potential output for this transaction
let (key_id, derivation) = WalletData::with_wallet(&wallet2.0.data_file_dir, |wallet_data| {
keys::next_available_key(&wallet_data, &wallet2.1)
}).unwrap();
let partial_tx = transaction::recipient_initiation(
// Now, just like the sender did, recipient is going to select a target output,
// add it to the transaction, and keep track of the corresponding wallet
// Identifier Again, this is a helper to do that, which returns a closure that
// creates the output when we're satisified the process was successful
let (_, receiver_create_fn) = selection::build_recipient_output_with_slate(
&wallet2.0,
&wallet2.1,
&mut recipient_context_manager,
&partial_tx,
&key_id,
&mut slate,
).unwrap();
let mut context = recipient_context_manager.get_context(&partial_tx.id);
// Add the output to recipient's wallet
let _ = WalletData::with_wallet(&wallet2.0.data_file_dir, |wallet_data| {
wallet_data.add_output(OutputData {
root_key_id: wallet2.1.root_key_id(),
key_id: key_id.clone(),
n_child: derivation,
value: partial_tx.amount - context.fee,
status: OutputStatus::Unconfirmed,
height: 0,
lock_height: 0,
is_coinbase: false,
block: None,
merkle_proof: None,
});
}).unwrap();
context.add_output(&key_id);
recipient_context_manager.save_context(context);
let _ = slate
.fill_round_1(&wallet2.1, &mut recipient_context_manager, 1)
.unwrap();
debug!(LOGGER, "PartialTx after step 2: recipient initiation");
debug!(LOGGER, "--------------------------------------------");
debug!(LOGGER, "{:?}", partial_tx);
// recipient can proceed to round 2 now
let _ = receiver_create_fn();
// TODO: We want to allow the sender to be able to calculate this, but also need
// the recipient's output information available, and the recipient needs to know
// whether to finalize the output in their wallet
let _tx_with_recipients_pubkeys = partial_tx.clone();
let _ = slate
.fill_round_2(&wallet2.1, &mut recipient_context_manager, 1)
.unwrap();
debug!(
LOGGER,
"Transaction Slate after step 2: receiver initiation"
);
debug!(LOGGER, "-----------------------------------------");
debug!(LOGGER, "{:?}", slate);
// SENDER Part 3: Sender confirmation
let partial_tx =
transaction::sender_confirmation(&wallet1.1, &mut sender_context_manager, partial_tx)
.unwrap();
let _ = slate
.fill_round_2(&wallet1.1, &mut sender_context_manager, 0)
.unwrap();
debug!(LOGGER, "PartialTx after step 3: sender confirmation");
debug!(LOGGER, "--------------------------------------------");
debug!(LOGGER, "{:?}", partial_tx);
debug!(LOGGER, "{:?}", slate);
// RECIPIENT Part 4: Recipient confirmation
// Get output we created in earlier step
let context = recipient_context_manager.get_context(&partial_tx.id);
let output_vec = context.get_outputs();
let root_key_id = &wallet2.1.root_key_id();
// Final transaction can be built by anyone at this stage
let res = slate.finalize(&wallet1.1);
// operate within a lock on wallet data
let (key_id, derivation) = WalletData::with_wallet(&wallet2.0.data_file_dir, |wallet_data| {
let (key_id, derivation) = keys::retrieve_existing_key(&wallet_data, output_vec[0].clone());
wallet_data.add_output(OutputData {
root_key_id: root_key_id.clone(),
key_id: key_id.clone(),
n_child: derivation,
value: partial_tx.amount - context.fee,
status: OutputStatus::Unconfirmed,
height: 0,
lock_height: 0,
is_coinbase: false,
block: None,
merkle_proof: None,
});
(key_id, derivation)
}).unwrap();
let final_tx_recipient = transaction::finalize_transaction(
&wallet2.1,
&mut recipient_context_manager,
&partial_tx,
&partial_tx,
&key_id,
derivation,
);
if let Err(e) = final_tx_recipient {
if let Err(e) = res {
panic!("Error creating final tx: {:?}", e);
}
debug!(LOGGER, "Recipient calculates final transaction as:");
debug!(LOGGER, "Final transaction is:");
debug!(LOGGER, "--------------------------------------------");
debug!(LOGGER, "{:?}", final_tx_recipient);
debug!(LOGGER, "{:?}", slate.tx);
let _ = update_sender_wallet();
// All okay, lock sender's outputs
let _ = sender_lock_fn();
// Insert this transaction into a new block, then mine till confirmation
common::award_block_to_wallet(&chain, vec![&final_tx_recipient.unwrap()], &wallet1);
common::award_block_to_wallet(&chain, vec![&slate.tx], &wallet1);
common::award_blocks_to_wallet(&chain, &wallet1, 3);
// Refresh wallets