core: separate Transaction into its own module

This commit is contained in:
Merope Riddle 2016-10-23 13:18:44 +00:00
parent 2ea58d4478
commit 82adc54971
4 changed files with 557 additions and 538 deletions

View file

@ -22,10 +22,10 @@ use std::collections::HashSet;
use core::Committed; use core::Committed;
use core::{Input, Output, Proof, TxProof, Transaction}; use core::{Input, Output, Proof, TxProof, Transaction};
use core::merkle_inputs_outputs; use core::transaction::merkle_inputs_outputs;
use core::{PROOFSIZE, REWARD}; use core::{PROOFSIZE, REWARD};
use core::hash::{Hash, Hashed, ZERO_HASH}; use core::hash::{Hash, Hashed, ZERO_HASH};
use core::ser::MAX_IN_OUT_LEN; use core::transaction::MAX_IN_OUT_LEN;
use ser::{self, Readable, Reader, Writeable, Writer, ser_vec}; use ser::{self, Readable, Reader, Writeable, Writer, ser_vec};
/// Block header, fairly standard compared to other blockchains. /// Block header, fairly standard compared to other blockchains.

View file

@ -16,11 +16,13 @@
pub mod block; pub mod block;
pub mod hash; pub mod hash;
pub mod transaction;
#[allow(dead_code)] #[allow(dead_code)]
#[macro_use] #[macro_use]
mod ser; mod ser;
pub use self::block::{Block, BlockHeader}; pub use self::block::{Block, BlockHeader};
pub use self::transaction::{Transaction, Input, Output, TxProof};
use self::hash::{Hash, Hashed, ZERO_HASH}; use self::hash::{Hash, Hashed, ZERO_HASH};
use ser::{Writeable, Writer, Error, ser_vec}; use ser::{Writeable, Writer, Error, ser_vec};
@ -88,14 +90,6 @@ pub trait Committed {
fn overage(&self) -> i64; fn overage(&self) -> i64;
} }
/// A proof that a transaction did not create (or remove) funds. Includes both
/// the transaction's Pedersen commitment and the signature that guarantees
/// that the commitment amounts to zero.
#[derive(Debug, Clone)]
pub struct TxProof {
remainder: Commitment,
sig: Vec<u8>,
}
/// Proof of work /// Proof of work
#[derive(Copy)] #[derive(Copy)]
@ -158,247 +152,6 @@ impl Proof {
} }
} }
#[derive(Debug)]
pub struct Transaction {
hash_mem: Option<Hash>,
pub fee: u64,
pub zerosig: Vec<u8>,
pub inputs: Vec<Input>,
pub outputs: Vec<Output>,
}
impl Committed for Transaction {
fn inputs_committed(&self) -> &Vec<Input> {
&self.inputs
}
fn outputs_committed(&self) -> &Vec<Output> {
&self.outputs
}
fn overage(&self) -> i64 {
-(self.fee as i64)
}
}
impl Default for Transaction {
fn default() -> Transaction {
Transaction::empty()
}
}
impl Transaction {
/// Creates a new empty transaction (no inputs or outputs, zero fee).
pub fn empty() -> Transaction {
Transaction {
hash_mem: None,
fee: 0,
zerosig: vec![],
inputs: vec![],
outputs: vec![],
}
}
/// Creates a new transaction initialized with the provided inputs,
/// outputs and fee.
pub fn new(inputs: Vec<Input>, outputs: Vec<Output>, fee: u64) -> Transaction {
Transaction {
hash_mem: None,
fee: fee,
zerosig: vec![],
inputs: inputs,
outputs: outputs,
}
}
/// The hash of a transaction is the Merkle tree of its inputs and outputs
/// hashes. None of the rest is required.
fn hash(&mut self) -> Hash {
if let None = self.hash_mem {
self.hash_mem = Some(merkle_inputs_outputs(&self.inputs, &self.outputs));
}
self.hash_mem.unwrap()
}
/// Takes a transaction and fully blinds it. Following the MW
/// algorithm: calculates the commitments for each inputs and outputs
/// using the values and blinding factors, takes the blinding factors
/// remainder and uses it for an empty signature.
pub fn blind(&self, secp: &Secp256k1) -> Result<Transaction, secp::Error> {
// we compute the sum of blinding factors to get the k remainder
let remainder = try!(self.blind_sum(secp));
// next, blind the inputs and outputs if they haven't been yet
let blind_inputs = map_vec!(self.inputs, |inp| inp.blind(secp));
let blind_outputs = map_vec!(self.outputs, |out| out.blind(secp));
// and sign with the remainder so the signature can be checked to match with
// the k.G commitment leftover, that should also be the pubkey
let msg = try!(Message::from_slice(&[0; 32]));
let sig = try!(secp.sign(&msg, &remainder));
Ok(Transaction {
hash_mem: None,
fee: self.fee,
zerosig: sig.serialize_der(secp),
inputs: blind_inputs,
outputs: blind_outputs,
})
}
/// Compute the sum of blinding factors on all overt inputs and outputs
/// of the transaction to get the k remainder.
pub fn blind_sum(&self, secp: &Secp256k1) -> Result<SecretKey, secp::Error> {
let inputs_blinding_fact = filter_map_vec!(self.inputs, |inp| inp.blinding_factor());
let outputs_blinding_fact = filter_map_vec!(self.outputs, |out| out.blinding_factor());
secp.blind_sum(inputs_blinding_fact, outputs_blinding_fact)
}
/// The verification for a MimbleWimble transaction involves getting the
/// remainder of summing all commitments and using it as a public key
/// to verify the embedded signature. The rational is that if the values
/// sum to zero as they should in r.G + v.H then only k.G the remainder
/// of the sum of r.G should be left. And r.G is the definition of a
/// public key generated using r as a private key.
pub fn verify_sig(&self, secp: &Secp256k1) -> Result<TxProof, secp::Error> {
let rsum = try!(self.sum_commitments(secp));
// pretend the sum is a public key (which it is, being of the form r.G) and
// verify the transaction sig with it
let pubk = try!(rsum.to_pubkey(secp));
let msg = try!(Message::from_slice(&[0; 32]));
let sig = try!(Signature::from_der(secp, &self.zerosig));
try!(secp.verify(&msg, &sig, &pubk));
Ok(TxProof {
remainder: rsum,
sig: self.zerosig.clone(),
})
}
}
/// A transaction input, mostly a reference to an output being spent by the
/// transaction.
#[derive(Debug, Copy, Clone)]
pub enum Input {
BareInput { output: Hash },
BlindInput { output: Hash, commit: Commitment },
OvertInput {
output: Hash,
value: u64,
blindkey: SecretKey,
},
}
impl Input {
pub fn commitment(&self) -> Option<Commitment> {
match self {
&Input::BlindInput { commit, .. } => Some(commit),
_ => None,
}
}
pub fn blind(&self, secp: &Secp256k1) -> Input {
match self {
&Input::OvertInput { output, value, blindkey } => {
let commit = secp.commit(value, blindkey).unwrap();
Input::BlindInput {
output: output,
commit: commit,
}
}
_ => *self,
}
}
pub fn blinding_factor(&self) -> Option<SecretKey> {
match self {
&Input::OvertInput { blindkey, .. } => Some(blindkey),
_ => None,
}
}
pub fn output_hash(&self) -> Hash {
match self {
&Input::BlindInput { output, .. } => output,
&Input::OvertInput { output, .. } => output,
&Input::BareInput { output, .. } => output,
}
}
}
/// The hash of an input is the hash of the output hash it references.
impl Hashed for Input {
fn bytes(&self) -> Vec<u8> {
self.output_hash().to_vec()
}
}
#[derive(Debug, Copy, Clone)]
pub enum Output {
BlindOutput {
commit: Commitment,
proof: RangeProof,
},
OvertOutput { value: u64, blindkey: SecretKey },
}
impl Output {
pub fn commitment(&self) -> Option<Commitment> {
match self {
&Output::BlindOutput { commit, .. } => Some(commit),
_ => None,
}
}
pub fn proof(&self) -> Option<RangeProof> {
match self {
&Output::BlindOutput { proof, .. } => Some(proof),
_ => None,
}
}
pub fn blinding_factor(&self) -> Option<SecretKey> {
match self {
&Output::OvertOutput { blindkey, .. } => Some(blindkey),
_ => None,
}
}
pub fn blind(&self, secp: &Secp256k1) -> Output {
match self {
&Output::OvertOutput { value, blindkey } => {
let commit = secp.commit(value, blindkey).unwrap();
let rproof = secp.range_proof(0, value, blindkey, commit);
Output::BlindOutput {
commit: commit,
proof: rproof,
}
}
_ => *self,
}
}
/// Validates the range proof using the commitment
pub fn verify_proof(&self, secp: &Secp256k1) -> Result<(), secp::Error> {
match self {
&Output::BlindOutput { commit, proof } => {
secp.verify_range_proof(commit, proof).map(|_| ())
}
_ => Ok(()),
}
}
}
/// The hash of an output is the hash of its commitment.
impl Hashed for Output {
fn bytes(&self) -> Vec<u8> {
if let &Output::BlindOutput { commit, .. } = self {
return commit.bytes().to_vec();
} else {
panic!("cannot hash an overt output");
}
}
}
/// Utility function to calculate the Merkle root of vectors of inputs and
/// outputs.
pub fn merkle_inputs_outputs(inputs: &Vec<Input>, outputs: &Vec<Output>) -> Hash {
let mut all_hs = map_vec!(inputs, |inp| inp.hash());
all_hs.append(&mut map_vec!(outputs, |out| out.hash()));
MerkleRow::new(all_hs).root()
}
/// Two hashes that will get hashed together in a Merkle tree to build the next /// Two hashes that will get hashed together in a Merkle tree to build the next
/// level up. /// level up.
struct HPair(Hash, Hash); struct HPair(Hash, Hash);
@ -455,97 +208,6 @@ mod test {
secp::Secp256k1::with_caps(secp::ContextFlag::Commit) secp::Secp256k1::with_caps(secp::ContextFlag::Commit)
} }
#[test]
fn blind_overt_output() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let oo = Output::OvertOutput {
value: 42,
blindkey: SecretKey::new(secp, &mut rng),
};
if let Output::BlindOutput { commit, proof } = oo.blind(secp) {
// checks the blind output is sane and verifies
assert!(commit.len() > 0);
assert!(proof.bytes().len() > 5000);
secp.verify_range_proof(commit, proof).unwrap();
// checks that changing the value changes the proof and commitment
let oo2 = Output::OvertOutput {
value: 32,
blindkey: SecretKey::new(secp, &mut rng),
};
if let Output::BlindOutput { commit: c2, proof: p2 } = oo2.blind(secp) {
assert!(c2 != commit);
assert!(p2.bytes() != proof.bytes());
secp.verify_range_proof(c2, p2).unwrap();
// checks that swapping the proofs fails the validation
if let Ok(_) = secp.verify_range_proof(commit, p2) {
panic!("verification successful on wrong proof");
}
} else {
panic!("not a blind output");
}
} else {
panic!("not a blind output");
}
}
#[test]
fn hash_output() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let oo = Output::OvertOutput {
value: 42,
blindkey: SecretKey::new(secp, &mut rng),
}
.blind(secp);
let oo2 = Output::OvertOutput {
value: 32,
blindkey: SecretKey::new(secp, &mut rng),
}
.blind(secp);
let h = oo.hash();
assert!(h != ZERO_HASH);
let h2 = oo2.hash();
assert!(h != h2);
}
#[test]
fn blind_tx() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let tx = tx2i1o(secp, &mut rng);
let btx = tx.blind(&secp).unwrap();
btx.verify_sig(&secp).unwrap(); // unwrap will panic if invalid
// checks that the range proof on our blind output is sufficiently hiding
if let Output::BlindOutput { proof, .. } = btx.outputs[0] {
let info = secp.range_proof_info(proof);
assert!(info.min == 0);
assert!(info.max == u64::max_value());
}
}
#[test]
fn tx_hash_diff() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let tx1 = tx2i1o(secp, &mut rng);
let mut btx1 = tx1.blind(&secp).unwrap();
let tx2 = tx1i1o(secp, &mut rng);
let mut btx2 = tx2.blind(&secp).unwrap();
if btx1.hash() == btx2.hash() {
panic!("diff txs have same hash")
}
}
#[test] #[test]
#[should_panic(expected = "InvalidSecretKey")] #[should_panic(expected = "InvalidSecretKey")]
fn zero_commit() { fn zero_commit() {

View file

@ -26,8 +26,6 @@ use secp::Signature;
use secp::key::SecretKey; use secp::key::SecretKey;
use secp::pedersen::{Commitment, RangeProof}; use secp::pedersen::{Commitment, RangeProof};
pub const MAX_IN_OUT_LEN: u64 = 50000;
macro_rules! impl_slice_bytes { macro_rules! impl_slice_bytes {
($byteable: ty) => { ($byteable: ty) => {
impl AsFixedBytes for $byteable { impl AsFixedBytes for $byteable {
@ -55,197 +53,3 @@ impl AsFixedBytes for RangeProof {
} }
} }
/// Implementation of Writeable for a transaction Input, defines how to write
/// an Input as binary.
impl Writeable for core::Input {
fn write(&self, writer: &mut Writer) -> Option<Error> {
writer.write_fixed_bytes(&self.output_hash())
}
}
/// Implementation of Writeable for a transaction Output, defines how to write
/// an Output as binary.
impl Writeable for core::Output {
fn write(&self, writer: &mut Writer) -> Option<Error> {
try_m!(writer.write_fixed_bytes(&self.commitment().unwrap()));
writer.write_vec(&mut self.proof().unwrap().bytes().to_vec())
}
}
/// Implementation of Writeable for a fully blinded transaction, defines how to
/// write the transaction as binary.
impl Writeable for core::Transaction {
fn write(&self, writer: &mut Writer) -> Option<Error> {
try_m!(writer.write_u64(self.fee));
try_m!(writer.write_vec(&mut self.zerosig.clone()));
try_m!(writer.write_u64(self.inputs.len() as u64));
try_m!(writer.write_u64(self.outputs.len() as u64));
for inp in &self.inputs {
try_m!(inp.write(writer));
}
for out in &self.outputs {
try_m!(out.write(writer));
}
None
}
}
impl Writeable for core::TxProof {
fn write(&self, writer: &mut Writer) -> Option<Error> {
try_m!(writer.write_fixed_bytes(&self.remainder));
writer.write_vec(&mut self.sig.clone())
}
}
/// Implementation of Readable for a transaction Input, defines how to read
/// an Input from a binary stream.
impl Readable<core::Input> for core::Input {
fn read(reader: &mut Reader) -> Result<core::Input, Error> {
reader.read_fixed_bytes(32)
.map(|h| core::Input::BareInput { output: hash::Hash::from_vec(h) })
}
}
/// Implementation of Readable for a transaction Output, defines how to read
/// an Output from a binary stream.
impl Readable<core::Output> for core::Output {
fn read(reader: &mut Reader) -> Result<core::Output, Error> {
let commit = try!(reader.read_fixed_bytes(33));
let proof = try!(reader.read_vec());
Ok(core::Output::BlindOutput {
commit: Commitment::from_vec(commit),
proof: RangeProof::from_vec(proof),
})
}
}
/// Implementation of Readable for a transaction, defines how to read a full
/// transaction from a binary stream.
impl Readable<core::Transaction> for core::Transaction {
fn read(reader: &mut Reader) -> Result<core::Transaction, Error> {
let fee = try!(reader.read_u64());
let zerosig = try!(reader.read_vec());
let input_len = try!(reader.read_u64());
let output_len = try!(reader.read_u64());
// in case a facetious miner sends us more than what we can allocate
if input_len > MAX_IN_OUT_LEN || output_len > MAX_IN_OUT_LEN {
return Err(Error::TooLargeReadErr("Too many inputs or outputs.".to_string()));
}
let inputs = try!((0..input_len).map(|_| core::Input::read(reader)).collect());
let outputs = try!((0..output_len).map(|_| core::Output::read(reader)).collect());
Ok(core::Transaction {
fee: fee,
zerosig: zerosig,
inputs: inputs,
outputs: outputs,
..Default::default()
})
}
}
impl Readable<core::TxProof> for core::TxProof {
fn read(reader: &mut Reader) -> Result<core::TxProof, Error> {
let remainder = try!(reader.read_fixed_bytes(33));
let sig = try!(reader.read_vec());
Ok(core::TxProof {
remainder: Commitment::from_vec(remainder),
sig: sig,
})
}
}
#[cfg(test)]
mod test {
use ser::{serialize, deserialize};
use secp;
use secp::*;
use secp::key::*;
use core::*;
use core::hash::ZERO_HASH;
use rand::Rng;
use rand::os::OsRng;
fn new_secp() -> Secp256k1 {
secp::Secp256k1::with_caps(secp::ContextFlag::Commit)
}
#[test]
fn simple_tx_ser() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
if let Some(e) = serialize(&mut vec, &btx) {
panic!(e);
}
assert!(vec.len() > 5320);
assert!(vec.len() < 5340);
}
#[test]
fn simple_tx_ser_deser() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let mut btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
if let Some(e) = serialize(&mut vec, &btx) {
panic!(e);
}
// let mut dtx = Transaction::read(&mut BinReader { source: &mut &vec[..]
// }).unwrap();
let mut dtx: Transaction = deserialize(&mut &vec[..]).unwrap();
assert_eq!(dtx.fee, 1);
assert_eq!(dtx.inputs.len(), 2);
assert_eq!(dtx.outputs.len(), 1);
assert_eq!(btx.hash(), dtx.hash());
}
#[test]
fn tx_double_ser_deser() {
// checks serializing doesn't mess up the tx and produces consistent results
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let mut btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
assert!(serialize(&mut vec, &btx).is_none());
let mut dtx: Transaction = deserialize(&mut &vec[..]).unwrap();
let mut vec2 = Vec::new();
assert!(serialize(&mut vec2, &btx).is_none());
let mut dtx2: Transaction = deserialize(&mut &vec2[..]).unwrap();
assert_eq!(btx.hash(), dtx.hash());
assert_eq!(dtx.hash(), dtx2.hash());
}
// utility producing a transaction with 2 inputs and a single outputs
fn tx2i1o<R: Rng>(secp: &Secp256k1, rng: &mut R) -> Transaction {
let outh = ZERO_HASH;
Transaction::new(vec![Input::OvertInput {
output: outh,
value: 10,
blindkey: SecretKey::new(secp, rng),
},
Input::OvertInput {
output: outh,
value: 11,
blindkey: SecretKey::new(secp, rng),
}],
vec![Output::OvertOutput {
value: 20,
blindkey: SecretKey::new(secp, rng),
}],
1)
}
}

View file

@ -0,0 +1,553 @@
// Copyright 2016 The Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Transactions
use core::Committed;
use core::MerkleRow;
use core::hash::{Hashed, Hash};
use ser::{self, Reader, Writer, Readable, Writeable};
use secp::{self, Secp256k1, Message, Signature};
use secp::key::SecretKey;
use secp::pedersen::{RangeProof, Commitment};
/// The maximum number of inputs or outputs a transaction may have
/// and be deserializable.
pub const MAX_IN_OUT_LEN: u64 = 50000;
/// A proof that a transaction did not create (or remove) funds. Includes both
/// the transaction's Pedersen commitment and the signature that guarantees
/// that the commitment amounts to zero.
#[derive(Debug, Clone)]
pub struct TxProof {
/// temporarily public
pub remainder: Commitment,
/// temporarily public
pub sig: Vec<u8>,
}
impl Writeable for TxProof {
fn write(&self, writer: &mut Writer) -> Option<ser::Error> {
try_m!(writer.write_fixed_bytes(&self.remainder));
writer.write_vec(&mut self.sig.clone())
}
}
impl Readable<TxProof> for TxProof {
fn read(reader: &mut Reader) -> Result<TxProof, ser::Error> {
let remainder = try!(reader.read_fixed_bytes(33));
let sig = try!(reader.read_vec());
Ok(TxProof {
remainder: Commitment::from_vec(remainder),
sig: sig,
})
}
}
/// A transaction
#[derive(Debug)]
pub struct Transaction {
hash_mem: Option<Hash>,
pub fee: u64,
pub zerosig: Vec<u8>,
pub inputs: Vec<Input>,
pub outputs: Vec<Output>,
}
/// Implementation of Writeable for a fully blinded transaction, defines how to
/// write the transaction as binary.
impl Writeable for Transaction {
fn write(&self, writer: &mut Writer) -> Option<ser::Error> {
try_m!(writer.write_u64(self.fee));
try_m!(writer.write_vec(&mut self.zerosig.clone()));
try_m!(writer.write_u64(self.inputs.len() as u64));
try_m!(writer.write_u64(self.outputs.len() as u64));
for inp in &self.inputs {
try_m!(inp.write(writer));
}
for out in &self.outputs {
try_m!(out.write(writer));
}
None
}
}
/// Implementation of Readable for a transaction, defines how to read a full
/// transaction from a binary stream.
impl Readable<Transaction> for Transaction {
fn read(reader: &mut Reader) -> Result<Transaction, ser::Error> {
let fee = try!(reader.read_u64());
let zerosig = try!(reader.read_vec());
let input_len = try!(reader.read_u64());
let output_len = try!(reader.read_u64());
// in case a facetious miner sends us more than what we can allocate
if input_len > MAX_IN_OUT_LEN || output_len > MAX_IN_OUT_LEN {
return Err(ser::Error::TooLargeReadErr("Too many inputs or outputs.".to_string()));
}
let inputs = try!((0..input_len).map(|_| Input::read(reader)).collect());
let outputs = try!((0..output_len).map(|_| Output::read(reader)).collect());
Ok(Transaction {
fee: fee,
zerosig: zerosig,
inputs: inputs,
outputs: outputs,
..Default::default()
})
}
}
impl Committed for Transaction {
fn inputs_committed(&self) -> &Vec<Input> {
&self.inputs
}
fn outputs_committed(&self) -> &Vec<Output> {
&self.outputs
}
fn overage(&self) -> i64 {
-(self.fee as i64)
}
}
impl Default for Transaction {
fn default() -> Transaction {
Transaction::empty()
}
}
impl Transaction {
/// Creates a new empty transaction (no inputs or outputs, zero fee).
pub fn empty() -> Transaction {
Transaction {
hash_mem: None,
fee: 0,
zerosig: vec![],
inputs: vec![],
outputs: vec![],
}
}
/// Creates a new transaction initialized with the provided inputs,
/// outputs and fee.
pub fn new(inputs: Vec<Input>, outputs: Vec<Output>, fee: u64) -> Transaction {
Transaction {
hash_mem: None,
fee: fee,
zerosig: vec![],
inputs: inputs,
outputs: outputs,
}
}
/// The hash of a transaction is the Merkle tree of its inputs and outputs
/// hashes. None of the rest is required.
fn hash(&mut self) -> Hash {
if let None = self.hash_mem {
self.hash_mem = Some(merkle_inputs_outputs(&self.inputs, &self.outputs));
}
self.hash_mem.unwrap()
}
/// Takes a transaction and fully blinds it. Following the MW
/// algorithm: calculates the commitments for each inputs and outputs
/// using the values and blinding factors, takes the blinding factors
/// remainder and uses it for an empty signature.
pub fn blind(&self, secp: &Secp256k1) -> Result<Transaction, secp::Error> {
// we compute the sum of blinding factors to get the k remainder
let remainder = try!(self.blind_sum(secp));
// next, blind the inputs and outputs if they haven't been yet
let blind_inputs = map_vec!(self.inputs, |inp| inp.blind(secp));
let blind_outputs = map_vec!(self.outputs, |out| out.blind(secp));
// and sign with the remainder so the signature can be checked to match with
// the k.G commitment leftover, that should also be the pubkey
let msg = try!(Message::from_slice(&[0; 32]));
let sig = try!(secp.sign(&msg, &remainder));
Ok(Transaction {
hash_mem: None,
fee: self.fee,
zerosig: sig.serialize_der(secp),
inputs: blind_inputs,
outputs: blind_outputs,
})
}
/// Compute the sum of blinding factors on all overt inputs and outputs
/// of the transaction to get the k remainder.
pub fn blind_sum(&self, secp: &Secp256k1) -> Result<SecretKey, secp::Error> {
let inputs_blinding_fact = filter_map_vec!(self.inputs, |inp| inp.blinding_factor());
let outputs_blinding_fact = filter_map_vec!(self.outputs, |out| out.blinding_factor());
secp.blind_sum(inputs_blinding_fact, outputs_blinding_fact)
}
/// The verification for a MimbleWimble transaction involves getting the
/// remainder of summing all commitments and using it as a public key
/// to verify the embedded signature. The rational is that if the values
/// sum to zero as they should in r.G + v.H then only k.G the remainder
/// of the sum of r.G should be left. And r.G is the definition of a
/// public key generated using r as a private key.
pub fn verify_sig(&self, secp: &Secp256k1) -> Result<TxProof, secp::Error> {
let rsum = try!(self.sum_commitments(secp));
// pretend the sum is a public key (which it is, being of the form r.G) and
// verify the transaction sig with it
let pubk = try!(rsum.to_pubkey(secp));
let msg = try!(Message::from_slice(&[0; 32]));
let sig = try!(Signature::from_der(secp, &self.zerosig));
try!(secp.verify(&msg, &sig, &pubk));
Ok(TxProof {
remainder: rsum,
sig: self.zerosig.clone(),
})
}
}
/// A transaction input, mostly a reference to an output being spent by the
/// transaction.
#[derive(Debug, Copy, Clone)]
pub enum Input {
BareInput { output: Hash },
BlindInput { output: Hash, commit: Commitment },
OvertInput {
output: Hash,
value: u64,
blindkey: SecretKey,
},
}
/// Implementation of Writeable for a transaction Input, defines how to write
/// an Input as binary.
impl Writeable for Input {
fn write(&self, writer: &mut Writer) -> Option<ser::Error> {
writer.write_fixed_bytes(&self.output_hash())
}
}
/// Implementation of Readable for a transaction Input, defines how to read
/// an Input from a binary stream.
impl Readable<Input> for Input {
fn read(reader: &mut Reader) -> Result<Input, ser::Error> {
reader.read_fixed_bytes(32)
.map(|h| Input::BareInput { output: Hash::from_vec(h) })
}
}
impl Input {
pub fn commitment(&self) -> Option<Commitment> {
match self {
&Input::BlindInput { commit, .. } => Some(commit),
_ => None,
}
}
pub fn blind(&self, secp: &Secp256k1) -> Input {
match self {
&Input::OvertInput { output, value, blindkey } => {
let commit = secp.commit(value, blindkey).unwrap();
Input::BlindInput {
output: output,
commit: commit,
}
}
_ => *self,
}
}
pub fn blinding_factor(&self) -> Option<SecretKey> {
match self {
&Input::OvertInput { blindkey, .. } => Some(blindkey),
_ => None,
}
}
pub fn output_hash(&self) -> Hash {
match self {
&Input::BlindInput { output, .. } => output,
&Input::OvertInput { output, .. } => output,
&Input::BareInput { output, .. } => output,
}
}
}
/// The hash of an input is the hash of the output hash it references.
impl Hashed for Input {
fn bytes(&self) -> Vec<u8> {
self.output_hash().to_vec()
}
}
#[derive(Debug, Copy, Clone)]
pub enum Output {
BlindOutput {
commit: Commitment,
proof: RangeProof,
},
OvertOutput { value: u64, blindkey: SecretKey },
}
/// Implementation of Writeable for a transaction Output, defines how to write
/// an Output as binary.
impl Writeable for Output {
fn write(&self, writer: &mut Writer) -> Option<ser::Error> {
try_m!(writer.write_fixed_bytes(&self.commitment().unwrap()));
writer.write_vec(&mut self.proof().unwrap().bytes().to_vec())
}
}
/// Implementation of Readable for a transaction Output, defines how to read
/// an Output from a binary stream.
impl Readable<Output> for Output {
fn read(reader: &mut Reader) -> Result<Output, ser::Error> {
let commit = try!(reader.read_fixed_bytes(33));
let proof = try!(reader.read_vec());
Ok(Output::BlindOutput {
commit: Commitment::from_vec(commit),
proof: RangeProof::from_vec(proof),
})
}
}
impl Output {
pub fn commitment(&self) -> Option<Commitment> {
match self {
&Output::BlindOutput { commit, .. } => Some(commit),
_ => None,
}
}
pub fn proof(&self) -> Option<RangeProof> {
match self {
&Output::BlindOutput { proof, .. } => Some(proof),
_ => None,
}
}
pub fn blinding_factor(&self) -> Option<SecretKey> {
match self {
&Output::OvertOutput { blindkey, .. } => Some(blindkey),
_ => None,
}
}
pub fn blind(&self, secp: &Secp256k1) -> Output {
match self {
&Output::OvertOutput { value, blindkey } => {
let commit = secp.commit(value, blindkey).unwrap();
let rproof = secp.range_proof(0, value, blindkey, commit);
Output::BlindOutput {
commit: commit,
proof: rproof,
}
}
_ => *self,
}
}
/// Validates the range proof using the commitment
pub fn verify_proof(&self, secp: &Secp256k1) -> Result<(), secp::Error> {
match self {
&Output::BlindOutput { commit, proof } => {
secp.verify_range_proof(commit, proof).map(|_| ())
}
_ => Ok(()),
}
}
}
/// The hash of an output is the hash of its commitment.
impl Hashed for Output {
fn bytes(&self) -> Vec<u8> {
if let &Output::BlindOutput { commit, .. } = self {
return commit.bytes().to_vec();
} else {
panic!("cannot hash an overt output");
}
}
}
/// Utility function to calculate the Merkle root of vectors of inputs and
/// outputs.
pub fn merkle_inputs_outputs(inputs: &Vec<Input>, outputs: &Vec<Output>) -> Hash {
let mut all_hs = map_vec!(inputs, |inp| inp.hash());
all_hs.append(&mut map_vec!(outputs, |out| out.hash()));
MerkleRow::new(all_hs).root()
}
#[cfg(test)]
mod test {
use super::*;
use core::hash::Hashed;
use core::hash::ZERO_HASH;
use core::test::{tx1i1o, tx2i1o};
use ser::{deserialize, serialize};
use secp::{self, Secp256k1};
use secp::key::SecretKey;
use rand::Rng;
use rand::os::OsRng;
fn new_secp() -> Secp256k1 {
secp::Secp256k1::with_caps(secp::ContextFlag::Commit)
}
#[test]
fn simple_tx_ser() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
if let Some(e) = serialize(&mut vec, &btx) {
panic!(e);
}
assert!(vec.len() > 5320);
assert!(vec.len() < 5340);
}
#[test]
fn simple_tx_ser_deser() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let mut btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
if let Some(e) = serialize(&mut vec, &btx) {
panic!(e);
}
// let mut dtx = Transaction::read(&mut BinReader { source: &mut &vec[..]
// }).unwrap();
let mut dtx: Transaction = deserialize(&mut &vec[..]).unwrap();
assert_eq!(dtx.fee, 1);
assert_eq!(dtx.inputs.len(), 2);
assert_eq!(dtx.outputs.len(), 1);
assert_eq!(btx.hash(), dtx.hash());
}
#[test]
fn tx_double_ser_deser() {
// checks serializing doesn't mess up the tx and produces consistent results
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let mut btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
assert!(serialize(&mut vec, &btx).is_none());
let mut dtx: Transaction = deserialize(&mut &vec[..]).unwrap();
let mut vec2 = Vec::new();
assert!(serialize(&mut vec2, &btx).is_none());
let mut dtx2: Transaction = deserialize(&mut &vec2[..]).unwrap();
assert_eq!(btx.hash(), dtx.hash());
assert_eq!(dtx.hash(), dtx2.hash());
}
#[test]
fn blind_overt_output() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let oo = Output::OvertOutput {
value: 42,
blindkey: SecretKey::new(secp, &mut rng),
};
if let Output::BlindOutput { commit, proof } = oo.blind(secp) {
// checks the blind output is sane and verifies
assert!(commit.len() > 0);
assert!(proof.bytes().len() > 5000);
secp.verify_range_proof(commit, proof).unwrap();
// checks that changing the value changes the proof and commitment
let oo2 = Output::OvertOutput {
value: 32,
blindkey: SecretKey::new(secp, &mut rng),
};
if let Output::BlindOutput { commit: c2, proof: p2 } = oo2.blind(secp) {
assert!(c2 != commit);
assert!(p2.bytes() != proof.bytes());
secp.verify_range_proof(c2, p2).unwrap();
// checks that swapping the proofs fails the validation
if let Ok(_) = secp.verify_range_proof(commit, p2) {
panic!("verification successful on wrong proof");
}
} else {
panic!("not a blind output");
}
} else {
panic!("not a blind output");
}
}
#[test]
fn hash_output() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let oo = Output::OvertOutput {
value: 42,
blindkey: SecretKey::new(secp, &mut rng),
}
.blind(secp);
let oo2 = Output::OvertOutput {
value: 32,
blindkey: SecretKey::new(secp, &mut rng),
}
.blind(secp);
let h = oo.hash();
assert!(h != ZERO_HASH);
let h2 = oo2.hash();
assert!(h != h2);
}
#[test]
fn blind_tx() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let tx = tx2i1o(secp, &mut rng);
let btx = tx.blind(&secp).unwrap();
btx.verify_sig(&secp).unwrap(); // unwrap will panic if invalid
// checks that the range proof on our blind output is sufficiently hiding
if let Output::BlindOutput { proof, .. } = btx.outputs[0] {
let info = secp.range_proof_info(proof);
assert!(info.min == 0);
assert!(info.max == u64::max_value());
}
}
#[test]
fn tx_hash_diff() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let tx1 = tx2i1o(secp, &mut rng);
let mut btx1 = tx1.blind(&secp).unwrap();
let tx2 = tx1i1o(secp, &mut rng);
let mut btx2 = tx2.blind(&secp).unwrap();
if btx1.hash() == btx2.hash() {
panic!("diff txs have same hash")
}
}
}