Replace secp256k1 directory with repository dependency (#126)

* workaround the "commitment is not a public key" problem by using to_two_keys() from rust-secp256k1-zkp
* remove secp256k1zkp, update the various Cargo.toml to use rust-secp256k1-zkp from external git repo, update code to not rely on to_pubkey (and use verify_from_commit)
* secp256k1zkp from git
* cleanup secp256k1 dependencies
* gitignore node1 and node2 dirs
This commit is contained in:
AntiochP 2017-09-20 20:07:40 -04:00 committed by Ignotus Peverell
parent 44c8f9e22d
commit 7c5b7d23e7
131 changed files with 31 additions and 27033 deletions

1
.gitignore vendored
View file

@ -2,6 +2,7 @@
.DS_Store
.grin
.grin2
node*
target
Cargo.lock
**.iml

View file

@ -2,6 +2,7 @@
name = "grin"
version = "0.1.0"
authors = ["Ignotus Peverell <igno.peverell@protonmail.com>"]
exclude = ["**/*.grin", "**/*.grin2"]
[workspace]
members = ["api", "chain", "config", "core", "grin", "p2p", "store", "util", "pool", "wallet"]
@ -13,8 +14,7 @@ grin_grin = { path = "./grin" }
grin_config = { path = "./config" }
grin_core = { path = "./core" }
grin_pow = { path = "./pow"}
secp256k1zkp = { path = "./secp256k1zkp" }
secp256k1zkp = { git = "https://github.com/mimblewimble/rust-secp256k1-zkp" }
blake2-rfc = "~0.2.17"
clap = "^2.23.3"
daemonize = "^0.2.3"
@ -23,3 +23,7 @@ log = "^0.3"
serde = "~1.0.8"
serde_derive = "~1.0.8"
serde_json = "~1.0.2"
# TODO - once "patch" is available we should be able to clean up the workspace dependencies
# [patch.crate-io]
# secp256k1zkp = { git = "https://github.com/mimblewimble/rust-secp256k1-zkp" }

View file

@ -10,8 +10,7 @@ grin_chain = { path = "../chain" }
grin_pool = { path = "../pool" }
grin_store = { path = "../store" }
grin_util = { path = "../util" }
secp256k1zkp = { path = "../secp256k1zkp" }
secp256k1zkp = { git = "https://github.com/mimblewimble/rust-secp256k1-zkp" }
hyper = "~0.10.6"
iron = "~0.5.1"
log = "~0.3"

View file

@ -14,10 +14,9 @@ time = "^0.1"
grin_core = { path = "../core" }
grin_store = { path = "../store" }
secp256k1zkp = { path = "../secp256k1zkp" }
secp256k1zkp = { git = "https://github.com/mimblewimble/rust-secp256k1-zkp" }
[dev-dependencies]
env_logger="^0.3.5"
rand = "^0.3"
grin_pow = { path = "../pow" }

View file

@ -15,5 +15,4 @@ serde = "~1.0.8"
serde_derive = "~1.0.8"
time = "^0.1"
lazy_static = "~0.2.8"
secp256k1zkp = { path = "../secp256k1zkp" }
secp256k1zkp = { git = "https://github.com/mimblewimble/rust-secp256k1-zkp" }

View file

@ -83,11 +83,11 @@ pub trait Committed {
/// Proof of work
pub struct Proof {
/// The nonces
/// The nonces
pub nonces:Vec<u32>,
/// The proof size
pub proof_size: usize,
/// The proof size
pub proof_size: usize,
}
impl fmt::Debug for Proof {

View file

@ -81,9 +81,8 @@ impl TxKernel {
/// message.
pub fn verify(&self, secp: &Secp256k1) -> Result<(), secp::Error> {
let msg = try!(Message::from_slice(&u64_to_32bytes(self.fee)));
let pubk = try!(self.excess.to_pubkey(secp));
let sig = try!(Signature::from_der(secp, &self.excess_sig));
secp.verify(&msg, &sig, &pubk)
secp.verify_from_commit(&msg, &sig, &self.excess)
}
}
@ -211,12 +210,17 @@ impl Transaction {
pub fn verify_sig(&self, secp: &Secp256k1) -> Result<TxKernel, secp::Error> {
let rsum = self.sum_commitments(secp)?;
// pretend the sum is a public key (which it is, being of the form r.G) and
// verify the transaction sig with it
let pubk = rsum.to_pubkey(secp)?;
let msg = Message::from_slice(&u64_to_32bytes(self.fee))?;
let sig = Signature::from_der(secp, &self.excess_sig)?;
secp.verify(&msg, &sig, &pubk)?;
// pretend the sum is a public key (which it is, being of the form r.G) and
// verify the transaction sig with it
//
// we originally converted the commitment to a pubkey here (commitment to zero)
// and then passed the pubkey to secp.verify()
// the secp api no longer allows us to do this so we have wrapped the complexity
// of generating a publick key from a commitment behind verify_from_commit
secp.verify_from_commit(&msg, &sig, &rsum)?;
Ok(TxKernel {
features: DEFAULT_KERNEL,
@ -333,8 +337,8 @@ impl Output {
/// Validates the range proof using the commitment
pub fn verify_proof(&self, secp: &Secp256k1) -> Result<(), secp::Error> {
/// secp.verify returns range if and only if both min_value and max_value less than 2^64
/// since group order is much larger (~2^256) we can be sure overflow is not the case
/// secp.verify_range_proof returns range if and only if both min_value and max_value less than 2^64
/// since group order is much larger (~2^256) we can be sure overflow is not the case
secp.verify_range_proof(self.commit, self.proof).map(|_| ())
}
}

View file

@ -14,7 +14,7 @@ grin_pool = { path = "../pool" }
grin_util = { path = "../util" }
grin_wallet = { path = "../wallet" }
grin_pow = { path = "../pow" }
secp256k1zkp = { path = "../secp256k1zkp" }
secp256k1zkp = { git = "https://github.com/mimblewimble/rust-secp256k1-zkp" }
env_logger="^0.3.5"
futures = "^0.1.9"

View file

@ -27,4 +27,4 @@ grin_util = { path = "../util" }
[dev-dependencies]
env_logger = "^0.3"
secp256k1zkp = { path = "../secp256k1zkp" }
secp256k1zkp = { git = "https://github.com/mimblewimble/rust-secp256k1-zkp" }

View file

@ -7,7 +7,7 @@ authors = ["Grin Authors <mimblewimble@lists.launchpad.net>"]
grin_core = { path = "../core" }
grin_store = { path = "../store" }
grin_p2p = { path = "../p2p" }
secp256k1zkp = { path = "../secp256k1zkp" }
secp256k1zkp = { git = "https://github.com/mimblewimble/rust-secp256k1-zkp" }
time = "^0.1"
rand = "0.3"
log = "0.3"

View file

@ -15,10 +15,9 @@ serde = "~1.0.8"
serde_derive = "~1.0.8"
cuckoo_miner = { git = "https://github.com/mimblewimble/cuckoo-miner", tag="grin_integration_8"}
#cuckoo_miner = { path = "../../cuckoo-miner"}
grin_core = { path = "../core" }
[dev_dependencies]
grin_chain = { path = "../chain"}
secp256k1zkp = { path = "../secp256k1zkp" }
secp256k1zkp = { git = "https://github.com/mimblewimble/rust-secp256k1-zkp" }

View file

@ -1,2 +0,0 @@
target/
Cargo.lock

View file

@ -1,23 +0,0 @@
language: rust
sudo: false
matrix:
include:
- rust: stable
- rust: beta
- rust: nightly
install:
- |
pip install 'travis-cargo<0.2' --user &&
export PATH=$HOME/.local/bin:$PATH
script:
- |
travis-cargo build &&
travis-cargo build -- --release &&
travis-cargo test &&
travis-cargo test -- --release &&
travis-cargo bench &&
travis-cargo --only stable doc

View file

@ -1,33 +0,0 @@
[package]
name = "secp256k1zkp"
version = "0.1.0"
authors = [ "Dawid Ciężarkiewicz <dpc@ucore.info>",
"Andrew Poelstra <apoelstra@wpsoftware.net>",
"Ignotus Peverell <igno.peverell@protonmail.com>" ]
license = "CC0-1.0"
description = "Rust bindings for Pieter Wuille's `libsecp256k1` library, augmented with pedersen commitments. Implements ECDSA for the SECG elliptic curve group secp256k1 and related utilities."
keywords = [ "crypto", "ECDSA", "secp256k1", "libsecp256k1", "bitcoin" ]
readme = "README.md"
build = "build.rs"
[build-dependencies]
gcc = "0.3"
[lib]
name = "secp256k1zkp"
path = "src/lib.rs"
[features]
unstable = []
default = []
dev = ["clippy"]
[dependencies]
arrayvec = "0.3"
clippy = {version = "0.0", optional = true}
rand = "0.3"
libc = "0.1"
rustc-serialize = "0.3"
serde = "~1.0.8"
serde_json = "~1.0.2"

View file

@ -1,122 +0,0 @@
Creative Commons Legal Code
CC0 1.0 Universal
CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
HEREUNDER.
Statement of Purpose
The laws of most jurisdictions throughout the world automatically confer
exclusive Copyright and Related Rights (defined below) upon the creator
and subsequent owner(s) (each and all, an "owner") of an original work of
authorship and/or a database (each, a "Work").
Certain owners wish to permanently relinquish those rights to a Work for
the purpose of contributing to a commons of creative, cultural and
scientific works ("Commons") that the public can reliably and without fear
of later claims of infringement build upon, modify, incorporate in other
works, reuse and redistribute as freely as possible in any form whatsoever
and for any purposes, including without limitation commercial purposes.
These owners may contribute to the Commons to promote the ideal of a free
culture and the further production of creative, cultural and scientific
works, or to gain reputation or greater distribution for their Work in
part through the use and efforts of others.
For these and/or other purposes and motivations, and without any
expectation of additional consideration or compensation, the person
associating CC0 with a Work (the "Affirmer"), to the extent that he or she
is an owner of Copyright and Related Rights in the Work, voluntarily
elects to apply CC0 to the Work and publicly distribute the Work under its
terms, with knowledge of his or her Copyright and Related Rights in the
Work and the meaning and intended legal effect of CC0 on those rights.
1. Copyright and Related Rights. A Work made available under CC0 may be
protected by copyright and related or neighboring rights ("Copyright and
Related Rights"). Copyright and Related Rights include, but are not
limited to, the following:
i. the right to reproduce, adapt, distribute, perform, display,
communicate, and translate a Work;
ii. moral rights retained by the original author(s) and/or performer(s);
iii. publicity and privacy rights pertaining to a person's image or
likeness depicted in a Work;
iv. rights protecting against unfair competition in regards to a Work,
subject to the limitations in paragraph 4(a), below;
v. rights protecting the extraction, dissemination, use and reuse of data
in a Work;
vi. database rights (such as those arising under Directive 96/9/EC of the
European Parliament and of the Council of 11 March 1996 on the legal
protection of databases, and under any national implementation
thereof, including any amended or successor version of such
directive); and
vii. other similar, equivalent or corresponding rights throughout the
world based on applicable law or treaty, and any national
implementations thereof.
2. Waiver. To the greatest extent permitted by, but not in contravention
of, applicable law, Affirmer hereby overtly, fully, permanently,
irrevocably and unconditionally waives, abandons, and surrenders all of
Affirmer's Copyright and Related Rights and associated claims and causes
of action, whether now known or unknown (including existing as well as
future claims and causes of action), in the Work (i) in all territories
worldwide, (ii) for the maximum duration provided by applicable law or
treaty (including future time extensions), (iii) in any current or future
medium and for any number of copies, and (iv) for any purpose whatsoever,
including without limitation commercial, advertising or promotional
purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
member of the public at large and to the detriment of Affirmer's heirs and
successors, fully intending that such Waiver shall not be subject to
revocation, rescission, cancellation, termination, or any other legal or
equitable action to disrupt the quiet enjoyment of the Work by the public
as contemplated by Affirmer's express Statement of Purpose.
3. Public License Fallback. Should any part of the Waiver for any reason
be judged legally invalid or ineffective under applicable law, then the
Waiver shall be preserved to the maximum extent permitted taking into
account Affirmer's express Statement of Purpose. In addition, to the
extent the Waiver is so judged Affirmer hereby grants to each affected
person a royalty-free, non transferable, non sublicensable, non exclusive,
irrevocable and unconditional license to exercise Affirmer's Copyright and
Related Rights in the Work (i) in all territories worldwide, (ii) for the
maximum duration provided by applicable law or treaty (including future
time extensions), (iii) in any current or future medium and for any number
of copies, and (iv) for any purpose whatsoever, including without
limitation commercial, advertising or promotional purposes (the
"License"). The License shall be deemed effective as of the date CC0 was
applied by Affirmer to the Work. Should any part of the License for any
reason be judged legally invalid or ineffective under applicable law, such
partial invalidity or ineffectiveness shall not invalidate the remainder
of the License, and in such case Affirmer hereby affirms that he or she
will not (i) exercise any of his or her remaining Copyright and Related
Rights in the Work or (ii) assert any associated claims and causes of
action with respect to the Work, in either case contrary to Affirmer's
express Statement of Purpose.
4. Limitations and Disclaimers.
a. No trademark or patent rights held by Affirmer are waived, abandoned,
surrendered, licensed or otherwise affected by this document.
b. Affirmer offers the Work as-is and makes no representations or
warranties of any kind concerning the Work, express, implied,
statutory or otherwise, including without limitation warranties of
title, merchantability, fitness for a particular purpose, non
infringement, or the absence of latent or other defects, accuracy, or
the present or absence of errors, whether or not discoverable, all to
the greatest extent permissible under applicable law.
c. Affirmer disclaims responsibility for clearing rights of other persons
that may apply to the Work or any use thereof, including without
limitation any person's Copyright and Related Rights in the Work.
Further, Affirmer disclaims responsibility for obtaining any necessary
consents, permissions or other rights required for any use of the
Work.
d. Affirmer understands and acknowledges that Creative Commons is not a
party to this document and has no duty or obligation with respect to
this CC0 or use of the Work.

View file

@ -1,6 +0,0 @@
test:
cargo test
build:
cargo build

View file

@ -1,15 +0,0 @@
[![Build Status](https://travis-ci.org/apoelstra/rust-secp256k1.png?branch=master)](https://travis-ci.org/apoelstra/rust-secp256k1)
### rust-secp256k1
`rust-secp256k1` is a wrapper around ![libsecp256k1](https://github.com/bitcoin/secp256k1),
a C library by Peter Wuille for producing ECDSA signatures using the SECG curve
`secp256k1`. This library
* exposes type-safe Rust bindings for all `libsecp256k1` functions
* implements key generation
* implements deterministic nonce generation via RFC6979
* implements many unit tests, adding to those already present in `libsecp256k1`
* makes no allocations (except in unit tests) for efficiency and use in freestanding implementations
[Full documentation](https://www.wpsoftware.net/rustdoc/secp256k1/)

View file

@ -1,50 +0,0 @@
// Bitcoin secp256k1 bindings
// Written in 2015 by
// Andrew Poelstra
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! # Build script
// Coding conventions
#![deny(non_upper_case_globals)]
#![deny(non_camel_case_types)]
#![deny(non_snake_case)]
#![deny(unused_mut)]
#![warn(missing_docs)]
extern crate gcc;
fn main() {
let mut base_config = gcc::Config::new();
base_config.include("depend/secp256k1-zkp/")
.include("depend/secp256k1-zkp/include")
.include("depend/secp256k1-zkp/src")
.flag("-g")
// TODO these three should be changed to use libgmp, at least until secp PR 290 is merged
.define("USE_NUM_NONE", Some("1"))
.define("USE_FIELD_INV_BUILTIN", Some("1"))
.define("USE_SCALAR_INV_BUILTIN", Some("1"))
// TODO these should use 64-bit variants on 64-bit systems
.define("USE_FIELD_10X26", Some("1"))
.define("USE_SCALAR_8X32", Some("1"))
.define("USE_ENDOMORPHISM", Some("1"))
// These all are OK.
.define("ENABLE_MODULE_ECDH", Some("1"))
.define("ENABLE_MODULE_SCHNORR", Some("1"))
.define("ENABLE_MODULE_RECOVERY", Some("1"))
.define("ENABLE_MODULE_RANGEPROOF", Some("1"));
// secp256k1
base_config.file("depend/secp256k1-zkp/contrib/lax_der_parsing.c")
.file("depend/secp256k1-zkp/src/secp256k1.c")
.compile("libsecp256k1-zkp.a");
}

View file

@ -1,48 +0,0 @@
bench_inv
bench_ecdh
bench_sign
bench_verify
bench_schnorr_verify
bench_recover
bench_internal
tests
gen_context
*.exe
*.so
*.a
!.gitignore
Makefile
configure
.libs/
Makefile.in
aclocal.m4
autom4te.cache/
config.log
config.status
*.tar.gz
*.la
libtool
.deps/
.dirstamp
*.lo
*.o
*~
src/libsecp256k1-config.h
src/libsecp256k1-config.h.in
src/ecmult_static_context.h
build-aux/config.guess
build-aux/config.sub
build-aux/depcomp
build-aux/install-sh
build-aux/ltmain.sh
build-aux/m4/libtool.m4
build-aux/m4/lt~obsolete.m4
build-aux/m4/ltoptions.m4
build-aux/m4/ltsugar.m4
build-aux/m4/ltversion.m4
build-aux/missing
build-aux/compile
build-aux/test-driver
src/stamp-h1
libsecp256k1.pc

View file

@ -1,70 +0,0 @@
language: c
sudo: false
addons:
apt:
packages: libgmp-dev
compiler:
- clang
- gcc
cache:
directories:
- src/java/guava/
env:
global:
- FIELD=auto BIGNUM=auto SCALAR=auto ENDOMORPHISM=no STATICPRECOMPUTATION=yes ASM=no BUILD=check EXTRAFLAGS= HOST= ECDH=no schnorr=no RECOVERY=no EXPERIMENTAL=no
- GUAVA_URL=https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar GUAVA_JAR=src/java/guava/guava-18.0.jar
matrix:
- SCALAR=32bit RECOVERY=yes
- SCALAR=32bit FIELD=32bit ECDH=yes EXPERIMENTAL=yes
- SCALAR=64bit
- FIELD=64bit RECOVERY=yes
- FIELD=64bit ENDOMORPHISM=yes
- FIELD=64bit ENDOMORPHISM=yes ECDH=yes EXPERIMENTAL=yes
- FIELD=64bit ASM=x86_64
- FIELD=64bit ENDOMORPHISM=yes ASM=x86_64
- FIELD=32bit SCHNORR=yes EXPERIMENTAL=yes
- FIELD=32bit ENDOMORPHISM=yes
- BIGNUM=no
- BIGNUM=no ENDOMORPHISM=yes SCHNORR=yes RECOVERY=yes EXPERIMENTAL=yes
- BIGNUM=no STATICPRECOMPUTATION=no
- BUILD=distcheck
- EXTRAFLAGS=CPPFLAGS=-DDETERMINISTIC
- EXTRAFLAGS=CFLAGS=-O0
- BUILD=check-java ECDH=yes SCHNORR=yes EXPERIMENTAL=yes
matrix:
fast_finish: true
include:
- compiler: clang
env: HOST=i686-linux-gnu ENDOMORPHISM=yes
addons:
apt:
packages:
- gcc-multilib
- libgmp-dev:i386
- compiler: clang
env: HOST=i686-linux-gnu
addons:
apt:
packages:
- gcc-multilib
- compiler: gcc
env: HOST=i686-linux-gnu ENDOMORPHISM=yes
addons:
apt:
packages:
- gcc-multilib
- compiler: gcc
env: HOST=i686-linux-gnu
addons:
apt:
packages:
- gcc-multilib
- libgmp-dev:i386
before_install: mkdir -p `dirname $GUAVA_JAR`
install: if [ ! -f $GUAVA_JAR ]; then wget $GUAVA_URL -O $GUAVA_JAR; fi
before_script: ./autogen.sh
script:
- if [ -n "$HOST" ]; then export USE_HOST="--host=$HOST"; fi
- if [ "x$HOST" = "xi686-linux-gnu" ]; then export CC="$CC -m32"; fi
- ./configure --enable-experimental=$EXPERIMENTAL --enable-endomorphism=$ENDOMORPHISM --with-field=$FIELD --with-bignum=$BIGNUM --with-scalar=$SCALAR --enable-ecmult-static-precomputation=$STATICPRECOMPUTATION --enable-module-ecdh=$ECDH --enable-module-schnorr=$SCHNORR --enable-module-recovery=$RECOVERY $EXTRAFLAGS $USE_HOST && make -j2 $BUILD
os: linux

View file

@ -1,19 +0,0 @@
Copyright (c) 2013 Pieter Wuille
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

View file

@ -1,167 +0,0 @@
ACLOCAL_AMFLAGS = -I build-aux/m4
lib_LTLIBRARIES = libsecp256k1.la
if USE_JNI
JNI_LIB = libsecp256k1_jni.la
noinst_LTLIBRARIES = $(JNI_LIB)
else
JNI_LIB =
endif
include_HEADERS = include/secp256k1.h
noinst_HEADERS =
noinst_HEADERS += src/scalar.h
noinst_HEADERS += src/scalar_4x64.h
noinst_HEADERS += src/scalar_8x32.h
noinst_HEADERS += src/scalar_impl.h
noinst_HEADERS += src/scalar_4x64_impl.h
noinst_HEADERS += src/scalar_8x32_impl.h
noinst_HEADERS += src/group.h
noinst_HEADERS += src/group_impl.h
noinst_HEADERS += src/num_gmp.h
noinst_HEADERS += src/num_gmp_impl.h
noinst_HEADERS += src/ecdsa.h
noinst_HEADERS += src/ecdsa_impl.h
noinst_HEADERS += src/eckey.h
noinst_HEADERS += src/eckey_impl.h
noinst_HEADERS += src/ecmult.h
noinst_HEADERS += src/ecmult_impl.h
noinst_HEADERS += src/ecmult_const.h
noinst_HEADERS += src/ecmult_const_impl.h
noinst_HEADERS += src/ecmult_gen.h
noinst_HEADERS += src/ecmult_gen_impl.h
noinst_HEADERS += src/num.h
noinst_HEADERS += src/num_impl.h
noinst_HEADERS += src/field_10x26.h
noinst_HEADERS += src/field_10x26_impl.h
noinst_HEADERS += src/field_5x52.h
noinst_HEADERS += src/field_5x52_impl.h
noinst_HEADERS += src/field_5x52_int128_impl.h
noinst_HEADERS += src/field_5x52_asm_impl.h
noinst_HEADERS += src/java/org_bitcoin_NativeSecp256k1.h
noinst_HEADERS += src/java/org_bitcoin_Secp256k1Context.h
noinst_HEADERS += src/util.h
noinst_HEADERS += src/testrand.h
noinst_HEADERS += src/testrand_impl.h
noinst_HEADERS += src/hash.h
noinst_HEADERS += src/hash_impl.h
noinst_HEADERS += src/field.h
noinst_HEADERS += src/field_impl.h
noinst_HEADERS += src/bench.h
noinst_HEADERS += contrib/lax_der_parsing.h
noinst_HEADERS += contrib/lax_der_parsing.c
noinst_HEADERS += contrib/lax_der_privatekey_parsing.h
noinst_HEADERS += contrib/lax_der_privatekey_parsing.c
if USE_EXTERNAL_ASM
COMMON_LIB = libsecp256k1_common.la
noinst_LTLIBRARIES = $(COMMON_LIB)
else
COMMON_LIB =
endif
pkgconfigdir = $(libdir)/pkgconfig
pkgconfig_DATA = libsecp256k1.pc
if USE_EXTERNAL_ASM
if USE_ASM_ARM
libsecp256k1_common_la_SOURCES = src/asm/field_10x26_arm.s
endif
endif
libsecp256k1_la_SOURCES = src/secp256k1.c
libsecp256k1_la_CPPFLAGS = -DSECP256K1_BUILD -I$(top_srcdir)/include -I$(top_srcdir)/src $(SECP_INCLUDES)
libsecp256k1_la_LIBADD = $(JNI_LIB) $(SECP_LIBS) $(COMMON_LIB)
libsecp256k1_jni_la_SOURCES = src/java/org_bitcoin_NativeSecp256k1.c src/java/org_bitcoin_Secp256k1Context.c
libsecp256k1_jni_la_CPPFLAGS = -DSECP256K1_BUILD $(JNI_INCLUDES)
noinst_PROGRAMS =
if USE_BENCHMARK
noinst_PROGRAMS += bench_verify bench_sign bench_internal
bench_verify_SOURCES = src/bench_verify.c
bench_verify_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
bench_sign_SOURCES = src/bench_sign.c
bench_sign_LDADD = libsecp256k1.la $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
bench_internal_SOURCES = src/bench_internal.c
bench_internal_LDADD = $(SECP_LIBS) $(COMMON_LIB)
bench_internal_CPPFLAGS = -DSECP256K1_BUILD $(SECP_INCLUDES)
endif
if USE_TESTS
noinst_PROGRAMS += tests
tests_SOURCES = src/tests.c
tests_CPPFLAGS = -DSECP256K1_BUILD -DVERIFY -I$(top_srcdir)/src -I$(top_srcdir)/include $(SECP_INCLUDES) $(SECP_TEST_INCLUDES)
tests_LDADD = $(SECP_LIBS) $(SECP_TEST_LIBS) $(COMMON_LIB)
tests_LDFLAGS = -static
TESTS = tests
endif
JAVAROOT=src/java
JAVAORG=org/bitcoin
JAVA_GUAVA=$(srcdir)/$(JAVAROOT)/guava/guava-18.0.jar
CLASSPATH_ENV=CLASSPATH=$(JAVA_GUAVA)
JAVA_FILES= \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1.java \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Test.java \
$(JAVAROOT)/$(JAVAORG)/NativeSecp256k1Util.java \
$(JAVAROOT)/$(JAVAORG)/Secp256k1Context.java
if USE_JNI
$(JAVA_GUAVA):
@echo Guava is missing. Fetch it via: \
wget https://search.maven.org/remotecontent?filepath=com/google/guava/guava/18.0/guava-18.0.jar -O $(@)
@false
.stamp-java: $(JAVA_FILES)
@echo Compiling $^
$(AM_V_at)$(CLASSPATH_ENV) javac $^
@touch $@
if USE_TESTS
check-java: libsecp256k1.la $(JAVA_GUAVA) .stamp-java
$(AM_V_at)java -Djava.library.path="./:./src:./src/.libs:.libs/" -cp "$(JAVA_GUAVA):$(JAVAROOT)" $(JAVAORG)/NativeSecp256k1Test
endif
endif
if USE_ECMULT_STATIC_PRECOMPUTATION
CPPFLAGS_FOR_BUILD +=-I$(top_srcdir)
CFLAGS_FOR_BUILD += -Wall -Wextra -Wno-unused-function
gen_context_OBJECTS = gen_context.o
gen_context_BIN = gen_context$(BUILD_EXEEXT)
gen_%.o: src/gen_%.c
$(CC_FOR_BUILD) $(CPPFLAGS_FOR_BUILD) $(CFLAGS_FOR_BUILD) -c $< -o $@
$(gen_context_BIN): $(gen_context_OBJECTS)
$(CC_FOR_BUILD) $^ -o $@
$(libsecp256k1_la_OBJECTS): src/ecmult_static_context.h
$(tests_OBJECTS): src/ecmult_static_context.h
$(bench_internal_OBJECTS): src/ecmult_static_context.h
src/ecmult_static_context.h: $(gen_context_BIN)
./$(gen_context_BIN)
CLEANFILES = $(gen_context_BIN) src/ecmult_static_context.h $(JAVAROOT)/$(JAVAORG)/*.class .stamp-java
endif
EXTRA_DIST = autogen.sh src/gen_context.c src/basic-config.h $(JAVA_FILES)
if ENABLE_MODULE_ECDH
include src/modules/ecdh/Makefile.am.include
endif
if ENABLE_MODULE_SCHNORR
include src/modules/schnorr/Makefile.am.include
endif
if ENABLE_MODULE_RECOVERY
include src/modules/recovery/Makefile.am.include
endif
if ENABLE_MODULE_RANGEPROOF
include src/modules/rangeproof/Makefile.am.include
endif

View file

@ -1,61 +0,0 @@
libsecp256k1
============
[![Build Status](https://travis-ci.org/bitcoin-core/secp256k1.svg?branch=master)](https://travis-ci.org/bitcoin-core/secp256k1)
Optimized C library for EC operations on curve secp256k1.
This library is a work in progress and is being used to research best practices. Use at your own risk.
Features:
* secp256k1 ECDSA signing/verification and key generation.
* Adding/multiplying private/public keys.
* Serialization/parsing of private keys, public keys, signatures.
* Constant time, constant memory access signing and pubkey generation.
* Derandomized DSA (via RFC6979 or with a caller provided function.)
* Very efficient implementation.
Implementation details
----------------------
* General
* No runtime heap allocation.
* Extensive testing infrastructure.
* Structured to facilitate review and analysis.
* Intended to be portable to any system with a C89 compiler and uint64_t support.
* Expose only higher level interfaces to minimize the API surface and improve application security. ("Be difficult to use insecurely.")
* Field operations
* Optimized implementation of arithmetic modulo the curve's field size (2^256 - 0x1000003D1).
* Using 5 52-bit limbs (including hand-optimized assembly for x86_64, by Diederik Huys).
* Using 10 26-bit limbs.
* Field inverses and square roots using a sliding window over blocks of 1s (by Peter Dettman).
* Scalar operations
* Optimized implementation without data-dependent branches of arithmetic modulo the curve's order.
* Using 4 64-bit limbs (relying on __int128 support in the compiler).
* Using 8 32-bit limbs.
* Group operations
* Point addition formula specifically simplified for the curve equation (y^2 = x^3 + 7).
* Use addition between points in Jacobian and affine coordinates where possible.
* Use a unified addition/doubling formula where necessary to avoid data-dependent branches.
* Point/x comparison without a field inversion by comparison in the Jacobian coordinate space.
* Point multiplication for verification (a*P + b*G).
* Use wNAF notation for point multiplicands.
* Use a much larger window for multiples of G, using precomputed multiples.
* Use Shamir's trick to do the multiplication with the public key and the generator simultaneously.
* Optionally (off by default) use secp256k1's efficiently-computable endomorphism to split the P multiplicand into 2 half-sized ones.
* Point multiplication for signing
* Use a precomputed table of multiples of powers of 16 multiplied with the generator, so general multiplication becomes a series of additions.
* Access the table with branch-free conditional moves so memory access is uniform.
* No data-dependent branches
* The precomputed tables add and eventually subtract points for which no known scalar (private key) is known, preventing even an attacker with control over the private key used to control the data internally.
Build steps
-----------
libsecp256k1 is built using autotools:
$ ./autogen.sh
$ ./configure
$ make
$ ./tests
$ sudo make install # optional

View file

@ -1,3 +0,0 @@
* Unit tests for fieldelem/groupelem, including ones intended to
trigger fieldelem's boundary cases.
* Complete constant-time operations for signing/keygen

View file

@ -1,3 +0,0 @@
#!/bin/sh
set -e
autoreconf -if --warnings=all

View file

@ -1,140 +0,0 @@
# ===========================================================================
# http://www.gnu.org/software/autoconf-archive/ax_jni_include_dir.html
# ===========================================================================
#
# SYNOPSIS
#
# AX_JNI_INCLUDE_DIR
#
# DESCRIPTION
#
# AX_JNI_INCLUDE_DIR finds include directories needed for compiling
# programs using the JNI interface.
#
# JNI include directories are usually in the Java distribution. This is
# deduced from the value of $JAVA_HOME, $JAVAC, or the path to "javac", in
# that order. When this macro completes, a list of directories is left in
# the variable JNI_INCLUDE_DIRS.
#
# Example usage follows:
#
# AX_JNI_INCLUDE_DIR
#
# for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS
# do
# CPPFLAGS="$CPPFLAGS -I$JNI_INCLUDE_DIR"
# done
#
# If you want to force a specific compiler:
#
# - at the configure.in level, set JAVAC=yourcompiler before calling
# AX_JNI_INCLUDE_DIR
#
# - at the configure level, setenv JAVAC
#
# Note: This macro can work with the autoconf M4 macros for Java programs.
# This particular macro is not part of the original set of macros.
#
# LICENSE
#
# Copyright (c) 2008 Don Anderson <dda@sleepycat.com>
#
# Copying and distribution of this file, with or without modification, are
# permitted in any medium without royalty provided the copyright notice
# and this notice are preserved. This file is offered as-is, without any
# warranty.
#serial 10
AU_ALIAS([AC_JNI_INCLUDE_DIR], [AX_JNI_INCLUDE_DIR])
AC_DEFUN([AX_JNI_INCLUDE_DIR],[
JNI_INCLUDE_DIRS=""
if test "x$JAVA_HOME" != x; then
_JTOPDIR="$JAVA_HOME"
else
if test "x$JAVAC" = x; then
JAVAC=javac
fi
AC_PATH_PROG([_ACJNI_JAVAC], [$JAVAC], [no])
if test "x$_ACJNI_JAVAC" = xno; then
AC_MSG_WARN([cannot find JDK; try setting \$JAVAC or \$JAVA_HOME])
fi
_ACJNI_FOLLOW_SYMLINKS("$_ACJNI_JAVAC")
_JTOPDIR=`echo "$_ACJNI_FOLLOWED" | sed -e 's://*:/:g' -e 's:/[[^/]]*$::'`
fi
case "$host_os" in
darwin*) _JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'`
_JINC="$_JTOPDIR/Headers";;
*) _JINC="$_JTOPDIR/include";;
esac
_AS_ECHO_LOG([_JTOPDIR=$_JTOPDIR])
_AS_ECHO_LOG([_JINC=$_JINC])
# On Mac OS X 10.6.4, jni.h is a symlink:
# /System/Library/Frameworks/JavaVM.framework/Versions/Current/Headers/jni.h
# -> ../../CurrentJDK/Headers/jni.h.
AC_CACHE_CHECK(jni headers, ac_cv_jni_header_path,
[
if test -f "$_JINC/jni.h"; then
ac_cv_jni_header_path="$_JINC"
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path"
else
_JTOPDIR=`echo "$_JTOPDIR" | sed -e 's:/[[^/]]*$::'`
if test -f "$_JTOPDIR/include/jni.h"; then
ac_cv_jni_header_path="$_JTOPDIR/include"
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $ac_cv_jni_header_path"
else
ac_cv_jni_header_path=none
fi
fi
])
# get the likely subdirectories for system specific java includes
case "$host_os" in
bsdi*) _JNI_INC_SUBDIRS="bsdos";;
darwin*) _JNI_INC_SUBDIRS="darwin";;
freebsd*) _JNI_INC_SUBDIRS="freebsd";;
linux*) _JNI_INC_SUBDIRS="linux genunix";;
osf*) _JNI_INC_SUBDIRS="alpha";;
solaris*) _JNI_INC_SUBDIRS="solaris";;
mingw*) _JNI_INC_SUBDIRS="win32";;
cygwin*) _JNI_INC_SUBDIRS="win32";;
*) _JNI_INC_SUBDIRS="genunix";;
esac
if test "x$ac_cv_jni_header_path" != "xnone"; then
# add any subdirectories that are present
for JINCSUBDIR in $_JNI_INC_SUBDIRS
do
if test -d "$_JTOPDIR/include/$JINCSUBDIR"; then
JNI_INCLUDE_DIRS="$JNI_INCLUDE_DIRS $_JTOPDIR/include/$JINCSUBDIR"
fi
done
fi
])
# _ACJNI_FOLLOW_SYMLINKS <path>
# Follows symbolic links on <path>,
# finally setting variable _ACJNI_FOLLOWED
# ----------------------------------------
AC_DEFUN([_ACJNI_FOLLOW_SYMLINKS],[
# find the include directory relative to the javac executable
_cur="$1"
while ls -ld "$_cur" 2>/dev/null | grep " -> " >/dev/null; do
AC_MSG_CHECKING([symlink for $_cur])
_slink=`ls -ld "$_cur" | sed 's/.* -> //'`
case "$_slink" in
/*) _cur="$_slink";;
# 'X' avoids triggering unwanted echo options.
*) _cur=`echo "X$_cur" | sed -e 's/^X//' -e 's:[[^/]]*$::'`"$_slink";;
esac
AC_MSG_RESULT([$_cur])
done
_ACJNI_FOLLOWED="$_cur"
])# _ACJNI

View file

@ -1,125 +0,0 @@
# ===========================================================================
# http://www.gnu.org/software/autoconf-archive/ax_prog_cc_for_build.html
# ===========================================================================
#
# SYNOPSIS
#
# AX_PROG_CC_FOR_BUILD
#
# DESCRIPTION
#
# This macro searches for a C compiler that generates native executables,
# that is a C compiler that surely is not a cross-compiler. This can be
# useful if you have to generate source code at compile-time like for
# example GCC does.
#
# The macro sets the CC_FOR_BUILD and CPP_FOR_BUILD macros to anything
# needed to compile or link (CC_FOR_BUILD) and preprocess (CPP_FOR_BUILD).
# The value of these variables can be overridden by the user by specifying
# a compiler with an environment variable (like you do for standard CC).
#
# It also sets BUILD_EXEEXT and BUILD_OBJEXT to the executable and object
# file extensions for the build platform, and GCC_FOR_BUILD to `yes' if
# the compiler we found is GCC. All these variables but GCC_FOR_BUILD are
# substituted in the Makefile.
#
# LICENSE
#
# Copyright (c) 2008 Paolo Bonzini <bonzini@gnu.org>
#
# Copying and distribution of this file, with or without modification, are
# permitted in any medium without royalty provided the copyright notice
# and this notice are preserved. This file is offered as-is, without any
# warranty.
#serial 8
AU_ALIAS([AC_PROG_CC_FOR_BUILD], [AX_PROG_CC_FOR_BUILD])
AC_DEFUN([AX_PROG_CC_FOR_BUILD], [dnl
AC_REQUIRE([AC_PROG_CC])dnl
AC_REQUIRE([AC_PROG_CPP])dnl
AC_REQUIRE([AC_EXEEXT])dnl
AC_REQUIRE([AC_CANONICAL_HOST])dnl
dnl Use the standard macros, but make them use other variable names
dnl
pushdef([ac_cv_prog_CPP], ac_cv_build_prog_CPP)dnl
pushdef([ac_cv_prog_gcc], ac_cv_build_prog_gcc)dnl
pushdef([ac_cv_prog_cc_works], ac_cv_build_prog_cc_works)dnl
pushdef([ac_cv_prog_cc_cross], ac_cv_build_prog_cc_cross)dnl
pushdef([ac_cv_prog_cc_g], ac_cv_build_prog_cc_g)dnl
pushdef([ac_cv_exeext], ac_cv_build_exeext)dnl
pushdef([ac_cv_objext], ac_cv_build_objext)dnl
pushdef([ac_exeext], ac_build_exeext)dnl
pushdef([ac_objext], ac_build_objext)dnl
pushdef([CC], CC_FOR_BUILD)dnl
pushdef([CPP], CPP_FOR_BUILD)dnl
pushdef([CFLAGS], CFLAGS_FOR_BUILD)dnl
pushdef([CPPFLAGS], CPPFLAGS_FOR_BUILD)dnl
pushdef([LDFLAGS], LDFLAGS_FOR_BUILD)dnl
pushdef([host], build)dnl
pushdef([host_alias], build_alias)dnl
pushdef([host_cpu], build_cpu)dnl
pushdef([host_vendor], build_vendor)dnl
pushdef([host_os], build_os)dnl
pushdef([ac_cv_host], ac_cv_build)dnl
pushdef([ac_cv_host_alias], ac_cv_build_alias)dnl
pushdef([ac_cv_host_cpu], ac_cv_build_cpu)dnl
pushdef([ac_cv_host_vendor], ac_cv_build_vendor)dnl
pushdef([ac_cv_host_os], ac_cv_build_os)dnl
pushdef([ac_cpp], ac_build_cpp)dnl
pushdef([ac_compile], ac_build_compile)dnl
pushdef([ac_link], ac_build_link)dnl
save_cross_compiling=$cross_compiling
save_ac_tool_prefix=$ac_tool_prefix
cross_compiling=no
ac_tool_prefix=
AC_PROG_CC
AC_PROG_CPP
AC_EXEEXT
ac_tool_prefix=$save_ac_tool_prefix
cross_compiling=$save_cross_compiling
dnl Restore the old definitions
dnl
popdef([ac_link])dnl
popdef([ac_compile])dnl
popdef([ac_cpp])dnl
popdef([ac_cv_host_os])dnl
popdef([ac_cv_host_vendor])dnl
popdef([ac_cv_host_cpu])dnl
popdef([ac_cv_host_alias])dnl
popdef([ac_cv_host])dnl
popdef([host_os])dnl
popdef([host_vendor])dnl
popdef([host_cpu])dnl
popdef([host_alias])dnl
popdef([host])dnl
popdef([LDFLAGS])dnl
popdef([CPPFLAGS])dnl
popdef([CFLAGS])dnl
popdef([CPP])dnl
popdef([CC])dnl
popdef([ac_objext])dnl
popdef([ac_exeext])dnl
popdef([ac_cv_objext])dnl
popdef([ac_cv_exeext])dnl
popdef([ac_cv_prog_cc_g])dnl
popdef([ac_cv_prog_cc_cross])dnl
popdef([ac_cv_prog_cc_works])dnl
popdef([ac_cv_prog_gcc])dnl
popdef([ac_cv_prog_CPP])dnl
dnl Finally, set Makefile variables
dnl
BUILD_EXEEXT=$ac_build_exeext
BUILD_OBJEXT=$ac_build_objext
AC_SUBST(BUILD_EXEEXT)dnl
AC_SUBST(BUILD_OBJEXT)dnl
AC_SUBST([CFLAGS_FOR_BUILD])dnl
AC_SUBST([CPPFLAGS_FOR_BUILD])dnl
AC_SUBST([LDFLAGS_FOR_BUILD])dnl
])

View file

@ -1,65 +0,0 @@
dnl libsecp25k1 helper checks
AC_DEFUN([SECP_INT128_CHECK],[
has_int128=$ac_cv_type___int128
])
dnl escape "$0x" below using the m4 quadrigaph @S|@, and escape it again with a \ for the shell.
AC_DEFUN([SECP_64BIT_ASM_CHECK],[
AC_MSG_CHECKING(for x86_64 assembly availability)
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <stdint.h>]],[[
uint64_t a = 11, tmp;
__asm__ __volatile__("movq \@S|@0x100000000,%1; mulq %%rsi" : "+a"(a) : "S"(tmp) : "cc", "%rdx");
]])],[has_64bit_asm=yes],[has_64bit_asm=no])
AC_MSG_RESULT([$has_64bit_asm])
])
dnl
AC_DEFUN([SECP_OPENSSL_CHECK],[
has_libcrypto=no
m4_ifdef([PKG_CHECK_MODULES],[
PKG_CHECK_MODULES([CRYPTO], [libcrypto], [has_libcrypto=yes],[has_libcrypto=no])
if test x"$has_libcrypto" = x"yes"; then
TEMP_LIBS="$LIBS"
LIBS="$LIBS $CRYPTO_LIBS"
AC_CHECK_LIB(crypto, main,[AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])],[has_libcrypto=no])
LIBS="$TEMP_LIBS"
fi
])
if test x$has_libcrypto = xno; then
AC_CHECK_HEADER(openssl/crypto.h,[
AC_CHECK_LIB(crypto, main,[
has_libcrypto=yes
CRYPTO_LIBS=-lcrypto
AC_DEFINE(HAVE_LIBCRYPTO,1,[Define this symbol if libcrypto is installed])
])
])
LIBS=
fi
if test x"$has_libcrypto" = x"yes" && test x"$has_openssl_ec" = x; then
AC_MSG_CHECKING(for EC functions in libcrypto)
AC_COMPILE_IFELSE([AC_LANG_PROGRAM([[
#include <openssl/ec.h>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>]],[[
EC_KEY *eckey = EC_KEY_new_by_curve_name(NID_secp256k1);
ECDSA_sign(0, NULL, 0, NULL, NULL, eckey);
ECDSA_verify(0, NULL, 0, NULL, 0, eckey);
EC_KEY_free(eckey);
]])],[has_openssl_ec=yes],[has_openssl_ec=no])
AC_MSG_RESULT([$has_openssl_ec])
fi
])
dnl
AC_DEFUN([SECP_GMP_CHECK],[
if test x"$has_gmp" != x"yes"; then
CPPFLAGS_TEMP="$CPPFLAGS"
CPPFLAGS="$GMP_CPPFLAGS $CPPFLAGS"
LIBS_TEMP="$LIBS"
LIBS="$GMP_LIBS $LIBS"
AC_CHECK_HEADER(gmp.h,[AC_CHECK_LIB(gmp, __gmpz_init,[has_gmp=yes; GMP_LIBS="$GMP_LIBS -lgmp"; AC_DEFINE(HAVE_LIBGMP,1,[Define this symbol if libgmp is installed])])])
CPPFLAGS="$CPPFLAGS_TEMP"
LIBS="$LIBS_TEMP"
fi
])

View file

@ -1,510 +0,0 @@
AC_PREREQ([2.60])
AC_INIT([libsecp256k1],[0.1])
AC_CONFIG_AUX_DIR([build-aux])
AC_CONFIG_MACRO_DIR([build-aux/m4])
AC_CANONICAL_HOST
AH_TOP([#ifndef LIBSECP256K1_CONFIG_H])
AH_TOP([#define LIBSECP256K1_CONFIG_H])
AH_BOTTOM([#endif /*LIBSECP256K1_CONFIG_H*/])
AM_INIT_AUTOMAKE([foreign subdir-objects])
LT_INIT
dnl make the compilation flags quiet unless V=1 is used
m4_ifdef([AM_SILENT_RULES], [AM_SILENT_RULES([yes])])
PKG_PROG_PKG_CONFIG
AC_PATH_TOOL(AR, ar)
AC_PATH_TOOL(RANLIB, ranlib)
AC_PATH_TOOL(STRIP, strip)
AX_PROG_CC_FOR_BUILD
if test "x$CFLAGS" = "x"; then
CFLAGS="-O3 -g"
fi
AM_PROG_CC_C_O
AC_PROG_CC_C89
if test x"$ac_cv_prog_cc_c89" = x"no"; then
AC_MSG_ERROR([c89 compiler support required])
fi
AM_PROG_AS
case $host_os in
*darwin*)
if test x$cross_compiling != xyes; then
AC_PATH_PROG([BREW],brew,)
if test x$BREW != x; then
dnl These Homebrew packages may be keg-only, meaning that they won't be found
dnl in expected paths because they may conflict with system files. Ask
dnl Homebrew where each one is located, then adjust paths accordingly.
openssl_prefix=`$BREW --prefix openssl 2>/dev/null`
gmp_prefix=`$BREW --prefix gmp 2>/dev/null`
if test x$openssl_prefix != x; then
PKG_CONFIG_PATH="$openssl_prefix/lib/pkgconfig:$PKG_CONFIG_PATH"
export PKG_CONFIG_PATH
fi
if test x$gmp_prefix != x; then
GMP_CPPFLAGS="-I$gmp_prefix/include"
GMP_LIBS="-L$gmp_prefix/lib"
fi
else
AC_PATH_PROG([PORT],port,)
dnl if homebrew isn't installed and macports is, add the macports default paths
dnl as a last resort.
if test x$PORT != x; then
CPPFLAGS="$CPPFLAGS -isystem /opt/local/include"
LDFLAGS="$LDFLAGS -L/opt/local/lib"
fi
fi
fi
;;
esac
CFLAGS="$CFLAGS -W"
warn_CFLAGS="-std=c89 -pedantic -Wall -Wextra -Wcast-align -Wnested-externs -Wshadow -Wstrict-prototypes -Wno-unused-function -Wno-long-long -Wno-overlength-strings"
saved_CFLAGS="$CFLAGS"
CFLAGS="$CFLAGS $warn_CFLAGS"
AC_MSG_CHECKING([if ${CC} supports ${warn_CFLAGS}])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
[ AC_MSG_RESULT([yes]) ],
[ AC_MSG_RESULT([no])
CFLAGS="$saved_CFLAGS"
])
saved_CFLAGS="$CFLAGS"
CFLAGS="$CFLAGS -fvisibility=hidden"
AC_MSG_CHECKING([if ${CC} supports -fvisibility=hidden])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[char foo;]])],
[ AC_MSG_RESULT([yes]) ],
[ AC_MSG_RESULT([no])
CFLAGS="$saved_CFLAGS"
])
AC_ARG_ENABLE(benchmark,
AS_HELP_STRING([--enable-benchmark],[compile benchmark (default is no)]),
[use_benchmark=$enableval],
[use_benchmark=no])
AC_ARG_ENABLE(tests,
AS_HELP_STRING([--enable-tests],[compile tests (default is yes)]),
[use_tests=$enableval],
[use_tests=yes])
AC_ARG_ENABLE(openssl_tests,
AS_HELP_STRING([--enable-openssl-tests],[enable OpenSSL tests, if OpenSSL is available (default is auto)]),
[enable_openssl_tests=$enableval],
[enable_openssl_tests=auto])
AC_ARG_ENABLE(experimental,
AS_HELP_STRING([--enable-experimental],[allow experimental configure options (default is no)]),
[use_experimental=$enableval],
[use_experimental=no])
AC_ARG_ENABLE(endomorphism,
AS_HELP_STRING([--enable-endomorphism],[enable endomorphism (default is no)]),
[use_endomorphism=$enableval],
[use_endomorphism=no])
AC_ARG_ENABLE(ecmult_static_precomputation,
AS_HELP_STRING([--enable-ecmult-static-precomputation],[enable precomputed ecmult table for signing (default is yes)]),
[use_ecmult_static_precomputation=$enableval],
[use_ecmult_static_precomputation=auto])
AC_ARG_ENABLE(module_ecdh,
AS_HELP_STRING([--enable-module-ecdh],[enable ECDH shared secret computation (experimental)]),
[enable_module_ecdh=$enableval],
[enable_module_ecdh=no])
AC_ARG_ENABLE(module_schnorr,
AS_HELP_STRING([--enable-module-schnorr],[enable Schnorr signature module (experimental)]),
[enable_module_schnorr=$enableval],
[enable_module_schnorr=no])
AC_ARG_ENABLE(module_recovery,
AS_HELP_STRING([--enable-module-recovery],[enable ECDSA pubkey recovery module (default is no)]),
[enable_module_recovery=$enableval],
[enable_module_recovery=no])
AC_ARG_ENABLE(module_rangeproof,
AS_HELP_STRING([--enable-module-rangeproof],[enable Pedersen / zero-knowledge range proofs module (default is no)]),
[enable_module_rangeproof=$enableval],
[enable_module_rangeproof=no])
AC_ARG_ENABLE(jni,
AS_HELP_STRING([--enable-jni],[enable libsecp256k1_jni (default is auto)]),
[use_jni=$enableval],
[use_jni=auto])
AC_ARG_WITH([field], [AS_HELP_STRING([--with-field=64bit|32bit|auto],
[Specify Field Implementation. Default is auto])],[req_field=$withval], [req_field=auto])
AC_ARG_WITH([bignum], [AS_HELP_STRING([--with-bignum=gmp|no|auto],
[Specify Bignum Implementation. Default is auto])],[req_bignum=$withval], [req_bignum=auto])
AC_ARG_WITH([scalar], [AS_HELP_STRING([--with-scalar=64bit|32bit|auto],
[Specify scalar implementation. Default is auto])],[req_scalar=$withval], [req_scalar=auto])
AC_ARG_WITH([asm], [AS_HELP_STRING([--with-asm=x86_64|arm|no|auto]
[Specify assembly optimizations to use. Default is auto (experimental: arm)])],[req_asm=$withval], [req_asm=auto])
AC_CHECK_TYPES([__int128])
AC_MSG_CHECKING([for __builtin_expect])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() {__builtin_expect(0,0);}]])],
[ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_EXPECT,1,[Define this symbol if __builtin_expect is available]) ],
[ AC_MSG_RESULT([no])
])
if test x"$use_ecmult_static_precomputation" != x"no"; then
save_cross_compiling=$cross_compiling
cross_compiling=no
TEMP_CC="$CC"
CC="$CC_FOR_BUILD"
AC_MSG_CHECKING([native compiler: ${CC_FOR_BUILD}])
AC_RUN_IFELSE(
[AC_LANG_PROGRAM([], [return 0])],
[working_native_cc=yes],
[working_native_cc=no],[dnl])
CC="$TEMP_CC"
cross_compiling=$save_cross_compiling
if test x"$working_native_cc" = x"no"; then
set_precomp=no
if test x"$use_ecmult_static_precomputation" = x"yes"; then
AC_MSG_ERROR([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD])
else
AC_MSG_RESULT([${CC_FOR_BUILD} does not produce working binaries. Please set CC_FOR_BUILD])
fi
else
AC_MSG_RESULT([ok])
set_precomp=yes
fi
else
set_precomp=no
fi
AC_MSG_CHECKING([for __builtin_clzll])
AC_COMPILE_IFELSE([AC_LANG_SOURCE([[void myfunc() { __builtin_clzll(1);}]])],
[ AC_MSG_RESULT([yes]);AC_DEFINE(HAVE_BUILTIN_CLZLL,1,[Define this symbol if __builtin_clzll is available]) ],
[ AC_MSG_RESULT([no])
])
if test x"$req_asm" = x"auto"; then
SECP_64BIT_ASM_CHECK
if test x"$has_64bit_asm" = x"yes"; then
set_asm=x86_64
fi
if test x"$set_asm" = x; then
set_asm=no
fi
else
set_asm=$req_asm
case $set_asm in
x86_64)
SECP_64BIT_ASM_CHECK
if test x"$has_64bit_asm" != x"yes"; then
AC_MSG_ERROR([x86_64 assembly optimization requested but not available])
fi
;;
arm)
;;
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimization selection])
;;
esac
fi
if test x"$req_field" = x"auto"; then
if test x"set_asm" = x"x86_64"; then
set_field=64bit
fi
if test x"$set_field" = x; then
SECP_INT128_CHECK
if test x"$has_int128" = x"yes"; then
set_field=64bit
fi
fi
if test x"$set_field" = x; then
set_field=32bit
fi
else
set_field=$req_field
case $set_field in
64bit)
if test x"$set_asm" != x"x86_64"; then
SECP_INT128_CHECK
if test x"$has_int128" != x"yes"; then
AC_MSG_ERROR([64bit field explicitly requested but neither __int128 support or x86_64 assembly available])
fi
fi
;;
32bit)
;;
*)
AC_MSG_ERROR([invalid field implementation selection])
;;
esac
fi
if test x"$req_scalar" = x"auto"; then
SECP_INT128_CHECK
if test x"$has_int128" = x"yes"; then
set_scalar=64bit
fi
if test x"$set_scalar" = x; then
set_scalar=32bit
fi
else
set_scalar=$req_scalar
case $set_scalar in
64bit)
SECP_INT128_CHECK
if test x"$has_int128" != x"yes"; then
AC_MSG_ERROR([64bit scalar explicitly requested but __int128 support not available])
fi
;;
32bit)
;;
*)
AC_MSG_ERROR([invalid scalar implementation selected])
;;
esac
fi
if test x"$req_bignum" = x"auto"; then
SECP_GMP_CHECK
if test x"$has_gmp" = x"yes"; then
set_bignum=gmp
fi
if test x"$set_bignum" = x; then
set_bignum=no
fi
else
set_bignum=$req_bignum
case $set_bignum in
gmp)
SECP_GMP_CHECK
if test x"$has_gmp" != x"yes"; then
AC_MSG_ERROR([gmp bignum explicitly requested but libgmp not available])
fi
;;
no)
;;
*)
AC_MSG_ERROR([invalid bignum implementation selection])
;;
esac
fi
# select assembly optimization
use_external_asm=no
case $set_asm in
x86_64)
AC_DEFINE(USE_ASM_X86_64, 1, [Define this symbol to enable x86_64 assembly optimizations])
;;
arm)
use_external_asm=yes
;;
no)
;;
*)
AC_MSG_ERROR([invalid assembly optimizations])
;;
esac
# select field implementation
case $set_field in
64bit)
AC_DEFINE(USE_FIELD_5X52, 1, [Define this symbol to use the FIELD_5X52 implementation])
;;
32bit)
AC_DEFINE(USE_FIELD_10X26, 1, [Define this symbol to use the FIELD_10X26 implementation])
;;
*)
AC_MSG_ERROR([invalid field implementation])
;;
esac
# select bignum implementation
case $set_bignum in
gmp)
AC_DEFINE(HAVE_LIBGMP, 1, [Define this symbol if libgmp is installed])
AC_DEFINE(USE_NUM_GMP, 1, [Define this symbol to use the gmp implementation for num])
AC_DEFINE(USE_FIELD_INV_NUM, 1, [Define this symbol to use the num-based field inverse implementation])
AC_DEFINE(USE_SCALAR_INV_NUM, 1, [Define this symbol to use the num-based scalar inverse implementation])
;;
no)
AC_DEFINE(USE_NUM_NONE, 1, [Define this symbol to use no num implementation])
AC_DEFINE(USE_FIELD_INV_BUILTIN, 1, [Define this symbol to use the native field inverse implementation])
AC_DEFINE(USE_SCALAR_INV_BUILTIN, 1, [Define this symbol to use the native scalar inverse implementation])
;;
*)
AC_MSG_ERROR([invalid bignum implementation])
;;
esac
#select scalar implementation
case $set_scalar in
64bit)
AC_DEFINE(USE_SCALAR_4X64, 1, [Define this symbol to use the 4x64 scalar implementation])
;;
32bit)
AC_DEFINE(USE_SCALAR_8X32, 1, [Define this symbol to use the 8x32 scalar implementation])
;;
*)
AC_MSG_ERROR([invalid scalar implementation])
;;
esac
if test x"$use_tests" = x"yes"; then
SECP_OPENSSL_CHECK
if test x"$has_openssl_ec" = x"yes"; then
if test x"$enable_openssl_tests" != x"no"; then
AC_DEFINE(ENABLE_OPENSSL_TESTS, 1, [Define this symbol if OpenSSL EC functions are available])
SECP_TEST_INCLUDES="$SSL_CFLAGS $CRYPTO_CFLAGS"
SECP_TEST_LIBS="$CRYPTO_LIBS"
case $host in
*mingw*)
SECP_TEST_LIBS="$SECP_TEST_LIBS -lgdi32"
;;
esac
fi
else
if test x"$enable_openssl_tests" = x"yes"; then
AC_MSG_ERROR([OpenSSL tests requested but OpenSSL with EC support is not available])
fi
fi
else
if test x"$enable_openssl_tests" = x"yes"; then
AC_MSG_ERROR([OpenSSL tests requested but tests are not enabled])
fi
fi
if test x"$use_jni" != x"no"; then
AX_JNI_INCLUDE_DIR
have_jni_dependencies=yes
if test x"$enable_module_schnorr" = x"no"; then
have_jni_dependencies=no
fi
if test x"$enable_module_ecdh" = x"no"; then
have_jni_dependencies=no
fi
if test "x$JNI_INCLUDE_DIRS" = "x"; then
have_jni_dependencies=no
fi
if test "x$have_jni_dependencies" = "xno"; then
if test x"$use_jni" = x"yes"; then
AC_MSG_ERROR([jni support explicitly requested but headers/dependencies were not found. Enable ECDH and Schnorr and try again.])
fi
AC_MSG_WARN([jni headers/dependencies not found. jni support disabled])
use_jni=no
else
use_jni=yes
for JNI_INCLUDE_DIR in $JNI_INCLUDE_DIRS; do
JNI_INCLUDES="$JNI_INCLUDES -I$JNI_INCLUDE_DIR"
done
fi
fi
if test x"$set_bignum" = x"gmp"; then
SECP_LIBS="$SECP_LIBS $GMP_LIBS"
SECP_INCLUDES="$SECP_INCLUDES $GMP_CPPFLAGS"
fi
if test x"$use_endomorphism" = x"yes"; then
AC_DEFINE(USE_ENDOMORPHISM, 1, [Define this symbol to use endomorphism optimization])
fi
if test x"$use_ecmult_static_precomputation" = x"yes"; then
AC_DEFINE(USE_ECMULT_STATIC_PRECOMPUTATION, 1, [Define this symbol to use a statically generated ecmult table])
fi
if test x"$enable_module_ecdh" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_ECDH, 1, [Define this symbol to enable the ECDH module])
fi
if test x"$enable_module_schnorr" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_SCHNORR, 1, [Define this symbol to enable the Schnorr signature module])
fi
if test x"$enable_module_recovery" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_RECOVERY, 1, [Define this symbol to enable the ECDSA pubkey recovery module])
fi
if test x"$enable_module_rangeproof" = x"yes"; then
AC_DEFINE(ENABLE_MODULE_RANGEPROOF, 1, [Define this symbol to enable the Pedersen / zero knowledge range proof module])
fi
AC_C_BIGENDIAN()
if test x"$use_external_asm" = x"yes"; then
AC_DEFINE(USE_EXTERNAL_ASM, 1, [Define this symbol if an external (non-inline) assembly implementation is used])
fi
AC_MSG_NOTICE([Using static precomputation: $set_precomp])
AC_MSG_NOTICE([Using assembly optimizations: $set_asm])
AC_MSG_NOTICE([Using field implementation: $set_field])
AC_MSG_NOTICE([Using bignum implementation: $set_bignum])
AC_MSG_NOTICE([Using scalar implementation: $set_scalar])
AC_MSG_NOTICE([Using endomorphism optimizations: $use_endomorphism])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
AC_MSG_NOTICE([Building Schnorr signatures module: $enable_module_schnorr])
AC_MSG_NOTICE([Building ECDSA pubkey recovery module: $enable_module_recovery])
AC_MSG_NOTICE([Using jni: $use_jni])
if test x"$enable_experimental" = x"yes"; then
AC_MSG_NOTICE([******])
AC_MSG_NOTICE([WARNING: experimental build])
AC_MSG_NOTICE([Experimental features do not have stable APIs or properties, and may not be safe for production use.])
AC_MSG_NOTICE([Building ECDH module: $enable_module_ecdh])
AC_MSG_NOTICE([Building Schnorr signatures module: $enable_module_schnorr])
AC_MSG_NOTICE([Building range proof module: $enable_module_rangeproof])
AC_MSG_NOTICE([******])
else
if test x"$enable_module_schnorr" = x"yes"; then
AC_MSG_ERROR([Schnorr signature module is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_ecdh" = x"yes"; then
AC_MSG_ERROR([ECDH module is experimental. Use --enable-experimental to allow.])
fi
if test x"$set_asm" = x"arm"; then
AC_MSG_ERROR([ARM assembly optimization is experimental. Use --enable-experimental to allow.])
fi
if test x"$enable_module_rangeproof" = x"yes"; then
AC_MSG_ERROR([Range proof module is experimental. Use --enable-experimental to allow.])
fi
fi
AC_CONFIG_HEADERS([src/libsecp256k1-config.h])
AC_CONFIG_FILES([Makefile libsecp256k1.pc])
AC_SUBST(JNI_INCLUDES)
AC_SUBST(SECP_INCLUDES)
AC_SUBST(SECP_LIBS)
AC_SUBST(SECP_TEST_LIBS)
AC_SUBST(SECP_TEST_INCLUDES)
AM_CONDITIONAL([USE_TESTS], [test x"$use_tests" != x"no"])
AM_CONDITIONAL([USE_BENCHMARK], [test x"$use_benchmark" = x"yes"])
AM_CONDITIONAL([USE_ECMULT_STATIC_PRECOMPUTATION], [test x"$use_ecmult_static_precomputation" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_ECDH], [test x"$enable_module_ecdh" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_SCHNORR], [test x"$enable_module_schnorr" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RECOVERY], [test x"$enable_module_recovery" = x"yes"])
AM_CONDITIONAL([ENABLE_MODULE_RANGEPROOF], [test x"$enable_module_rangeproof" = x"yes"])
AM_CONDITIONAL([USE_JNI], [test x"$use_jni" == x"yes"])
AM_CONDITIONAL([USE_EXTERNAL_ASM], [test x"$use_external_asm" = x"yes"])
AM_CONDITIONAL([USE_ASM_ARM], [test x"$set_asm" = x"arm"])
dnl make sure nothing new is exported so that we don't break the cache
PKGCONFIG_PATH_TEMP="$PKG_CONFIG_PATH"
unset PKG_CONFIG_PATH
PKG_CONFIG_PATH="$PKGCONFIG_PATH_TEMP"
AC_OUTPUT

View file

@ -1,150 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <string.h>
#include <secp256k1.h>
#include "lax_der_parsing.h"
int ecdsa_signature_parse_der_lax(const secp256k1_context* ctx, secp256k1_ecdsa_signature* sig, const unsigned char *input, size_t inputlen) {
size_t rpos, rlen, spos, slen;
size_t pos = 0;
size_t lenbyte;
unsigned char tmpsig[64] = {0};
int overflow = 0;
/* Hack to initialize sig with a correctly-parsed but invalid signature. */
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
/* Sequence tag byte */
if (pos == inputlen || input[pos] != 0x30) {
return 0;
}
pos++;
/* Sequence length bytes */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (pos + lenbyte > inputlen) {
return 0;
}
pos += lenbyte;
}
/* Integer tag byte for R */
if (pos == inputlen || input[pos] != 0x02) {
return 0;
}
pos++;
/* Integer length for R */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (pos + lenbyte > inputlen) {
return 0;
}
while (lenbyte > 0 && input[pos] == 0) {
pos++;
lenbyte--;
}
if (lenbyte >= sizeof(size_t)) {
return 0;
}
rlen = 0;
while (lenbyte > 0) {
rlen = (rlen << 8) + input[pos];
pos++;
lenbyte--;
}
} else {
rlen = lenbyte;
}
if (rlen > inputlen - pos) {
return 0;
}
rpos = pos;
pos += rlen;
/* Integer tag byte for S */
if (pos == inputlen || input[pos] != 0x02) {
return 0;
}
pos++;
/* Integer length for S */
if (pos == inputlen) {
return 0;
}
lenbyte = input[pos++];
if (lenbyte & 0x80) {
lenbyte -= 0x80;
if (pos + lenbyte > inputlen) {
return 0;
}
while (lenbyte > 0 && input[pos] == 0) {
pos++;
lenbyte--;
}
if (lenbyte >= sizeof(size_t)) {
return 0;
}
slen = 0;
while (lenbyte > 0) {
slen = (slen << 8) + input[pos];
pos++;
lenbyte--;
}
} else {
slen = lenbyte;
}
if (slen > inputlen - pos) {
return 0;
}
spos = pos;
pos += slen;
/* Ignore leading zeroes in R */
while (rlen > 0 && input[rpos] == 0) {
rlen--;
rpos++;
}
/* Copy R value */
if (rlen > 32) {
overflow = 1;
} else {
memcpy(tmpsig + 32 - rlen, input + rpos, rlen);
}
/* Ignore leading zeroes in S */
while (slen > 0 && input[spos] == 0) {
slen--;
spos++;
}
/* Copy S value */
if (slen > 32) {
overflow = 1;
} else {
memcpy(tmpsig + 64 - slen, input + spos, slen);
}
if (!overflow) {
overflow = !secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
}
if (overflow) {
memset(tmpsig, 0, 64);
secp256k1_ecdsa_signature_parse_compact(ctx, sig, tmpsig);
}
return 1;
}

View file

@ -1,91 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/****
* Please do not link this file directly. It is not part of the libsecp256k1
* project and does not promise any stability in its API, functionality or
* presence. Projects which use this code should instead copy this header
* and its accompanying .c file directly into their codebase.
****/
/* This file defines a function that parses DER with various errors and
* violations. This is not a part of the library itself, because the allowed
* violations are chosen arbitrarily and do not follow or establish any
* standard.
*
* In many places it matters that different implementations do not only accept
* the same set of valid signatures, but also reject the same set of signatures.
* The only means to accomplish that is by strictly obeying a standard, and not
* accepting anything else.
*
* Nonetheless, sometimes there is a need for compatibility with systems that
* use signatures which do not strictly obey DER. The snippet below shows how
* certain violations are easily supported. You may need to adapt it.
*
* Do not use this for new systems. Use well-defined DER or compact signatures
* instead if you have the choice (see secp256k1_ecdsa_signature_parse_der and
* secp256k1_ecdsa_signature_parse_compact).
*
* The supported violations are:
* - All numbers are parsed as nonnegative integers, even though X.609-0207
* section 8.3.3 specifies that integers are always encoded as two's
* complement.
* - Integers can have length 0, even though section 8.3.1 says they can't.
* - Integers with overly long padding are accepted, violation section
* 8.3.2.
* - 127-byte long length descriptors are accepted, even though section
* 8.1.3.5.c says that they are not.
* - Trailing garbage data inside or after the signature is ignored.
* - The length descriptor of the sequence is ignored.
*
* Compared to for example OpenSSL, many violations are NOT supported:
* - Using overly long tag descriptors for the sequence or integers inside,
* violating section 8.1.2.2.
* - Encoding primitive integers as constructed values, violating section
* 8.3.1.
*/
#ifndef _SECP256K1_CONTRIB_LAX_DER_PARSING_H_
#define _SECP256K1_CONTRIB_LAX_DER_PARSING_H_
#include <secp256k1.h>
# ifdef __cplusplus
extern "C" {
# endif
/** Parse a signature in "lax DER" format
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input: a pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
*
* This function will accept any valid DER encoded signature, even if the
* encoded numbers are out of range. In addition, it will accept signatures
* which violate the DER spec in various ways. Its purpose is to allow
* validation of the Bitcoin blockchain, which includes non-DER signatures
* from before the network rules were updated to enforce DER. Note that
* the set of supported violations is a strict subset of what OpenSSL will
* accept.
*
* After the call, sig will always be initialized. If parsing failed or the
* encoded numbers are out of range, signature validation with it is
* guaranteed to fail for every message and public key.
*/
int ecdsa_signature_parse_der_lax(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,113 +0,0 @@
/**********************************************************************
* Copyright (c) 2014, 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <string.h>
#include <secp256k1.h>
#include "lax_der_privatekey_parsing.h"
int ec_privkey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *privkey, size_t privkeylen) {
const unsigned char *end = privkey + privkeylen;
int lenb = 0;
int len = 0;
memset(out32, 0, 32);
/* sequence header */
if (end < privkey+1 || *privkey != 0x30) {
return 0;
}
privkey++;
/* sequence length constructor */
if (end < privkey+1 || !(*privkey & 0x80)) {
return 0;
}
lenb = *privkey & ~0x80; privkey++;
if (lenb < 1 || lenb > 2) {
return 0;
}
if (end < privkey+lenb) {
return 0;
}
/* sequence length */
len = privkey[lenb-1] | (lenb > 1 ? privkey[lenb-2] << 8 : 0);
privkey += lenb;
if (end < privkey+len) {
return 0;
}
/* sequence element 0: version number (=1) */
if (end < privkey+3 || privkey[0] != 0x02 || privkey[1] != 0x01 || privkey[2] != 0x01) {
return 0;
}
privkey += 3;
/* sequence element 1: octet string, up to 32 bytes */
if (end < privkey+2 || privkey[0] != 0x04 || privkey[1] > 0x20 || end < privkey+2+privkey[1]) {
return 0;
}
memcpy(out32 + 32 - privkey[1], privkey + 2, privkey[1]);
if (!secp256k1_ec_seckey_verify(ctx, out32)) {
memset(out32, 0, 32);
return 0;
}
return 1;
}
int ec_privkey_export_der(const secp256k1_context *ctx, unsigned char *privkey, size_t *privkeylen, const unsigned char *key32, int compressed) {
secp256k1_pubkey pubkey;
size_t pubkeylen = 0;
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
*privkeylen = 0;
return 0;
}
if (compressed) {
static const unsigned char begin[] = {
0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = 33;
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
ptr += pubkeylen;
*privkeylen = ptr - privkey;
} else {
static const unsigned char begin[] = {
0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
};
static const unsigned char middle[] = {
0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
};
unsigned char *ptr = privkey;
memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
memcpy(ptr, key32, 32); ptr += 32;
memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
pubkeylen = 65;
secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
ptr += pubkeylen;
*privkeylen = ptr - privkey;
}
return 1;
}

View file

@ -1,90 +0,0 @@
/**********************************************************************
* Copyright (c) 2014, 2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/****
* Please do not link this file directly. It is not part of the libsecp256k1
* project and does not promise any stability in its API, functionality or
* presence. Projects which use this code should instead copy this header
* and its accompanying .c file directly into their codebase.
****/
/* This file contains code snippets that parse DER private keys with
* various errors and violations. This is not a part of the library
* itself, because the allowed violations are chosen arbitrarily and
* do not follow or establish any standard.
*
* It also contains code to serialize private keys in a compatible
* manner.
*
* These functions are meant for compatibility with applications
* that require BER encoded keys. When working with secp256k1-specific
* code, the simple 32-byte private keys normally used by the
* library are sufficient.
*/
#ifndef _SECP256K1_CONTRIB_BER_PRIVATEKEY_H_
#define _SECP256K1_CONTRIB_BER_PRIVATEKEY_H_
#include <secp256k1.h>
# ifdef __cplusplus
extern "C" {
# endif
/** Export a private key in DER format.
*
* Returns: 1 if the private key was valid.
* Args: ctx: pointer to a context object, initialized for signing (cannot
* be NULL)
* Out: privkey: pointer to an array for storing the private key in BER.
* Should have space for 279 bytes, and cannot be NULL.
* privkeylen: Pointer to an int where the length of the private key in
* privkey will be stored.
* In: seckey: pointer to a 32-byte secret key to export.
* compressed: 1 if the key should be exported in
* compressed format, 0 otherwise
*
* This function is purely meant for compatibility with applications that
* require BER encoded keys. When working with secp256k1-specific code, the
* simple 32-byte private keys are sufficient.
*
* Note that this function does not guarantee correct DER output. It is
* guaranteed to be parsable by secp256k1_ec_privkey_import_der
*/
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_export_der(
const secp256k1_context* ctx,
unsigned char *privkey,
size_t *privkeylen,
const unsigned char *seckey,
int compressed
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Import a private key in DER format.
* Returns: 1 if a private key was extracted.
* Args: ctx: pointer to a context object (cannot be NULL).
* Out: seckey: pointer to a 32-byte array for storing the private key.
* (cannot be NULL).
* In: privkey: pointer to a private key in DER format (cannot be NULL).
* privkeylen: length of the DER private key pointed to be privkey.
*
* This function will accept more than just strict DER, and even allow some BER
* violations. The public key stored inside the DER-encoded private key is not
* verified for correctness, nor are the curve parameters. Use this function
* only if you know in advance it is supposed to contain a secp256k1 private
* key.
*/
SECP256K1_WARN_UNUSED_RESULT int ec_privkey_import_der(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *privkey,
size_t privkeylen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,583 +0,0 @@
#ifndef _SECP256K1_
# define _SECP256K1_
# ifdef __cplusplus
extern "C" {
# endif
#include <stddef.h>
/* These rules specify the order of arguments in API calls:
*
* 1. Context pointers go first, followed by output arguments, combined
* output/input arguments, and finally input-only arguments.
* 2. Array lengths always immediately the follow the argument whose length
* they describe, even if this violates rule 1.
* 3. Within the OUT/OUTIN/IN groups, pointers to data that is typically generated
* later go first. This means: signatures, public nonces, private nonces,
* messages, public keys, secret keys, tweaks.
* 4. Arguments that are not data pointers go last, from more complex to less
* complex: function pointers, algorithm names, messages, void pointers,
* counts, flags, booleans.
* 5. Opaque data pointers follow the function pointer they are to be passed to.
*/
/** Opaque data structure that holds context information (precomputed tables etc.).
*
* The purpose of context structures is to cache large precomputed data tables
* that are expensive to construct, and also to maintain the randomization data
* for blinding.
*
* Do not create a new context object for each operation, as construction is
* far slower than all other API calls (~100 times slower than an ECDSA
* verification).
*
* A constructed context can safely be used from multiple threads
* simultaneously, but API call that take a non-const pointer to a context
* need exclusive access to it. In particular this is the case for
* secp256k1_context_destroy and secp256k1_context_randomize.
*
* Regarding randomization, either do it once at creation time (in which case
* you do not need any locking for the other calls), or use a read-write lock.
*/
typedef struct secp256k1_context_struct secp256k1_context;
/** Opaque data structure that holds a parsed and valid public key.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* secp256k1_ec_pubkey_serialize and secp256k1_ec_pubkey_parse.
*
* Furthermore, it is guaranteed that identical public keys (ignoring
* compression) will have identical representation, so they can be memcmp'ed.
*/
typedef struct {
unsigned char data[64];
} secp256k1_pubkey;
/** Opaque data structured that holds a parsed ECDSA signature.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 64 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_serialize_* functions.
*
* Furthermore, it is guaranteed to identical signatures will have identical
* representation, so they can be memcmp'ed.
*/
typedef struct {
unsigned char data[64];
} secp256k1_ecdsa_signature;
/** A pointer to a function to deterministically generate a nonce.
*
* Returns: 1 if a nonce was successfully generated. 0 will cause signing to fail.
* Out: nonce32: pointer to a 32-byte array to be filled by the function.
* In: msg32: the 32-byte message hash being verified (will not be NULL)
* key32: pointer to a 32-byte secret key (will not be NULL)
* algo16: pointer to a 16-byte array describing the signature
* algorithm (will be NULL for ECDSA for compatibility).
* data: Arbitrary data pointer that is passed through.
* attempt: how many iterations we have tried to find a nonce.
* This will almost always be 0, but different attempt values
* are required to result in a different nonce.
*
* Except for test cases, this function should compute some cryptographic hash of
* the message, the algorithm, the key and the attempt.
*/
typedef int (*secp256k1_nonce_function)(
unsigned char *nonce32,
const unsigned char *msg32,
const unsigned char *key32,
const unsigned char *algo16,
void *data,
unsigned int attempt
);
# if !defined(SECP256K1_GNUC_PREREQ)
# if defined(__GNUC__)&&defined(__GNUC_MINOR__)
# define SECP256K1_GNUC_PREREQ(_maj,_min) \
((__GNUC__<<16)+__GNUC_MINOR__>=((_maj)<<16)+(_min))
# else
# define SECP256K1_GNUC_PREREQ(_maj,_min) 0
# endif
# endif
# if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L) )
# if SECP256K1_GNUC_PREREQ(2,7)
# define SECP256K1_INLINE __inline__
# elif (defined(_MSC_VER))
# define SECP256K1_INLINE __inline
# else
# define SECP256K1_INLINE
# endif
# else
# define SECP256K1_INLINE inline
# endif
#ifndef SECP256K1_API
# if defined(_WIN32)
# ifdef SECP256K1_BUILD
# define SECP256K1_API __declspec(dllexport)
# else
# define SECP256K1_API
# endif
# elif defined(__GNUC__) && defined(SECP256K1_BUILD)
# define SECP256K1_API __attribute__ ((visibility ("default")))
# else
# define SECP256K1_API
# endif
#endif
/**Warning attributes
* NONNULL is not used if SECP256K1_BUILD is set to avoid the compiler optimizing out
* some paranoid null checks. */
# if defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
# else
# define SECP256K1_WARN_UNUSED_RESULT
# endif
# if !defined(SECP256K1_BUILD) && defined(__GNUC__) && SECP256K1_GNUC_PREREQ(3, 4)
# define SECP256K1_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
# else
# define SECP256K1_ARG_NONNULL(_x)
# endif
/** All flags' lower 8 bits indicate what they're for. Do not use directly. */
#define SECP256K1_FLAGS_TYPE_MASK ((1 << 8) - 1)
#define SECP256K1_FLAGS_TYPE_CONTEXT (1 << 0)
#define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1)
/** The higher bits contain the actual data. Do not use directly. */
#define SECP256K1_FLAGS_BIT_CONTEXT_VERIFY (1 << 8)
#define SECP256K1_FLAGS_BIT_CONTEXT_SIGN (1 << 9)
#define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8)
/** Flags to pass to secp256k1_context_create. */
#define SECP256K1_CONTEXT_VERIFY (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_VERIFY)
#define SECP256K1_CONTEXT_SIGN (SECP256K1_FLAGS_TYPE_CONTEXT | SECP256K1_FLAGS_BIT_CONTEXT_SIGN)
#define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT)
/** Flag to pass to secp256k1_ec_pubkey_serialize and secp256k1_ec_privkey_export. */
#define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION)
#define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION)
/** Create a secp256k1 context object.
*
* Returns: a newly created context object.
* In: flags: which parts of the context to initialize.
*/
SECP256K1_API secp256k1_context* secp256k1_context_create(
unsigned int flags
) SECP256K1_WARN_UNUSED_RESULT;
/** Copies a secp256k1 context object.
*
* Returns: a newly created context object.
* Args: ctx: an existing context to copy (cannot be NULL)
*/
SECP256K1_API secp256k1_context* secp256k1_context_clone(
const secp256k1_context* ctx
) SECP256K1_ARG_NONNULL(1) SECP256K1_WARN_UNUSED_RESULT;
/** Destroy a secp256k1 context object.
*
* The context pointer may not be used afterwards.
* Args: ctx: an existing context to destroy (cannot be NULL)
*/
SECP256K1_API void secp256k1_context_destroy(
secp256k1_context* ctx
);
/** Set a callback function to be called when an illegal argument is passed to
* an API call. It will only trigger for violations that are mentioned
* explicitly in the header.
*
* The philosophy is that these shouldn't be dealt with through a
* specific return value, as calling code should not have branches to deal with
* the case that this code itself is broken.
*
* On the other hand, during debug stage, one would want to be informed about
* such mistakes, and the default (crashing) may be inadvisable.
* When this callback is triggered, the API function called is guaranteed not
* to cause a crash, though its return value and output arguments are
* undefined.
*
* Args: ctx: an existing context object (cannot be NULL)
* In: fun: a pointer to a function to call when an illegal argument is
* passed to the API, taking a message and an opaque pointer
* (NULL restores a default handler that calls abort).
* data: the opaque pointer to pass to fun above.
*/
SECP256K1_API void secp256k1_context_set_illegal_callback(
secp256k1_context* ctx,
void (*fun)(const char* message, void* data),
const void* data
) SECP256K1_ARG_NONNULL(1);
/** Set a callback function to be called when an internal consistency check
* fails. The default is crashing.
*
* This can only trigger in case of a hardware failure, miscompilation,
* memory corruption, serious bug in the library, or other error would can
* otherwise result in undefined behaviour. It will not trigger due to mere
* incorrect usage of the API (see secp256k1_context_set_illegal_callback
* for that). After this callback returns, anything may happen, including
* crashing.
*
* Args: ctx: an existing context object (cannot be NULL)
* In: fun: a pointer to a function to call when an internal error occurs,
* taking a message and an opaque pointer (NULL restores a default
* handler that calls abort).
* data: the opaque pointer to pass to fun above.
*/
SECP256K1_API void secp256k1_context_set_error_callback(
secp256k1_context* ctx,
void (*fun)(const char* message, void* data),
const void* data
) SECP256K1_ARG_NONNULL(1);
/** Parse a variable-length public key into the pubkey object.
*
* Returns: 1 if the public key was fully valid.
* 0 if the public key could not be parsed or is invalid.
* Args: ctx: a secp256k1 context object.
* Out: pubkey: pointer to a pubkey object. If 1 is returned, it is set to a
* parsed version of input. If not, its value is undefined.
* In: input: pointer to a serialized public key
* inputlen: length of the array pointed to by input
*
* This function supports parsing compressed (33 bytes, header byte 0x02 or
* 0x03), uncompressed (65 bytes, header byte 0x04), or hybrid (65 bytes, header
* byte 0x06 or 0x07) format public keys.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_parse(
const secp256k1_context* ctx,
secp256k1_pubkey* pubkey,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize a pubkey object into a serialized byte sequence.
*
* Returns: 1 always.
* Args: ctx: a secp256k1 context object.
* Out: output: a pointer to a 65-byte (if compressed==0) or 33-byte (if
* compressed==1) byte array to place the serialized key
* in.
* In/Out: outputlen: a pointer to an integer which is initially set to the
* size of output, and is overwritten with the written
* size.
* In: pubkey: a pointer to a secp256k1_pubkey containing an
* initialized public key.
* flags: SECP256K1_EC_COMPRESSED if serialization should be in
* compressed format, otherwise SECP256K1_EC_UNCOMPRESSED.
*/
SECP256K1_API int secp256k1_ec_pubkey_serialize(
const secp256k1_context* ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_pubkey* pubkey,
unsigned int flags
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Parse an ECDSA signature in compact (64 bytes) format.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input64: a pointer to the 64-byte array to parse
*
* The signature must consist of a 32-byte big endian R value, followed by a
* 32-byte big endian S value. If R or S fall outside of [0..order-1], the
* encoding is invalid. R and S with value 0 are allowed in the encoding.
*
* After the call, sig will always be initialized. If parsing failed or R or
* S are zero, the resulting sig value is guaranteed to fail validation for any
* message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_compact(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input64
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Parse a DER ECDSA signature.
*
* Returns: 1 when the signature could be parsed, 0 otherwise.
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input: a pointer to the signature to be parsed
* inputlen: the length of the array pointed to be input
*
* This function will accept any valid DER encoded signature, even if the
* encoded numbers are out of range.
*
* After the call, sig will always be initialized. If parsing failed or the
* encoded numbers are out of range, signature validation with it is
* guaranteed to fail for every message and public key.
*/
SECP256K1_API int secp256k1_ecdsa_signature_parse_der(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const unsigned char *input,
size_t inputlen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in DER format.
*
* Returns: 1 if enough space was available to serialize, 0 otherwise
* Args: ctx: a secp256k1 context object
* Out: output: a pointer to an array to store the DER serialization
* In/Out: outputlen: a pointer to a length integer. Initially, this integer
* should be set to the length of output. After the call
* it will be set to the length of the serialization (even
* if 0 was returned).
* In: sig: a pointer to an initialized signature object
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_der(
const secp256k1_context* ctx,
unsigned char *output,
size_t *outputlen,
const secp256k1_ecdsa_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Serialize an ECDSA signature in compact (64 byte) format.
*
* Returns: 1
* Args: ctx: a secp256k1 context object
* Out: output64: a pointer to a 64-byte array to store the compact serialization
* In: sig: a pointer to an initialized signature object
*
* See secp256k1_ecdsa_signature_parse_compact for details about the encoding.
*/
SECP256K1_API int secp256k1_ecdsa_signature_serialize_compact(
const secp256k1_context* ctx,
unsigned char *output64,
const secp256k1_ecdsa_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Verify an ECDSA signature.
*
* Returns: 1: correct signature
* 0: incorrect or unparseable signature
* Args: ctx: a secp256k1 context object, initialized for verification.
* In: sig: the signature being verified (cannot be NULL)
* msg32: the 32-byte message hash being verified (cannot be NULL)
* pubkey: pointer to an initialized public key to verify with (cannot be NULL)
*
* To avoid accepting malleable signatures, only ECDSA signatures in lower-S
* form are accepted.
*
* If you need to accept ECDSA signatures from sources that do not obey this
* rule, apply secp256k1_ecdsa_signature_normalize to the signature prior to
* validation, but be aware that doing so results in malleable signatures.
*
* For details, see the comments for that function.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_verify(
const secp256k1_context* ctx,
const secp256k1_ecdsa_signature *sig,
const unsigned char *msg32,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Convert a signature to a normalized lower-S form.
*
* Returns: 1 if sigin was not normalized, 0 if it already was.
* Args: ctx: a secp256k1 context object
* Out: sigout: a pointer to a signature to fill with the normalized form,
* or copy if the input was already normalized. (can be NULL if
* you're only interested in whether the input was already
* normalized).
* In: sigin: a pointer to a signature to check/normalize (cannot be NULL,
* can be identical to sigout)
*
* With ECDSA a third-party can forge a second distinct signature of the same
* message, given a single initial signature, but without knowing the key. This
* is done by negating the S value modulo the order of the curve, 'flipping'
* the sign of the random point R which is not included in the signature.
*
* Forgery of the same message isn't universally problematic, but in systems
* where message malleability or uniqueness of signatures is important this can
* cause issues. This forgery can be blocked by all verifiers forcing signers
* to use a normalized form.
*
* The lower-S form reduces the size of signatures slightly on average when
* variable length encodings (such as DER) are used and is cheap to verify,
* making it a good choice. Security of always using lower-S is assured because
* anyone can trivially modify a signature after the fact to enforce this
* property anyway.
*
* The lower S value is always between 0x1 and
* 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
* inclusive.
*
* No other forms of ECDSA malleability are known and none seem likely, but
* there is no formal proof that ECDSA, even with this additional restriction,
* is free of other malleability. Commonly used serialization schemes will also
* accept various non-unique encodings, so care should be taken when this
* property is required for an application.
*
* The secp256k1_ecdsa_sign function will by default create signatures in the
* lower-S form, and secp256k1_ecdsa_verify will not accept others. In case
* signatures come from a system that cannot enforce this property,
* secp256k1_ecdsa_signature_normalize must be called before verification.
*/
SECP256K1_API int secp256k1_ecdsa_signature_normalize(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature *sigout,
const secp256k1_ecdsa_signature *sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(3);
/** An implementation of RFC6979 (using HMAC-SHA256) as nonce generation function.
* If a data pointer is passed, it is assumed to be a pointer to 32 bytes of
* extra entropy.
*/
SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_rfc6979;
/** A default safe nonce generation function (currently equal to secp256k1_nonce_function_rfc6979). */
SECP256K1_API extern const secp256k1_nonce_function secp256k1_nonce_function_default;
/** Create an ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was invalid.
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
*
* The created signature is always in lower-S form. See
* secp256k1_ecdsa_signature_normalize for more details.
*/
SECP256K1_API int secp256k1_ecdsa_sign(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature *sig,
const unsigned char *msg32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify an ECDSA secret key.
*
* Returns: 1: secret key is valid
* 0: secret key is invalid
* Args: ctx: pointer to a context object (cannot be NULL)
* In: seckey: pointer to a 32-byte secret key (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_seckey_verify(
const secp256k1_context* ctx,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2);
/** Compute the public key for a secret key.
*
* Returns: 1: secret was valid, public key stores
* 0: secret was invalid, try again
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: pubkey: pointer to the created public key (cannot be NULL)
* In: seckey: pointer to a 32-byte private key (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_create(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *seckey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a private key by adding tweak to it.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or if the resulting private key
* would be invalid (only when the tweak is the complement of the
* private key). 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL).
* In/Out: seckey: pointer to a 32-byte private key.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_add(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a public key by adding tweak times the generator to it.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or if the resulting public key
* would be invalid (only when the tweak is the complement of the
* corresponding private key). 1 otherwise.
* Args: ctx: pointer to a context object initialized for validation
* (cannot be NULL).
* In/Out: pubkey: pointer to a public key object.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_add(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a private key by multiplying it by a tweak.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
* Args: ctx: pointer to a context object (cannot be NULL).
* In/Out: seckey: pointer to a 32-byte private key.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_privkey_tweak_mul(
const secp256k1_context* ctx,
unsigned char *seckey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Tweak a public key by multiplying it by a tweak value.
* Returns: 0 if the tweak was out of range (chance of around 1 in 2^128 for
* uniformly random 32-byte arrays, or equal to zero. 1 otherwise.
* Args: ctx: pointer to a context object initialized for validation
* (cannot be NULL).
* In/Out: pubkey: pointer to a public key obkect.
* In: tweak: pointer to a 32-byte tweak.
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_tweak_mul(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *tweak
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Updates the context randomization.
* Returns: 1: randomization successfully updated
* 0: error
* Args: ctx: pointer to a context object (cannot be NULL)
* In: seed32: pointer to a 32-byte random seed (NULL resets to initial state)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_context_randomize(
secp256k1_context* ctx,
const unsigned char *seed32
) SECP256K1_ARG_NONNULL(1);
/** Add a number of public keys together.
* Returns: 1: the sum of the public keys is valid.
* 0: the sum of the public keys is not valid.
* Args: ctx: pointer to a context object
* Out: out: pointer to a public key object for placing the resulting public key
* (cannot be NULL)
* In: ins: pointer to array of pointers to public keys (cannot be NULL)
* n: the number of public keys to add together (must be at least 1)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ec_pubkey_combine(
const secp256k1_context* ctx,
secp256k1_pubkey *out,
const secp256k1_pubkey * const * ins,
size_t n
) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
# ifdef __cplusplus
}
# endif
#endif

View file

@ -1,31 +0,0 @@
#ifndef _SECP256K1_ECDH_
# define _SECP256K1_ECDH_
# include "secp256k1.h"
# ifdef __cplusplus
extern "C" {
# endif
/** Compute an EC Diffie-Hellman secret in constant time
* Returns: 1: exponentiation was successful
* 0: scalar was invalid (zero or overflow)
* Args: ctx: pointer to a context object (cannot be NULL)
* Out: result: a 32-byte array which will be populated by an ECDH
* secret computed from the point and scalar
* In: pubkey: a pointer to a secp256k1_pubkey containing an
* initialized public key
* privkey: a 32-byte scalar with which to multiply the point
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdh(
const secp256k1_context* ctx,
unsigned char *result,
const secp256k1_pubkey *pubkey,
const unsigned char *privkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
# ifdef __cplusplus
}
# endif
#endif

View file

@ -1,204 +0,0 @@
#ifndef _SECP256K1_RANGEPROOF_
# define _SECP256K1_RANGEPROOF_
# include "secp256k1.h"
# ifdef __cplusplus
extern "C" {
# endif
#include <stdint.h>
/** Initialize a context for usage with Pedersen commitments. */
void secp256k1_pedersen_context_initialize(secp256k1_context* ctx);
/** Generate a pedersen commitment.
* Returns 1: commitment successfully created.
* 0: error
* In: ctx: pointer to a context object, initialized for signing and Pedersen commitment (cannot be NULL)
* blind: pointer to a 32-byte blinding factor (cannot be NULL)
* value: unsigned 64-bit integer value to commit to.
* Out: commit: pointer to a 33-byte array for the commitment (cannot be NULL)
*
* Blinding factors can be generated and verified in the same way as secp256k1 private keys for ECDSA.
*/
SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_commit(
const secp256k1_context* ctx,
unsigned char *commit,
unsigned char *blind,
uint64_t value
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Computes the sum of multiple positive and negative blinding factors.
* Returns 1: sum successfully computed.
* 0: error
* In: ctx: pointer to a context object (cannot be NULL)
* blinds: pointer to pointers to 32-byte character arrays for blinding factors. (cannot be NULL)
* n: number of factors pointed to by blinds.
* nneg: how many of the initial factors should be treated with a positive sign.
* Out: blind_out: pointer to a 32-byte array for the sum (cannot be NULL)
*/
SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_blind_sum(
const secp256k1_context* ctx,
unsigned char *blind_out,
const unsigned char * const *blinds,
int n,
int npositive
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Computes the sum of multiple positive and negative pedersen commitments
* Returns 1: sum successfully computed.
* In: ctx: pointer to a context object, initialized for Pedersen commitment (cannot be NULL)
* commits: pointer to pointers to 33-byte character arrays for the commitments. (cannot be NULL if pcnt is non-zero)
* pcnt: number of commitments pointed to by commits.
* ncommits: pointer to pointers to 33-byte character arrays for negative commitments. (cannot be NULL if ncnt is non-zero)
* ncnt: number of commitments pointed to by ncommits.
* Out: commit_out: pointer to a 33-byte array for the sum (cannot be NULL)
*/
SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_commit_sum(
const secp256k1_context* ctx,
unsigned char *commit_out,
const unsigned char * const *commits,
int pcnt,
const unsigned char * const *ncommits,
int ncnt
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify a tally of pedersen commitments
* Returns 1: commitments successfully sum to zero.
* 0: Commitments do not sum to zero or other error.
* In: ctx: pointer to a context object, initialized for Pedersen commitment (cannot be NULL)
* commits: pointer to pointers to 33-byte character arrays for the commitments. (cannot be NULL if pcnt is non-zero)
* pcnt: number of commitments pointed to by commits.
* ncommits: pointer to pointers to 33-byte character arrays for negative commitments. (cannot be NULL if ncnt is non-zero)
* ncnt: number of commitments pointed to by ncommits.
* excess: signed 64bit amount to add to the total to bring it to zero, can be negative.
*
* This computes sum(commit[0..pcnt)) - sum(ncommit[0..ncnt)) - excess*H == 0.
*
* A pedersen commitment is xG + vH where G and H are generators for the secp256k1 group and x is a blinding factor,
* while v is the committed value. For a collection of commitments to sum to zero both their blinding factors and
* values must sum to zero.
*
*/
SECP256K1_WARN_UNUSED_RESULT int secp256k1_pedersen_verify_tally(
const secp256k1_context* ctx,
const unsigned char * const *commits,
int pcnt,
const unsigned char * const *ncommits,
int ncnt,
int64_t excess
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(4);
/** Initialize a context for usage with Pedersen commitments. */
void secp256k1_rangeproof_context_initialize(secp256k1_context* ctx);
/** Verify a proof that a committed value is within a range.
* Returns 1: Value is within the range [0..2^64), the specifically proven range is in the min/max value outputs.
* 0: Proof failed or other error.
* In: ctx: pointer to a context object, initialized for range-proof and commitment (cannot be NULL)
* commit: the 33-byte commitment being proved. (cannot be NULL)
* proof: pointer to character array with the proof. (cannot be NULL)
* plen: length of proof in bytes.
* Out: min_value: pointer to a unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL)
* max_value: pointer to a unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL)
*/
SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_verify(
const secp256k1_context* ctx,
uint64_t *min_value,
uint64_t *max_value,
const unsigned char *commit,
const unsigned char *proof,
int plen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
/** Verify a range proof proof and rewind the proof to recover information sent by its author.
* Returns 1: Value is within the range [0..2^64), the specifically proven range is in the min/max value outputs, and the value and blinding were recovered.
* 0: Proof failed, rewind failed, or other error.
* In: ctx: pointer to a context object, initialized for range-proof and Pedersen commitment (cannot be NULL)
* commit: the 33-byte commitment being proved. (cannot be NULL)
* proof: pointer to character array with the proof. (cannot be NULL)
* plen: length of proof in bytes.
* nonce: 32-byte secret nonce used by the prover (cannot be NULL)
* In/Out: blind_out: storage for the 32-byte blinding factor used for the commitment
* value_out: pointer to an unsigned int64 which has the exact value of the commitment.
* message_out: pointer to a 4096 byte character array to receive message data from the proof author.
* outlen: length of message data written to message_out.
* min_value: pointer to an unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL)
* max_value: pointer to an unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL)
*/
SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_rewind(
const secp256k1_context* ctx,
unsigned char *blind_out,
uint64_t *value_out,
unsigned char *message_out,
int *outlen,
const unsigned char *nonce,
uint64_t *min_value,
uint64_t *max_value,
const unsigned char *commit,
const unsigned char *proof,
int plen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7) SECP256K1_ARG_NONNULL(8) SECP256K1_ARG_NONNULL(9) SECP256K1_ARG_NONNULL(10);
/** Author a proof that a committed value is within a range.
* Returns 1: Proof successfully created.
* 0: Error
* In: ctx: pointer to a context object, initialized for range-proof, signing, and Pedersen commitment (cannot be NULL)
* proof: pointer to array to receive the proof, can be up to 5134 bytes. (cannot be NULL)
* min_value: constructs a proof where the verifer can tell the minimum value is at least the specified amount.
* commit: 33-byte array with the commitment being proved.
* blind: 32-byte blinding factor used by commit.
* nonce: 32-byte secret nonce used to initialize the proof (value can be reverse-engineered out of the proof if this secret is known.)
* exp: Base-10 exponent. Digits below above will be made public, but the proof will be made smaller. Allowed range is -1 to 18.
* (-1 is a special case that makes the value public. 0 is the most private.)
* min_bits: Number of bits of the value to keep private. (0 = auto/minimal, - 64).
* value: Actual value of the commitment.
* In/out: plen: point to an integer with the size of the proof buffer and the size of the constructed proof.
*
* If min_value or exp is non-zero then the value must be on the range [0, 2^63) to prevent the proof range from spanning past 2^64.
*
* If exp is -1 the value is revealed by the proof (e.g. it proves that the proof is a blinding of a specific value, without revealing the blinding key.)
*
* This can randomly fail with probability around one in 2^100. If this happens, buy a lottery ticket and retry with a different nonce or blinding.
*
*/
SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_sign(
const secp256k1_context* ctx,
unsigned char *proof,
int *plen,
uint64_t min_value,
const unsigned char *commit,
const unsigned char *blind,
const unsigned char *nonce,
int exp,
int min_bits,
uint64_t value
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6) SECP256K1_ARG_NONNULL(7);
/** Extract some basic information from a range-proof.
* Returns 1: Information successfully extracted.
* 0: Decode failed.
* In: ctx: pointer to a context object
* proof: pointer to character array with the proof.
* plen: length of proof in bytes.
* Out: exp: Exponent used in the proof (-1 means the value isn't private).
* mantissa: Number of bits covered by the proof.
* min_value: pointer to an unsigned int64 which will be updated with the minimum value that commit could have. (cannot be NULL)
* max_value: pointer to an unsigned int64 which will be updated with the maximum value that commit could have. (cannot be NULL)
*/
SECP256K1_WARN_UNUSED_RESULT int secp256k1_rangeproof_info(
const secp256k1_context* ctx,
int *exp,
int *mantissa,
uint64_t *min_value,
uint64_t *max_value,
const unsigned char *proof,
int plen
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5);
# ifdef __cplusplus
}
# endif
#endif

View file

@ -1,110 +0,0 @@
#ifndef _SECP256K1_RECOVERY_
# define _SECP256K1_RECOVERY_
# include "secp256k1.h"
# ifdef __cplusplus
extern "C" {
# endif
/** Opaque data structured that holds a parsed ECDSA signature,
* supporting pubkey recovery.
*
* The exact representation of data inside is implementation defined and not
* guaranteed to be portable between different platforms or versions. It is
* however guaranteed to be 65 bytes in size, and can be safely copied/moved.
* If you need to convert to a format suitable for storage or transmission, use
* the secp256k1_ecdsa_signature_serialize_* and
* secp256k1_ecdsa_signature_parse_* functions.
*
* Furthermore, it is guaranteed that identical signatures (including their
* recoverability) will have identical representation, so they can be
* memcmp'ed.
*/
typedef struct {
unsigned char data[65];
} secp256k1_ecdsa_recoverable_signature;
/** Parse a compact ECDSA signature (64 bytes + recovery id).
*
* Returns: 1 when the signature could be parsed, 0 otherwise
* Args: ctx: a secp256k1 context object
* Out: sig: a pointer to a signature object
* In: input64: a pointer to a 64-byte compact signature
* recid: the recovery id (0, 1, 2 or 3)
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_parse_compact(
const secp256k1_context* ctx,
secp256k1_ecdsa_recoverable_signature* sig,
const unsigned char *input64,
int recid
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Convert a recoverable signature into a normal signature.
*
* Returns: 1
* Out: sig: a pointer to a normal signature (cannot be NULL).
* In: sigin: a pointer to a recoverable signature (cannot be NULL).
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_convert(
const secp256k1_context* ctx,
secp256k1_ecdsa_signature* sig,
const secp256k1_ecdsa_recoverable_signature* sigin
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Serialize an ECDSA signature in compact format (64 bytes + recovery id).
*
* Returns: 1
* Args: ctx: a secp256k1 context object
* Out: output64: a pointer to a 64-byte array of the compact signature (cannot be NULL)
* recid: a pointer to an integer to hold the recovery id (can be NULL).
* In: sig: a pointer to an initialized signature object (cannot be NULL)
*/
SECP256K1_API int secp256k1_ecdsa_recoverable_signature_serialize_compact(
const secp256k1_context* ctx,
unsigned char *output64,
int *recid,
const secp256k1_ecdsa_recoverable_signature* sig
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Create a recoverable ECDSA signature.
*
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was invalid.
* Args: ctx: pointer to a context object, initialized for signing (cannot be NULL)
* Out: sig: pointer to an array where the signature will be placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL, secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation function (can be NULL)
*/
SECP256K1_API int secp256k1_ecdsa_sign_recoverable(
const secp256k1_context* ctx,
secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msg32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Recover an ECDSA public key from a signature.
*
* Returns: 1: public key successfully recovered (which guarantees a correct signature).
* 0: otherwise.
* Args: ctx: pointer to a context object, initialized for verification (cannot be NULL)
* Out: pubkey: pointer to the recovered public key (cannot be NULL)
* In: sig: pointer to initialized signature that supports pubkey recovery (cannot be NULL)
* msg32: the 32-byte message hash assumed to be signed (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_ecdsa_recover(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const secp256k1_ecdsa_recoverable_signature *sig,
const unsigned char *msg32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
# ifdef __cplusplus
}
# endif
#endif

View file

@ -1,173 +0,0 @@
#ifndef _SECP256K1_SCHNORR_
# define _SECP256K1_SCHNORR_
# include "secp256k1.h"
# ifdef __cplusplus
extern "C" {
# endif
/** Create a signature using a custom EC-Schnorr-SHA256 construction. It
* produces non-malleable 64-byte signatures which support public key recovery
* batch validation, and multiparty signing.
* Returns: 1: signature created
* 0: the nonce generation function failed, or the private key was
* invalid.
* Args: ctx: pointer to a context object, initialized for signing
* (cannot be NULL)
* Out: sig64: pointer to a 64-byte array where the signature will be
* placed (cannot be NULL)
* In: msg32: the 32-byte message hash being signed (cannot be NULL)
* seckey: pointer to a 32-byte secret key (cannot be NULL)
* noncefp:pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_default is used
* ndata: pointer to arbitrary data used by the nonce generation
* function (can be NULL)
*/
SECP256K1_API int secp256k1_schnorr_sign(
const secp256k1_context* ctx,
unsigned char *sig64,
const unsigned char *msg32,
const unsigned char *seckey,
secp256k1_nonce_function noncefp,
const void *ndata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Verify a signature created by secp256k1_schnorr_sign.
* Returns: 1: correct signature
* 0: incorrect signature
* Args: ctx: a secp256k1 context object, initialized for verification.
* In: sig64: the 64-byte signature being verified (cannot be NULL)
* msg32: the 32-byte message hash being verified (cannot be NULL)
* pubkey: the public key to verify with (cannot be NULL)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_verify(
const secp256k1_context* ctx,
const unsigned char *sig64,
const unsigned char *msg32,
const secp256k1_pubkey *pubkey
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Recover an EC public key from a Schnorr signature created using
* secp256k1_schnorr_sign.
* Returns: 1: public key successfully recovered (which guarantees a correct
* signature).
* 0: otherwise.
* Args: ctx: pointer to a context object, initialized for
* verification (cannot be NULL)
* Out: pubkey: pointer to a pubkey to set to the recovered public key
* (cannot be NULL).
* In: sig64: signature as 64 byte array (cannot be NULL)
* msg32: the 32-byte message hash assumed to be signed (cannot
* be NULL)
*/
SECP256K1_API int secp256k1_schnorr_recover(
const secp256k1_context* ctx,
secp256k1_pubkey *pubkey,
const unsigned char *sig64,
const unsigned char *msg32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4);
/** Generate a nonce pair deterministically for use with
* secp256k1_schnorr_partial_sign.
* Returns: 1: valid nonce pair was generated.
* 0: otherwise (nonce generation function failed)
* Args: ctx: pointer to a context object, initialized for signing
* (cannot be NULL)
* Out: pubnonce: public side of the nonce (cannot be NULL)
* privnonce32: private side of the nonce (32 byte) (cannot be NULL)
* In: msg32: the 32-byte message hash assumed to be signed (cannot
* be NULL)
* sec32: the 32-byte private key (cannot be NULL)
* noncefp: pointer to a nonce generation function. If NULL,
* secp256k1_nonce_function_default is used
* noncedata: pointer to arbitrary data used by the nonce generation
* function (can be NULL)
*
* Do not use the output as a private/public key pair for signing/validation.
*/
SECP256K1_API int secp256k1_schnorr_generate_nonce_pair(
const secp256k1_context* ctx,
secp256k1_pubkey *pubnonce,
unsigned char *privnonce32,
const unsigned char *msg32,
const unsigned char *sec32,
secp256k1_nonce_function noncefp,
const void* noncedata
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
/** Produce a partial Schnorr signature, which can be combined using
* secp256k1_schnorr_partial_combine, to end up with a full signature that is
* verifiable using secp256k1_schnorr_verify.
* Returns: 1: signature created successfully.
* 0: no valid signature exists with this combination of keys, nonces
* and message (chance around 1 in 2^128)
* -1: invalid private key, nonce, or public nonces.
* Args: ctx: pointer to context object, initialized for signing (cannot
* be NULL)
* Out: sig64: pointer to 64-byte array to put partial signature in
* In: msg32: pointer to 32-byte message to sign
* sec32: pointer to 32-byte private key
* pubnonce_others: pointer to pubkey containing the sum of the other's
* nonces (see secp256k1_ec_pubkey_combine)
* secnonce32: pointer to 32-byte array containing our nonce
*
* The intended procedure for creating a multiparty signature is:
* - Each signer S[i] with private key x[i] and public key Q[i] runs
* secp256k1_schnorr_generate_nonce_pair to produce a pair (k[i],R[i]) of
* private/public nonces.
* - All signers communicate their public nonces to each other (revealing your
* private nonce can lead to discovery of your private key, so it should be
* considered secret).
* - All signers combine all the public nonces they received (excluding their
* own) using secp256k1_ec_pubkey_combine to obtain an
* Rall[i] = sum(R[0..i-1,i+1..n]).
* - All signers produce a partial signature using
* secp256k1_schnorr_partial_sign, passing in their own private key x[i],
* their own private nonce k[i], and the sum of the others' public nonces
* Rall[i].
* - All signers communicate their partial signatures to each other.
* - Someone combines all partial signatures using
* secp256k1_schnorr_partial_combine, to obtain a full signature.
* - The resulting signature is validatable using secp256k1_schnorr_verify, with
* public key equal to the result of secp256k1_ec_pubkey_combine of the
* signers' public keys (sum(Q[0..n])).
*
* Note that secp256k1_schnorr_partial_combine and secp256k1_ec_pubkey_combine
* function take their arguments in any order, and it is possible to
* pre-combine several inputs already with one call, and add more inputs later
* by calling the function again (they are commutative and associative).
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_sign(
const secp256k1_context* ctx,
unsigned char *sig64,
const unsigned char *msg32,
const unsigned char *sec32,
const secp256k1_pubkey *pubnonce_others,
const unsigned char *secnonce32
) SECP256K1_ARG_NONNULL(1) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3) SECP256K1_ARG_NONNULL(4) SECP256K1_ARG_NONNULL(5) SECP256K1_ARG_NONNULL(6);
/** Combine multiple Schnorr partial signatures.
* Returns: 1: the passed signatures were successfully combined.
* 0: the resulting signature is not valid (chance of 1 in 2^256)
* -1: some inputs were invalid, or the signatures were not created
* using the same set of nonces
* Args: ctx: pointer to a context object
* Out: sig64: pointer to a 64-byte array to place the combined signature
* (cannot be NULL)
* In: sig64sin: pointer to an array of n pointers to 64-byte input
* signatures
* n: the number of signatures to combine (at least 1)
*/
SECP256K1_API SECP256K1_WARN_UNUSED_RESULT int secp256k1_schnorr_partial_combine(
const secp256k1_context* ctx,
unsigned char *sig64,
const unsigned char * const * sig64sin,
size_t n
) SECP256K1_ARG_NONNULL(2) SECP256K1_ARG_NONNULL(3);
# ifdef __cplusplus
}
# endif
#endif

View file

@ -1,13 +0,0 @@
prefix=@prefix@
exec_prefix=@exec_prefix@
libdir=@libdir@
includedir=@includedir@
Name: libsecp256k1
Description: Optimized C library for EC operations on curve secp256k1
URL: https://github.com/bitcoin-core/secp256k1
Version: @PACKAGE_VERSION@
Cflags: -I${includedir}
Libs.private: @SECP_LIBS@
Libs: -L${libdir} -lsecp256k1

View file

@ -1,34 +0,0 @@
import sys
import hashlib
from sage.all import *
for t in xrange(1023, -1, -1):
p = 2**256 -2**32 - t
if p.is_prime():
print '%x'%p
break
a = 0
b = 7
F = FiniteField(p)
o = '%x' % (EllipticCurve ([F (a), F(b)]).order())
print o
gen2 = hashlib.sha256('0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8'.decode('hex'))
gH = EllipticCurve ([F (0), F(7)]).lift_x(int(gen2.hexdigest(),16))
print 'gH: %s' % gH
gen_h = '%x %x'%gH.xy()
print 'GENERATOR H: %s'%gen_h
#this doesn't create a point on the curve
#gen_j_input = '04%x%x'%gG.xy()
#this does
gen_j_input = gen2.hexdigest()
print 'gen_j_input: %s'%gen_j_input
gen3 = hashlib.sha256(gen_j_input.decode('hex'))
gJ = EllipticCurve ([F (0), F(7)]).lift_x(int(gen3.hexdigest(),16))
print 'gJ: %s' % gJ
gen_j = '%x %x'%gJ.xy()
print 'GENERATOR J: %s'%gen_j

View file

@ -1,322 +0,0 @@
# This code supports verifying group implementations which have branches
# or conditional statements (like cmovs), by allowing each execution path
# to independently set assumptions on input or intermediary variables.
#
# The general approach is:
# * A constraint is a tuple of two sets of of symbolic expressions:
# the first of which are required to evaluate to zero, the second of which
# are required to evaluate to nonzero.
# - A constraint is said to be conflicting if any of its nonzero expressions
# is in the ideal with basis the zero expressions (in other words: when the
# zero expressions imply that one of the nonzero expressions are zero).
# * There is a list of laws that describe the intended behaviour, including
# laws for addition and doubling. Each law is called with the symbolic point
# coordinates as arguments, and returns:
# - A constraint describing the assumptions under which it is applicable,
# called "assumeLaw"
# - A constraint describing the requirements of the law, called "require"
# * Implementations are transliterated into functions that operate as well on
# algebraic input points, and are called once per combination of branches
# exectured. Each execution returns:
# - A constraint describing the assumptions this implementation requires
# (such as Z1=1), called "assumeFormula"
# - A constraint describing the assumptions this specific branch requires,
# but which is by construction guaranteed to cover the entire space by
# merging the results from all branches, called "assumeBranch"
# - The result of the computation
# * All combinations of laws with implementation branches are tried, and:
# - If the combination of assumeLaw, assumeFormula, and assumeBranch results
# in a conflict, it means this law does not apply to this branch, and it is
# skipped.
# - For others, we try to prove the require constraints hold, assuming the
# information in assumeLaw + assumeFormula + assumeBranch, and if this does
# not succeed, we fail.
# + To prove an expression is zero, we check whether it belongs to the
# ideal with the assumed zero expressions as basis. This test is exact.
# + To prove an expression is nonzero, we check whether each of its
# factors is contained in the set of nonzero assumptions' factors.
# This test is not exact, so various combinations of original and
# reduced expressions' factors are tried.
# - If we succeed, we print out the assumptions from assumeFormula that
# weren't implied by assumeLaw already. Those from assumeBranch are skipped,
# as we assume that all constraints in it are complementary with each other.
#
# Based on the sage verification scripts used in the Explicit-Formulas Database
# by Tanja Lange and others, see http://hyperelliptic.org/EFD
class fastfrac:
"""Fractions over rings."""
def __init__(self,R,top,bot=1):
"""Construct a fractional, given a ring, a numerator, and denominator."""
self.R = R
if parent(top) == ZZ or parent(top) == R:
self.top = R(top)
self.bot = R(bot)
elif top.__class__ == fastfrac:
self.top = top.top
self.bot = top.bot * bot
else:
self.top = R(numerator(top))
self.bot = R(denominator(top)) * bot
def iszero(self,I):
"""Return whether this fraction is zero given an ideal."""
return self.top in I and self.bot not in I
def reduce(self,assumeZero):
zero = self.R.ideal(map(numerator, assumeZero))
return fastfrac(self.R, zero.reduce(self.top)) / fastfrac(self.R, zero.reduce(self.bot))
def __add__(self,other):
"""Add two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top + self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot + self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __sub__(self,other):
"""Subtract two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top - self.bot * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot - self.bot * other.top,self.bot * other.bot)
return NotImplemented
def __neg__(self):
"""Return the negation of a fraction."""
return fastfrac(self.R,-self.top,self.bot)
def __mul__(self,other):
"""Multiply two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top * other,self.bot)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.top,self.bot * other.bot)
return NotImplemented
def __rmul__(self,other):
"""Multiply something else with a fraction."""
return self.__mul__(other)
def __div__(self,other):
"""Divide two fractions."""
if parent(other) == ZZ:
return fastfrac(self.R,self.top,self.bot * other)
if other.__class__ == fastfrac:
return fastfrac(self.R,self.top * other.bot,self.bot * other.top)
return NotImplemented
def __pow__(self,other):
"""Compute a power of a fraction."""
if parent(other) == ZZ:
if other < 0:
# Negative powers require flipping top and bottom
return fastfrac(self.R,self.bot ^ (-other),self.top ^ (-other))
else:
return fastfrac(self.R,self.top ^ other,self.bot ^ other)
return NotImplemented
def __str__(self):
return "fastfrac((" + str(self.top) + ") / (" + str(self.bot) + "))"
def __repr__(self):
return "%s" % self
def numerator(self):
return self.top
class constraints:
"""A set of constraints, consisting of zero and nonzero expressions.
Constraints can either be used to express knowledge or a requirement.
Both the fields zero and nonzero are maps from expressions to description
strings. The expressions that are the keys in zero are required to be zero,
and the expressions that are the keys in nonzero are required to be nonzero.
Note that (a != 0) and (b != 0) is the same as (a*b != 0), so all keys in
nonzero could be multiplied into a single key. This is often much less
efficient to work with though, so we keep them separate inside the
constraints. This allows higher-level code to do fast checks on the individual
nonzero elements, or combine them if needed for stronger checks.
We can't multiply the different zero elements, as it would suffice for one of
the factors to be zero, instead of all of them. Instead, the zero elements are
typically combined into an ideal first.
"""
def __init__(self, **kwargs):
if 'zero' in kwargs:
self.zero = dict(kwargs['zero'])
else:
self.zero = dict()
if 'nonzero' in kwargs:
self.nonzero = dict(kwargs['nonzero'])
else:
self.nonzero = dict()
def negate(self):
return constraints(zero=self.nonzero, nonzero=self.zero)
def __add__(self, other):
zero = self.zero.copy()
zero.update(other.zero)
nonzero = self.nonzero.copy()
nonzero.update(other.nonzero)
return constraints(zero=zero, nonzero=nonzero)
def __str__(self):
return "constraints(zero=%s,nonzero=%s)" % (self.zero, self.nonzero)
def __repr__(self):
return "%s" % self
def conflicts(R, con):
"""Check whether any of the passed non-zero assumptions is implied by the zero assumptions"""
zero = R.ideal(map(numerator, con.zero))
if 1 in zero:
return True
# First a cheap check whether any of the individual nonzero terms conflict on
# their own.
for nonzero in con.nonzero:
if nonzero.iszero(zero):
return True
# It can be the case that entries in the nonzero set do not individually
# conflict with the zero set, but their combination does. For example, knowing
# that either x or y is zero is equivalent to having x*y in the zero set.
# Having x or y individually in the nonzero set is not a conflict, but both
# simultaneously is, so that is the right thing to check for.
if reduce(lambda a,b: a * b, con.nonzero, fastfrac(R, 1)).iszero(zero):
return True
return False
def get_nonzero_set(R, assume):
"""Calculate a simple set of nonzero expressions"""
zero = R.ideal(map(numerator, assume.zero))
nonzero = set()
for nz in map(numerator, assume.nonzero):
for (f,n) in nz.factor():
nonzero.add(f)
rnz = zero.reduce(nz)
for (f,n) in rnz.factor():
nonzero.add(f)
return nonzero
def prove_nonzero(R, exprs, assume):
"""Check whether an expression is provably nonzero, given assumptions"""
zero = R.ideal(map(numerator, assume.zero))
nonzero = get_nonzero_set(R, assume)
expl = set()
ok = True
for expr in exprs:
if numerator(expr) in zero:
return (False, [exprs[expr]])
allexprs = reduce(lambda a,b: numerator(a)*numerator(b), exprs, 1)
for (f, n) in allexprs.factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for (f, n) in zero.reduce(numerator(allexprs)).factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in numerator(expr).factor():
if f not in nonzero:
ok = False
if ok:
return (True, None)
ok = True
for expr in exprs:
for (f,n) in zero.reduce(numerator(expr)).factor():
if f not in nonzero:
expl.add(exprs[expr])
if expl:
return (False, list(expl))
else:
return (True, None)
def prove_zero(R, exprs, assume):
"""Check whether all of the passed expressions are provably zero, given assumptions"""
r, e = prove_nonzero(R, dict(map(lambda x: (fastfrac(R, x.bot, 1), exprs[x]), exprs)), assume)
if not r:
return (False, map(lambda x: "Possibly zero denominator: %s" % x, e))
zero = R.ideal(map(numerator, assume.zero))
nonzero = prod(x for x in assume.nonzero)
expl = []
for expr in exprs:
if not expr.iszero(zero):
expl.append(exprs[expr])
if not expl:
return (True, None)
return (False, expl)
def describe_extra(R, assume, assumeExtra):
"""Describe what assumptions are added, given existing assumptions"""
zerox = assume.zero.copy()
zerox.update(assumeExtra.zero)
zero = R.ideal(map(numerator, assume.zero))
zeroextra = R.ideal(map(numerator, zerox))
nonzero = get_nonzero_set(R, assume)
ret = set()
# Iterate over the extra zero expressions
for base in assumeExtra.zero:
if base not in zero:
add = []
for (f, n) in numerator(base).factor():
if f not in nonzero:
add += ["%s" % f]
if add:
ret.add((" * ".join(add)) + " = 0 [%s]" % assumeExtra.zero[base])
# Iterate over the extra nonzero expressions
for nz in assumeExtra.nonzero:
nzr = zeroextra.reduce(numerator(nz))
if nzr not in zeroextra:
for (f,n) in nzr.factor():
if zeroextra.reduce(f) not in nonzero:
ret.add("%s != 0" % zeroextra.reduce(f))
return ", ".join(x for x in ret)
def check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require):
"""Check a set of zero and nonzero requirements, given a set of zero and nonzero assumptions"""
assume = assumeLaw + assumeAssert + assumeBranch
if conflicts(R, assume):
# This formula does not apply
return None
describe = describe_extra(R, assumeLaw + assumeBranch, assumeAssert)
ok, msg = prove_zero(R, require.zero, assume)
if not ok:
return "FAIL, %s fails (assuming %s)" % (str(msg), describe)
res, expl = prove_nonzero(R, require.nonzero, assume)
if not res:
return "FAIL, %s fails (assuming %s)" % (str(expl), describe)
if describe != "":
return "OK (assuming %s)" % describe
else:
return "OK"
def concrete_verify(c):
for k in c.zero:
if k != 0:
return (False, c.zero[k])
for k in c.nonzero:
if k == 0:
return (False, c.nonzero[k])
return (True, None)

View file

@ -1,306 +0,0 @@
# Test libsecp256k1' group operation implementations using prover.sage
import sys
load("group_prover.sage")
load("weierstrass_prover.sage")
def formula_secp256k1_gej_double_var(a):
"""libsecp256k1's secp256k1_gej_double_var, used by various addition functions"""
rz = a.Z * a.Y
rz = rz * 2
t1 = a.X^2
t1 = t1 * 3
t2 = t1^2
t3 = a.Y^2
t3 = t3 * 2
t4 = t3^2
t4 = t4 * 2
t3 = t3 * a.X
rx = t3
rx = rx * 4
rx = -rx
rx = rx + t2
t2 = -t2
t3 = t3 * 6
t3 = t3 + t2
ry = t1 * t3
t2 = -t4
ry = ry + t2
return jacobianpoint(rx, ry, rz)
def formula_secp256k1_gej_add_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_var"""
if branch == 0:
return (constraints(), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
if branch == 1:
return (constraints(), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
z22 = b.Z^2
z12 = a.Z^2
u1 = a.X * z22
u2 = b.X * z12
s1 = a.Y * z22
s1 = s1 * b.Z
s2 = b.Y * z12
s2 = s2 * a.Z
h = -u1
h = h + u2
i = -s1
i = i + s2
if branch == 2:
r = formula_secp256k1_gej_double_var(a)
return (constraints(), constraints(zero={h : 'h=0', i : 'i=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}), r)
if branch == 3:
return (constraints(), constraints(zero={h : 'h=0', a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={i : 'i!=0'}), point_at_infinity())
i2 = i^2
h2 = h^2
h3 = h2 * h
h = h * b.Z
rz = a.Z * h
t = u1 * h2
rx = t
rx = rx * 2
rx = rx + h3
rx = -rx
rx = rx + i2
ry = -rx
ry = ry + t
ry = ry * i
h3 = h3 * s1
h3 = -h3
ry = ry + h3
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_ge_var, which assume bz==1"""
if branch == 0:
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(nonzero={a.Infinity : 'a_infinite'}), b)
if branch == 1:
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite'}, nonzero={b.Infinity : 'b_infinite'}), a)
z12 = a.Z^2
u1 = a.X
u2 = b.X * z12
s1 = a.Y
s2 = b.Y * z12
s2 = s2 * a.Z
h = -u1
h = h + u2
i = -s1
i = i + s2
if (branch == 2):
r = formula_secp256k1_gej_double_var(a)
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
if (branch == 3):
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
i2 = i^2
h2 = h^2
h3 = h * h2
rz = a.Z * h
t = u1 * h2
rx = t
rx = rx * 2
rx = rx + h3
rx = -rx
rx = rx + i2
ry = -rx
ry = ry + t
ry = ry * i
h3 = h3 * s1
h3 = -h3
ry = ry + h3
return (constraints(zero={b.Z - 1 : 'b.z=1'}), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_zinv_var(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_zinv_var"""
bzinv = b.Z^(-1)
if branch == 0:
return (constraints(), constraints(nonzero={b.Infinity : 'b_infinite'}), a)
if branch == 1:
bzinv2 = bzinv^2
bzinv3 = bzinv2 * bzinv
rx = b.X * bzinv2
ry = b.Y * bzinv3
rz = 1
return (constraints(), constraints(zero={b.Infinity : 'b_finite'}, nonzero={a.Infinity : 'a_infinite'}), jacobianpoint(rx, ry, rz))
azz = a.Z * bzinv
z12 = azz^2
u1 = a.X
u2 = b.X * z12
s1 = a.Y
s2 = b.Y * z12
s2 = s2 * azz
h = -u1
h = h + u2
i = -s1
i = i + s2
if branch == 2:
r = formula_secp256k1_gej_double_var(a)
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0', i : 'i=0'}), r)
if branch == 3:
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite', h : 'h=0'}, nonzero={i : 'i!=0'}), point_at_infinity())
i2 = i^2
h2 = h^2
h3 = h * h2
rz = a.Z
rz = rz * h
t = u1 * h2
rx = t
rx = rx * 2
rx = rx + h3
rx = -rx
rx = rx + i2
ry = -rx
ry = ry + t
ry = ry * i
h3 = h3 * s1
h3 = -h3
ry = ry + h3
return (constraints(), constraints(zero={a.Infinity : 'a_finite', b.Infinity : 'b_finite'}, nonzero={h : 'h!=0'}), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge(branch, a, b):
"""libsecp256k1's secp256k1_gej_add_ge"""
zeroes = {}
nonzeroes = {}
a_infinity = False
if (branch & 4) != 0:
nonzeroes.update({a.Infinity : 'a_infinite'})
a_infinity = True
else:
zeroes.update({a.Infinity : 'a_finite'})
zz = a.Z^2
u1 = a.X
u2 = b.X * zz
s1 = a.Y
s2 = b.Y * zz
s2 = s2 * a.Z
t = u1
t = t + u2
m = s1
m = m + s2
rr = t^2
m_alt = -u2
tt = u1 * m_alt
rr = rr + tt
degenerate = (branch & 3) == 3
if (branch & 1) != 0:
zeroes.update({m : 'm_zero'})
else:
nonzeroes.update({m : 'm_nonzero'})
if (branch & 2) != 0:
zeroes.update({rr : 'rr_zero'})
else:
nonzeroes.update({rr : 'rr_nonzero'})
rr_alt = s1
rr_alt = rr_alt * 2
m_alt = m_alt + u1
if not degenerate:
rr_alt = rr
m_alt = m
n = m_alt^2
q = n * t
n = n^2
if degenerate:
n = m
t = rr_alt^2
rz = a.Z * m_alt
infinity = False
if (branch & 8) != 0:
if not a_infinity:
infinity = True
zeroes.update({rz : 'r.z=0'})
else:
nonzeroes.update({rz : 'r.z!=0'})
rz = rz * 2
q = -q
t = t + q
rx = t
t = t * 2
t = t + q
t = t * rr_alt
t = t + n
ry = -t
rx = rx * 4
ry = ry * 4
if a_infinity:
rx = b.X
ry = b.Y
rz = 1
if infinity:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), point_at_infinity())
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zeroes, nonzero=nonzeroes), jacobianpoint(rx, ry, rz))
def formula_secp256k1_gej_add_ge_old(branch, a, b):
"""libsecp256k1's old secp256k1_gej_add_ge, which fails when ay+by=0 but ax!=bx"""
a_infinity = (branch & 1) != 0
zero = {}
nonzero = {}
if a_infinity:
nonzero.update({a.Infinity : 'a_infinite'})
else:
zero.update({a.Infinity : 'a_finite'})
zz = a.Z^2
u1 = a.X
u2 = b.X * zz
s1 = a.Y
s2 = b.Y * zz
s2 = s2 * a.Z
z = a.Z
t = u1
t = t + u2
m = s1
m = m + s2
n = m^2
q = n * t
n = n^2
rr = t^2
t = u1 * u2
t = -t
rr = rr + t
t = rr^2
rz = m * z
infinity = False
if (branch & 2) != 0:
if not a_infinity:
infinity = True
else:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(nonzero={z : 'conflict_a'}, zero={z : 'conflict_b'}), point_at_infinity())
zero.update({rz : 'r.z=0'})
else:
nonzero.update({rz : 'r.z!=0'})
rz = rz * (0 if a_infinity else 2)
rx = t
q = -q
rx = rx + q
q = q * 3
t = t * 2
t = t + q
t = t * rr
t = t + n
ry = -t
rx = rx * (0 if a_infinity else 4)
ry = ry * (0 if a_infinity else 4)
t = b.X
t = t * (1 if a_infinity else 0)
rx = rx + t
t = b.Y
t = t * (1 if a_infinity else 0)
ry = ry + t
t = (1 if a_infinity else 0)
rz = rz + t
if infinity:
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), point_at_infinity())
return (constraints(zero={b.Z - 1 : 'b.z=1', b.Infinity : 'b_finite'}), constraints(zero=zero, nonzero=nonzero), jacobianpoint(rx, ry, rz))
if __name__ == "__main__":
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge)
check_symbolic_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old)
if len(sys.argv) >= 2 and sys.argv[1] == "--exhaustive":
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_var", 0, 7, 5, formula_secp256k1_gej_add_var, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_var", 0, 7, 5, formula_secp256k1_gej_add_ge_var, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_zinv_var", 0, 7, 5, formula_secp256k1_gej_add_zinv_var, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge", 0, 7, 16, formula_secp256k1_gej_add_ge, 43)
check_exhaustive_jacobian_weierstrass("secp256k1_gej_add_ge_old [should fail]", 0, 7, 4, formula_secp256k1_gej_add_ge_old, 43)

View file

@ -1,264 +0,0 @@
# Prover implementation for Weierstrass curves of the form
# y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws
# operating on affine and Jacobian coordinates, including the point at infinity
# represented by a 4th variable in coordinates.
load("group_prover.sage")
class affinepoint:
def __init__(self, x, y, infinity=0):
self.x = x
self.y = y
self.infinity = infinity
def __str__(self):
return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity)
class jacobianpoint:
def __init__(self, x, y, z, infinity=0):
self.X = x
self.Y = y
self.Z = z
self.Infinity = infinity
def __str__(self):
return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity)
def point_at_infinity():
return jacobianpoint(1, 1, 1, 1)
def negate(p):
if p.__class__ == affinepoint:
return affinepoint(p.x, -p.y)
if p.__class__ == jacobianpoint:
return jacobianpoint(p.X, -p.Y, p.Z)
assert(False)
def on_weierstrass_curve(A, B, p):
"""Return a set of zero-expressions for an affine point to be on the curve"""
return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'})
def tangential_to_weierstrass_curve(A, B, p12, p3):
"""Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)"""
return constraints(zero={
(p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve'
})
def colinear(p1, p2, p3):
"""Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear"""
return constraints(zero={
(p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1',
(p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2',
(p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3'
})
def good_affine_point(p):
return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'})
def good_jacobian_point(p):
return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'})
def good_point(p):
return constraints(nonzero={p.Z^6 : 'nonzero_X'})
def finite(p, *affine_fns):
con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'})
if p.Z != 0:
return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con)
else:
return con
def infinite(p):
return constraints(nonzero={p.Infinity : 'infinite_point'})
def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian add, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(nonzero={pa.x - pb.x : 'different_x'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
colinear(pa, pb, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
tangential_to_weierstrass_curve(A, B, pa, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'}))
require = infinite(pC)
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pb) +
infinite(pA) +
finite(pB))
require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
infinite(pB) +
finite(pA))
require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
infinite(pA) +
infinite(pB))
require = infinite(pC)
return (assumeLaw, require)
laws_jacobian_weierstrass = {
'add': law_jacobian_weierstrass_add,
'double': law_jacobian_weierstrass_double,
'add_opposite': law_jacobian_weierstrass_add_opposites,
'add_infinite_a': law_jacobian_weierstrass_add_infinite_a,
'add_infinite_b': law_jacobian_weierstrass_add_infinite_b,
'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab
}
def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field"""
F = Integers(p)
print "Formula %s on Z%i:" % (name, p)
points = []
for x in xrange(0, p):
for y in xrange(0, p):
point = affinepoint(F(x), F(y))
r, e = concrete_verify(on_weierstrass_curve(A, B, point))
if r:
points.append(point)
for za in xrange(1, p):
for zb in xrange(1, p):
for pa in points:
for pb in points:
for ia in xrange(2):
for ib in xrange(2):
pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia)
pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib)
for branch in xrange(0, branches):
assumeAssert, assumeBranch, pC = formula(branch, pA, pB)
pC.X = F(pC.X)
pC.Y = F(pC.Y)
pC.Z = F(pC.Z)
pC.Infinity = F(pC.Infinity)
r, e = concrete_verify(assumeAssert + assumeBranch)
if r:
match = False
for key in laws_jacobian_weierstrass:
assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC)
r, e = concrete_verify(assumeLaw)
if r:
if match:
print " multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity)
else:
match = True
r, e = concrete_verify(require)
if not r:
print " failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e)
print
def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC):
assumeLaw, require = f(A, B, pa, pb, pA, pB, pC)
return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require)
def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically"""
R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
lift = lambda x: fastfrac(R,x)
ax = lift(ax)
ay = lift(ay)
Az = lift(Az)
bx = lift(bx)
by = lift(by)
Bz = lift(Bz)
Ai = lift(Ai)
Bi = lift(Bi)
pa = affinepoint(ax, ay, Ai)
pb = affinepoint(bx, by, Bi)
pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai)
pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi)
res = {}
for key in laws_jacobian_weierstrass:
res[key] = []
print ("Formula " + name + ":")
count = 0
for branch in xrange(branches):
assumeFormula, assumeBranch, pC = formula(branch, pA, pB)
pC.X = lift(pC.X)
pC.Y = lift(pC.Y)
pC.Z = lift(pC.Z)
pC.Infinity = lift(pC.Infinity)
for key in laws_jacobian_weierstrass:
res[key].append((check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC), branch))
for key in res:
print " %s:" % key
val = res[key]
for x in val:
if x[0] is not None:
print " branch %i: %s" % (x[1], x[0])
print

View file

@ -1,919 +0,0 @@
@ vim: set tabstop=8 softtabstop=8 shiftwidth=8 noexpandtab syntax=armasm:
/**********************************************************************
* Copyright (c) 2014 Wladimir J. van der Laan *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/*
ARM implementation of field_10x26 inner loops.
Note:
- To avoid unnecessary loads and make use of available registers, two
'passes' have every time been interleaved, with the odd passes accumulating c' and d'
which will be added to c and d respectively in the the even passes
*/
.syntax unified
.arch armv7-a
@ eabi attributes - see readelf -A
.eabi_attribute 8, 1 @ Tag_ARM_ISA_use = yes
.eabi_attribute 9, 0 @ Tag_Thumb_ISA_use = no
.eabi_attribute 10, 0 @ Tag_FP_arch = none
.eabi_attribute 24, 1 @ Tag_ABI_align_needed = 8-byte
.eabi_attribute 25, 1 @ Tag_ABI_align_preserved = 8-byte, except leaf SP
.eabi_attribute 30, 2 @ Tag_ABI_optimization_goals = Agressive Speed
.eabi_attribute 34, 1 @ Tag_CPU_unaligned_access = v6
.text
@ Field constants
.set field_R0, 0x3d10
.set field_R1, 0x400
.set field_not_M, 0xfc000000 @ ~M = ~0x3ffffff
.align 2
.global secp256k1_fe_mul_inner
.type secp256k1_fe_mul_inner, %function
@ Arguments:
@ r0 r Restrict: can overlap with a, not with b
@ r1 a
@ r2 b
@ Stack (total 4+10*4 = 44)
@ sp + #0 saved 'r' pointer
@ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9
secp256k1_fe_mul_inner:
stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14}
sub sp, sp, #48 @ frame=44 + alignment
str r0, [sp, #0] @ save result address, we need it only at the end
/******************************************
* Main computation code.
******************************************
Allocation:
r0,r14,r7,r8 scratch
r1 a (pointer)
r2 b (pointer)
r3:r4 c
r5:r6 d
r11:r12 c'
r9:r10 d'
Note: do not write to r[] here, it may overlap with a[]
*/
/* A - interleaved with B */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #9*4] @ b[9]
ldr r0, [r1, #1*4] @ a[1]
umull r5, r6, r7, r8 @ d = a[0] * b[9]
ldr r14, [r2, #8*4] @ b[8]
umull r9, r10, r0, r8 @ d' = a[1] * b[9]
ldr r7, [r1, #2*4] @ a[2]
umlal r5, r6, r0, r14 @ d += a[1] * b[8]
ldr r8, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r14 @ d' += a[2] * b[8]
ldr r0, [r1, #3*4] @ a[3]
umlal r5, r6, r7, r8 @ d += a[2] * b[7]
ldr r14, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r8 @ d' += a[3] * b[7]
ldr r7, [r1, #4*4] @ a[4]
umlal r5, r6, r0, r14 @ d += a[3] * b[6]
ldr r8, [r2, #5*4] @ b[5]
umlal r9, r10, r7, r14 @ d' += a[4] * b[6]
ldr r0, [r1, #5*4] @ a[5]
umlal r5, r6, r7, r8 @ d += a[4] * b[5]
ldr r14, [r2, #4*4] @ b[4]
umlal r9, r10, r0, r8 @ d' += a[5] * b[5]
ldr r7, [r1, #6*4] @ a[6]
umlal r5, r6, r0, r14 @ d += a[5] * b[4]
ldr r8, [r2, #3*4] @ b[3]
umlal r9, r10, r7, r14 @ d' += a[6] * b[4]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r8 @ d += a[6] * b[3]
ldr r14, [r2, #2*4] @ b[2]
umlal r9, r10, r0, r8 @ d' += a[7] * b[3]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r14 @ d += a[7] * b[2]
ldr r8, [r2, #1*4] @ b[1]
umlal r9, r10, r7, r14 @ d' += a[8] * b[2]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r8 @ d += a[8] * b[1]
ldr r14, [r2, #0*4] @ b[0]
umlal r9, r10, r0, r8 @ d' += a[9] * b[1]
ldr r7, [r1, #0*4] @ a[0]
umlal r5, r6, r0, r14 @ d += a[9] * b[0]
@ r7,r14 used in B
bic r0, r5, field_not_M @ t9 = d & M
str r0, [sp, #4 + 4*9]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
/* B */
umull r3, r4, r7, r14 @ c = a[0] * b[0]
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u0 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u0 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t0 = c & M
str r14, [sp, #4 + 0*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u0 * R1
umlal r3, r4, r0, r14
/* C - interleaved with D */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #2*4] @ b[2]
ldr r14, [r2, #1*4] @ b[1]
umull r11, r12, r7, r8 @ c' = a[0] * b[2]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[1] * b[1]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[2] * b[0]
ldr r0, [r1, #3*4] @ a[3]
umlal r5, r6, r7, r14 @ d += a[2] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[3] * b[9]
ldr r7, [r1, #4*4] @ a[4]
umlal r5, r6, r0, r8 @ d += a[3] * b[8]
ldr r14, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r8 @ d' += a[4] * b[8]
ldr r0, [r1, #5*4] @ a[5]
umlal r5, r6, r7, r14 @ d += a[4] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r14 @ d' += a[5] * b[7]
ldr r7, [r1, #6*4] @ a[6]
umlal r5, r6, r0, r8 @ d += a[5] * b[6]
ldr r14, [r2, #5*4] @ b[5]
umlal r9, r10, r7, r8 @ d' += a[6] * b[6]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r14 @ d += a[6] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r9, r10, r0, r14 @ d' += a[7] * b[5]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r8 @ d += a[7] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r9, r10, r7, r8 @ d' += a[8] * b[4]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r9, r10, r0, r14 @ d' += a[9] * b[3]
umlal r5, r6, r0, r8 @ d += a[9] * b[2]
bic r0, r5, field_not_M @ u1 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u1 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t1 = c & M
str r14, [sp, #4 + 1*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u1 * R1
umlal r3, r4, r0, r14
/* D */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u2 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u2 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t2 = c & M
str r14, [sp, #4 + 2*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u2 * R1
umlal r3, r4, r0, r14
/* E - interleaved with F */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #4*4] @ b[4]
umull r11, r12, r7, r8 @ c' = a[0] * b[4]
ldr r8, [r2, #3*4] @ b[3]
umlal r3, r4, r7, r8 @ c += a[0] * b[3]
ldr r7, [r1, #1*4] @ a[1]
umlal r11, r12, r7, r8 @ c' += a[1] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r3, r4, r7, r8 @ c += a[1] * b[2]
ldr r7, [r1, #2*4] @ a[2]
umlal r11, r12, r7, r8 @ c' += a[2] * b[2]
ldr r8, [r2, #1*4] @ b[1]
umlal r3, r4, r7, r8 @ c += a[2] * b[1]
ldr r7, [r1, #3*4] @ a[3]
umlal r11, r12, r7, r8 @ c' += a[3] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r3, r4, r7, r8 @ c += a[3] * b[0]
ldr r7, [r1, #4*4] @ a[4]
umlal r11, r12, r7, r8 @ c' += a[4] * b[0]
ldr r8, [r2, #9*4] @ b[9]
umlal r5, r6, r7, r8 @ d += a[4] * b[9]
ldr r7, [r1, #5*4] @ a[5]
umull r9, r10, r7, r8 @ d' = a[5] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umlal r5, r6, r7, r8 @ d += a[5] * b[8]
ldr r7, [r1, #6*4] @ a[6]
umlal r9, r10, r7, r8 @ d' += a[6] * b[8]
ldr r8, [r2, #7*4] @ b[7]
umlal r5, r6, r7, r8 @ d += a[6] * b[7]
ldr r7, [r1, #7*4] @ a[7]
umlal r9, r10, r7, r8 @ d' += a[7] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r5, r6, r7, r8 @ d += a[7] * b[6]
ldr r7, [r1, #8*4] @ a[8]
umlal r9, r10, r7, r8 @ d' += a[8] * b[6]
ldr r8, [r2, #5*4] @ b[5]
umlal r5, r6, r7, r8 @ d += a[8] * b[5]
ldr r7, [r1, #9*4] @ a[9]
umlal r9, r10, r7, r8 @ d' += a[9] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r5, r6, r7, r8 @ d += a[9] * b[4]
bic r0, r5, field_not_M @ u3 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u3 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t3 = c & M
str r14, [sp, #4 + 3*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u3 * R1
umlal r3, r4, r0, r14
/* F */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u4 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u4 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t4 = c & M
str r14, [sp, #4 + 4*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u4 * R1
umlal r3, r4, r0, r14
/* G - interleaved with H */
ldr r7, [r1, #0*4] @ a[0]
ldr r8, [r2, #6*4] @ b[6]
ldr r14, [r2, #5*4] @ b[5]
umull r11, r12, r7, r8 @ c' = a[0] * b[6]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r11, r12, r0, r14 @ c' += a[1] * b[5]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r11, r12, r7, r8 @ c' += a[2] * b[4]
ldr r0, [r1, #3*4] @ a[3]
umlal r3, r4, r7, r14 @ c += a[2] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r11, r12, r0, r14 @ c' += a[3] * b[3]
ldr r7, [r1, #4*4] @ a[4]
umlal r3, r4, r0, r8 @ c += a[3] * b[2]
ldr r14, [r2, #1*4] @ b[1]
umlal r11, r12, r7, r8 @ c' += a[4] * b[2]
ldr r0, [r1, #5*4] @ a[5]
umlal r3, r4, r7, r14 @ c += a[4] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[5] * b[1]
ldr r7, [r1, #6*4] @ a[6]
umlal r3, r4, r0, r8 @ c += a[5] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[6] * b[0]
ldr r0, [r1, #7*4] @ a[7]
umlal r5, r6, r7, r14 @ d += a[6] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[7] * b[9]
ldr r7, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r8 @ d += a[7] * b[8]
ldr r14, [r2, #7*4] @ b[7]
umlal r9, r10, r7, r8 @ d' += a[8] * b[8]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r9, r10, r0, r14 @ d' += a[9] * b[7]
umlal r5, r6, r0, r8 @ d += a[9] * b[6]
bic r0, r5, field_not_M @ u5 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u5 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t5 = c & M
str r14, [sp, #4 + 5*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u5 * R1
umlal r3, r4, r0, r14
/* H */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u6 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u6 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t6 = c & M
str r14, [sp, #4 + 6*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u6 * R1
umlal r3, r4, r0, r14
/* I - interleaved with J */
ldr r8, [r2, #8*4] @ b[8]
ldr r7, [r1, #0*4] @ a[0]
ldr r14, [r2, #7*4] @ b[7]
umull r11, r12, r7, r8 @ c' = a[0] * b[8]
ldr r0, [r1, #1*4] @ a[1]
umlal r3, r4, r7, r14 @ c += a[0] * b[7]
ldr r8, [r2, #6*4] @ b[6]
umlal r11, r12, r0, r14 @ c' += a[1] * b[7]
ldr r7, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r8 @ c += a[1] * b[6]
ldr r14, [r2, #5*4] @ b[5]
umlal r11, r12, r7, r8 @ c' += a[2] * b[6]
ldr r0, [r1, #3*4] @ a[3]
umlal r3, r4, r7, r14 @ c += a[2] * b[5]
ldr r8, [r2, #4*4] @ b[4]
umlal r11, r12, r0, r14 @ c' += a[3] * b[5]
ldr r7, [r1, #4*4] @ a[4]
umlal r3, r4, r0, r8 @ c += a[3] * b[4]
ldr r14, [r2, #3*4] @ b[3]
umlal r11, r12, r7, r8 @ c' += a[4] * b[4]
ldr r0, [r1, #5*4] @ a[5]
umlal r3, r4, r7, r14 @ c += a[4] * b[3]
ldr r8, [r2, #2*4] @ b[2]
umlal r11, r12, r0, r14 @ c' += a[5] * b[3]
ldr r7, [r1, #6*4] @ a[6]
umlal r3, r4, r0, r8 @ c += a[5] * b[2]
ldr r14, [r2, #1*4] @ b[1]
umlal r11, r12, r7, r8 @ c' += a[6] * b[2]
ldr r0, [r1, #7*4] @ a[7]
umlal r3, r4, r7, r14 @ c += a[6] * b[1]
ldr r8, [r2, #0*4] @ b[0]
umlal r11, r12, r0, r14 @ c' += a[7] * b[1]
ldr r7, [r1, #8*4] @ a[8]
umlal r3, r4, r0, r8 @ c += a[7] * b[0]
ldr r14, [r2, #9*4] @ b[9]
umlal r11, r12, r7, r8 @ c' += a[8] * b[0]
ldr r0, [r1, #9*4] @ a[9]
umlal r5, r6, r7, r14 @ d += a[8] * b[9]
ldr r8, [r2, #8*4] @ b[8]
umull r9, r10, r0, r14 @ d' = a[9] * b[9]
umlal r5, r6, r0, r8 @ d += a[9] * b[8]
bic r0, r5, field_not_M @ u7 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u7 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t7 = c & M
str r14, [sp, #4 + 7*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u7 * R1
umlal r3, r4, r0, r14
/* J */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u8 = d & M
str r0, [sp, #4 + 8*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u8 * R0
umlal r3, r4, r0, r14
/******************************************
* compute and write back result
******************************************
Allocation:
r0 r
r3:r4 c
r5:r6 d
r7 t0
r8 t1
r9 t2
r11 u8
r12 t9
r1,r2,r10,r14 scratch
Note: do not read from a[] after here, it may overlap with r[]
*/
ldr r0, [sp, #0]
add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9
ldmia r1, {r2,r7,r8,r9,r10,r11,r12}
add r1, r0, #3*4
stmia r1, {r2,r7,r8,r9,r10}
bic r2, r3, field_not_M @ r[8] = c & M
str r2, [r0, #8*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u8 * R1
umlal r3, r4, r11, r14
movw r14, field_R0 @ c += d * R0
umlal r3, r4, r5, r14
adds r3, r3, r12 @ c += t9
adc r4, r4, #0
add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2
ldmia r1, {r7,r8,r9}
ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4)
str r2, [r0, #9*4]
mov r3, r3, lsr #22 @ c >>= 22
orr r3, r3, r4, asl #10
mov r4, r4, lsr #22
movw r14, field_R1 << 4 @ c += d * (R1 << 4)
umlal r3, r4, r5, r14
movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add)
umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4)
adds r5, r5, r7 @ d.lo += t0
mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4)
adc r6, r6, 0 @ d.hi += carry
bic r2, r5, field_not_M @ r[0] = d & M
str r2, [r0, #0*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add)
umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4)
adds r5, r5, r8 @ d.lo += t1
adc r6, r6, #0 @ d.hi += carry
adds r5, r5, r1 @ d.lo += tmp.lo
mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4)
adc r6, r6, r2 @ d.hi += carry + tmp.hi
bic r2, r5, field_not_M @ r[1] = d & M
str r2, [r0, #1*4]
mov r5, r5, lsr #26 @ d >>= 26 (ignore hi)
orr r5, r5, r6, asl #6
add r5, r5, r9 @ d += t2
str r5, [r0, #2*4] @ r[2] = d
add sp, sp, #48
ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}
.size secp256k1_fe_mul_inner, .-secp256k1_fe_mul_inner
.align 2
.global secp256k1_fe_sqr_inner
.type secp256k1_fe_sqr_inner, %function
@ Arguments:
@ r0 r Can overlap with a
@ r1 a
@ Stack (total 4+10*4 = 44)
@ sp + #0 saved 'r' pointer
@ sp + #4 + 4*X t0,t1,t2,t3,t4,t5,t6,t7,u8,t9
secp256k1_fe_sqr_inner:
stmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, r14}
sub sp, sp, #48 @ frame=44 + alignment
str r0, [sp, #0] @ save result address, we need it only at the end
/******************************************
* Main computation code.
******************************************
Allocation:
r0,r14,r2,r7,r8 scratch
r1 a (pointer)
r3:r4 c
r5:r6 d
r11:r12 c'
r9:r10 d'
Note: do not write to r[] here, it may overlap with a[]
*/
/* A interleaved with B */
ldr r0, [r1, #1*4] @ a[1]*2
ldr r7, [r1, #0*4] @ a[0]
mov r0, r0, asl #1
ldr r14, [r1, #9*4] @ a[9]
umull r3, r4, r7, r7 @ c = a[0] * a[0]
ldr r8, [r1, #8*4] @ a[8]
mov r7, r7, asl #1
umull r5, r6, r7, r14 @ d = a[0]*2 * a[9]
ldr r7, [r1, #2*4] @ a[2]*2
umull r9, r10, r0, r14 @ d' = a[1]*2 * a[9]
ldr r14, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r8 @ d += a[1]*2 * a[8]
mov r7, r7, asl #1
ldr r0, [r1, #3*4] @ a[3]*2
umlal r9, r10, r7, r8 @ d' += a[2]*2 * a[8]
ldr r8, [r1, #6*4] @ a[6]
umlal r5, r6, r7, r14 @ d += a[2]*2 * a[7]
mov r0, r0, asl #1
ldr r7, [r1, #4*4] @ a[4]*2
umlal r9, r10, r0, r14 @ d' += a[3]*2 * a[7]
ldr r14, [r1, #5*4] @ a[5]
mov r7, r7, asl #1
umlal r5, r6, r0, r8 @ d += a[3]*2 * a[6]
umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[6]
umlal r5, r6, r7, r14 @ d += a[4]*2 * a[5]
umlal r9, r10, r14, r14 @ d' += a[5] * a[5]
bic r0, r5, field_not_M @ t9 = d & M
str r0, [sp, #4 + 9*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
/* B */
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u0 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u0 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t0 = c & M
str r14, [sp, #4 + 0*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u0 * R1
umlal r3, r4, r0, r14
/* C interleaved with D */
ldr r0, [r1, #0*4] @ a[0]*2
ldr r14, [r1, #1*4] @ a[1]
mov r0, r0, asl #1
ldr r8, [r1, #2*4] @ a[2]
umlal r3, r4, r0, r14 @ c += a[0]*2 * a[1]
mov r7, r8, asl #1 @ a[2]*2
umull r11, r12, r14, r14 @ c' = a[1] * a[1]
ldr r14, [r1, #9*4] @ a[9]
umlal r11, r12, r0, r8 @ c' += a[0]*2 * a[2]
ldr r0, [r1, #3*4] @ a[3]*2
ldr r8, [r1, #8*4] @ a[8]
umlal r5, r6, r7, r14 @ d += a[2]*2 * a[9]
mov r0, r0, asl #1
ldr r7, [r1, #4*4] @ a[4]*2
umull r9, r10, r0, r14 @ d' = a[3]*2 * a[9]
ldr r14, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r8 @ d += a[3]*2 * a[8]
mov r7, r7, asl #1
ldr r0, [r1, #5*4] @ a[5]*2
umlal r9, r10, r7, r8 @ d' += a[4]*2 * a[8]
ldr r8, [r1, #6*4] @ a[6]
mov r0, r0, asl #1
umlal r5, r6, r7, r14 @ d += a[4]*2 * a[7]
umlal r9, r10, r0, r14 @ d' += a[5]*2 * a[7]
umlal r5, r6, r0, r8 @ d += a[5]*2 * a[6]
umlal r9, r10, r8, r8 @ d' += a[6] * a[6]
bic r0, r5, field_not_M @ u1 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u1 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t1 = c & M
str r14, [sp, #4 + 1*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u1 * R1
umlal r3, r4, r0, r14
/* D */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u2 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u2 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t2 = c & M
str r14, [sp, #4 + 2*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u2 * R1
umlal r3, r4, r0, r14
/* E interleaved with F */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
ldr r14, [r1, #2*4] @ a[2]
mov r7, r7, asl #1
ldr r8, [r1, #3*4] @ a[3]
ldr r2, [r1, #4*4]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[3]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[4]
mov r2, r2, asl #1 @ a[4]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[3]
ldr r8, [r1, #9*4] @ a[9]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[2]
ldr r0, [r1, #5*4] @ a[5]*2
umlal r11, r12, r14, r14 @ c' += a[2] * a[2]
ldr r14, [r1, #8*4] @ a[8]
mov r0, r0, asl #1
umlal r5, r6, r2, r8 @ d += a[4]*2 * a[9]
ldr r7, [r1, #6*4] @ a[6]*2
umull r9, r10, r0, r8 @ d' = a[5]*2 * a[9]
mov r7, r7, asl #1
ldr r8, [r1, #7*4] @ a[7]
umlal r5, r6, r0, r14 @ d += a[5]*2 * a[8]
umlal r9, r10, r7, r14 @ d' += a[6]*2 * a[8]
umlal r5, r6, r7, r8 @ d += a[6]*2 * a[7]
umlal r9, r10, r8, r8 @ d' += a[7] * a[7]
bic r0, r5, field_not_M @ u3 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u3 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t3 = c & M
str r14, [sp, #4 + 3*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u3 * R1
umlal r3, r4, r0, r14
/* F */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u4 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u4 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t4 = c & M
str r14, [sp, #4 + 4*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u4 * R1
umlal r3, r4, r0, r14
/* G interleaved with H */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
mov r7, r7, asl #1
ldr r8, [r1, #5*4] @ a[5]
ldr r2, [r1, #6*4] @ a[6]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[5]
ldr r14, [r1, #4*4] @ a[4]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[6]
ldr r7, [r1, #2*4] @ a[2]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[5]
mov r7, r7, asl #1
ldr r8, [r1, #3*4] @ a[3]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[4]
mov r0, r2, asl #1 @ a[6]*2
umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[4]
ldr r14, [r1, #9*4] @ a[9]
umlal r3, r4, r7, r8 @ c += a[2]*2 * a[3]
ldr r7, [r1, #7*4] @ a[7]*2
umlal r11, r12, r8, r8 @ c' += a[3] * a[3]
mov r7, r7, asl #1
ldr r8, [r1, #8*4] @ a[8]
umlal r5, r6, r0, r14 @ d += a[6]*2 * a[9]
umull r9, r10, r7, r14 @ d' = a[7]*2 * a[9]
umlal r5, r6, r7, r8 @ d += a[7]*2 * a[8]
umlal r9, r10, r8, r8 @ d' += a[8] * a[8]
bic r0, r5, field_not_M @ u5 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u5 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t5 = c & M
str r14, [sp, #4 + 5*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u5 * R1
umlal r3, r4, r0, r14
/* H */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
adds r5, r5, r9 @ d += d'
adc r6, r6, r10
bic r0, r5, field_not_M @ u6 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u6 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t6 = c & M
str r14, [sp, #4 + 6*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u6 * R1
umlal r3, r4, r0, r14
/* I interleaved with J */
ldr r7, [r1, #0*4] @ a[0]*2
ldr r0, [r1, #1*4] @ a[1]*2
mov r7, r7, asl #1
ldr r8, [r1, #7*4] @ a[7]
ldr r2, [r1, #8*4] @ a[8]
umlal r3, r4, r7, r8 @ c += a[0]*2 * a[7]
ldr r14, [r1, #6*4] @ a[6]
mov r0, r0, asl #1
umull r11, r12, r7, r2 @ c' = a[0]*2 * a[8]
ldr r7, [r1, #2*4] @ a[2]*2
umlal r11, r12, r0, r8 @ c' += a[1]*2 * a[7]
ldr r8, [r1, #5*4] @ a[5]
umlal r3, r4, r0, r14 @ c += a[1]*2 * a[6]
ldr r0, [r1, #3*4] @ a[3]*2
mov r7, r7, asl #1
umlal r11, r12, r7, r14 @ c' += a[2]*2 * a[6]
ldr r14, [r1, #4*4] @ a[4]
mov r0, r0, asl #1
umlal r3, r4, r7, r8 @ c += a[2]*2 * a[5]
mov r2, r2, asl #1 @ a[8]*2
umlal r11, r12, r0, r8 @ c' += a[3]*2 * a[5]
umlal r3, r4, r0, r14 @ c += a[3]*2 * a[4]
umlal r11, r12, r14, r14 @ c' += a[4] * a[4]
ldr r8, [r1, #9*4] @ a[9]
umlal r5, r6, r2, r8 @ d += a[8]*2 * a[9]
@ r8 will be used in J
bic r0, r5, field_not_M @ u7 = d & M
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u7 * R0
umlal r3, r4, r0, r14
bic r14, r3, field_not_M @ t7 = c & M
str r14, [sp, #4 + 7*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u7 * R1
umlal r3, r4, r0, r14
/* J */
adds r3, r3, r11 @ c += c'
adc r4, r4, r12
umlal r5, r6, r8, r8 @ d += a[9] * a[9]
bic r0, r5, field_not_M @ u8 = d & M
str r0, [sp, #4 + 8*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R0 @ c += u8 * R0
umlal r3, r4, r0, r14
/******************************************
* compute and write back result
******************************************
Allocation:
r0 r
r3:r4 c
r5:r6 d
r7 t0
r8 t1
r9 t2
r11 u8
r12 t9
r1,r2,r10,r14 scratch
Note: do not read from a[] after here, it may overlap with r[]
*/
ldr r0, [sp, #0]
add r1, sp, #4 + 3*4 @ r[3..7] = t3..7, r11=u8, r12=t9
ldmia r1, {r2,r7,r8,r9,r10,r11,r12}
add r1, r0, #3*4
stmia r1, {r2,r7,r8,r9,r10}
bic r2, r3, field_not_M @ r[8] = c & M
str r2, [r0, #8*4]
mov r3, r3, lsr #26 @ c >>= 26
orr r3, r3, r4, asl #6
mov r4, r4, lsr #26
mov r14, field_R1 @ c += u8 * R1
umlal r3, r4, r11, r14
movw r14, field_R0 @ c += d * R0
umlal r3, r4, r5, r14
adds r3, r3, r12 @ c += t9
adc r4, r4, #0
add r1, sp, #4 + 0*4 @ r7,r8,r9 = t0,t1,t2
ldmia r1, {r7,r8,r9}
ubfx r2, r3, #0, #22 @ r[9] = c & (M >> 4)
str r2, [r0, #9*4]
mov r3, r3, lsr #22 @ c >>= 22
orr r3, r3, r4, asl #10
mov r4, r4, lsr #22
movw r14, field_R1 << 4 @ c += d * (R1 << 4)
umlal r3, r4, r5, r14
movw r14, field_R0 >> 4 @ d = c * (R0 >> 4) + t0 (64x64 multiply+add)
umull r5, r6, r3, r14 @ d = c.lo * (R0 >> 4)
adds r5, r5, r7 @ d.lo += t0
mla r6, r14, r4, r6 @ d.hi += c.hi * (R0 >> 4)
adc r6, r6, 0 @ d.hi += carry
bic r2, r5, field_not_M @ r[0] = d & M
str r2, [r0, #0*4]
mov r5, r5, lsr #26 @ d >>= 26
orr r5, r5, r6, asl #6
mov r6, r6, lsr #26
movw r14, field_R1 >> 4 @ d += c * (R1 >> 4) + t1 (64x64 multiply+add)
umull r1, r2, r3, r14 @ tmp = c.lo * (R1 >> 4)
adds r5, r5, r8 @ d.lo += t1
adc r6, r6, #0 @ d.hi += carry
adds r5, r5, r1 @ d.lo += tmp.lo
mla r2, r14, r4, r2 @ tmp.hi += c.hi * (R1 >> 4)
adc r6, r6, r2 @ d.hi += carry + tmp.hi
bic r2, r5, field_not_M @ r[1] = d & M
str r2, [r0, #1*4]
mov r5, r5, lsr #26 @ d >>= 26 (ignore hi)
orr r5, r5, r6, asl #6
add r5, r5, r9 @ d += t2
str r5, [r0, #2*4] @ r[2] = d
add sp, sp, #48
ldmfd sp!, {r4, r5, r6, r7, r8, r9, r10, r11, pc}
.size secp256k1_fe_sqr_inner, .-secp256k1_fe_sqr_inner

View file

@ -1,32 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_BASIC_CONFIG_
#define _SECP256K1_BASIC_CONFIG_
#ifdef USE_BASIC_CONFIG
#undef USE_ASM_X86_64
#undef USE_ENDOMORPHISM
#undef USE_FIELD_10X26
#undef USE_FIELD_5X52
#undef USE_FIELD_INV_BUILTIN
#undef USE_FIELD_INV_NUM
#undef USE_NUM_GMP
#undef USE_NUM_NONE
#undef USE_SCALAR_4X64
#undef USE_SCALAR_8X32
#undef USE_SCALAR_INV_BUILTIN
#undef USE_SCALAR_INV_NUM
#define USE_NUM_NONE 1
#define USE_FIELD_INV_BUILTIN 1
#define USE_SCALAR_INV_BUILTIN 1
#define USE_FIELD_10X26 1
#define USE_SCALAR_8X32 1
#endif // USE_BASIC_CONFIG
#endif // _SECP256K1_BASIC_CONFIG_

View file

@ -1,66 +0,0 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_BENCH_H_
#define _SECP256K1_BENCH_H_
#include <stdio.h>
#include <math.h>
#include "sys/time.h"
static double gettimedouble(void) {
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_usec * 0.000001 + tv.tv_sec;
}
void print_number(double x) {
double y = x;
int c = 0;
if (y < 0.0) {
y = -y;
}
while (y < 100.0) {
y *= 10.0;
c++;
}
printf("%.*f", c, x);
}
void run_benchmark(char *name, void (*benchmark)(void*), void (*setup)(void*), void (*teardown)(void*), void* data, int count, int iter) {
int i;
double min = HUGE_VAL;
double sum = 0.0;
double max = 0.0;
for (i = 0; i < count; i++) {
double begin, total;
if (setup != NULL) {
setup(data);
}
begin = gettimedouble();
benchmark(data);
total = gettimedouble() - begin;
if (teardown != NULL) {
teardown(data);
}
if (total < min) {
min = total;
}
if (total > max) {
max = total;
}
sum += total;
}
printf("%s: min ", name);
print_number(min * 1000000.0 / iter);
printf("us / avg ");
print_number((sum / count) * 1000000.0 / iter);
printf("us / max ");
print_number(max * 1000000.0 / iter);
printf("us\n");
}
#endif

View file

@ -1,54 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <string.h>
#include "include/secp256k1.h"
#include "include/secp256k1_ecdh.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context *ctx;
secp256k1_pubkey point;
unsigned char scalar[32];
} bench_ecdh_t;
static void bench_ecdh_setup(void* arg) {
int i;
bench_ecdh_t *data = (bench_ecdh_t*)arg;
const unsigned char point[] = {
0x03,
0x54, 0x94, 0xc1, 0x5d, 0x32, 0x09, 0x97, 0x06,
0xc2, 0x39, 0x5f, 0x94, 0x34, 0x87, 0x45, 0xfd,
0x75, 0x7c, 0xe3, 0x0e, 0x4e, 0x8c, 0x90, 0xfb,
0xa2, 0xba, 0xd1, 0x84, 0xf8, 0x83, 0xc6, 0x9f
};
/* create a context with no capabilities */
data->ctx = secp256k1_context_create(SECP256K1_FLAGS_TYPE_CONTEXT);
for (i = 0; i < 32; i++) {
data->scalar[i] = i + 1;
}
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &data->point, point, sizeof(point)) == 1);
}
static void bench_ecdh(void* arg) {
int i;
unsigned char res[32];
bench_ecdh_t *data = (bench_ecdh_t*)arg;
for (i = 0; i < 20000; i++) {
CHECK(secp256k1_ecdh(data->ctx, res, &data->point, data->scalar) == 1);
}
}
int main(void) {
bench_ecdh_t data;
run_benchmark("ecdh", bench_ecdh, bench_ecdh_setup, NULL, &data, 10, 20000);
return 0;
}

View file

@ -1,382 +0,0 @@
/**********************************************************************
* Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdio.h>
#include "include/secp256k1.h"
#include "util.h"
#include "hash_impl.h"
#include "num_impl.h"
#include "field_impl.h"
#include "group_impl.h"
#include "scalar_impl.h"
#include "ecmult_const_impl.h"
#include "ecmult_impl.h"
#include "bench.h"
#include "secp256k1.c"
typedef struct {
secp256k1_scalar scalar_x, scalar_y;
secp256k1_fe fe_x, fe_y;
secp256k1_ge ge_x, ge_y;
secp256k1_gej gej_x, gej_y;
unsigned char data[64];
int wnaf[256];
} bench_inv_t;
void bench_setup(void* arg) {
bench_inv_t *data = (bench_inv_t*)arg;
static const unsigned char init_x[32] = {
0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
};
static const unsigned char init_y[32] = {
0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
};
secp256k1_scalar_set_b32(&data->scalar_x, init_x, NULL);
secp256k1_scalar_set_b32(&data->scalar_y, init_y, NULL);
secp256k1_fe_set_b32(&data->fe_x, init_x);
secp256k1_fe_set_b32(&data->fe_y, init_y);
CHECK(secp256k1_ge_set_xo_var(&data->ge_x, &data->fe_x, 0));
CHECK(secp256k1_ge_set_xo_var(&data->ge_y, &data->fe_y, 1));
secp256k1_gej_set_ge(&data->gej_x, &data->ge_x);
secp256k1_gej_set_ge(&data->gej_y, &data->ge_y);
memcpy(data->data, init_x, 32);
memcpy(data->data + 32, init_y, 32);
}
void bench_scalar_add(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_scalar_negate(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_scalar_negate(&data->scalar_x, &data->scalar_x);
}
}
void bench_scalar_sqr(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_scalar_sqr(&data->scalar_x, &data->scalar_x);
}
}
void bench_scalar_mul(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_scalar_mul(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
#ifdef USE_ENDOMORPHISM
void bench_scalar_split(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_scalar l, r;
secp256k1_scalar_split_lambda(&l, &r, &data->scalar_x);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
#endif
void bench_scalar_inverse(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000; i++) {
secp256k1_scalar_inverse(&data->scalar_x, &data->scalar_x);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_scalar_inverse_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000; i++) {
secp256k1_scalar_inverse_var(&data->scalar_x, &data->scalar_x);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_field_normalize(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_fe_normalize(&data->fe_x);
}
}
void bench_field_normalize_weak(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 2000000; i++) {
secp256k1_fe_normalize_weak(&data->fe_x);
}
}
void bench_field_mul(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_fe_mul(&data->fe_x, &data->fe_x, &data->fe_y);
}
}
void bench_field_sqr(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_fe_sqr(&data->fe_x, &data->fe_x);
}
}
void bench_field_inverse(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_fe_inv(&data->fe_x, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}
void bench_field_inverse_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_fe_inv_var(&data->fe_x, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}
void bench_field_sqrt(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_fe_sqrt(&data->fe_x, &data->fe_x);
secp256k1_fe_add(&data->fe_x, &data->fe_y);
}
}
void bench_group_double_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_double_var(&data->gej_x, &data->gej_x, NULL);
}
}
void bench_group_add_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_add_var(&data->gej_x, &data->gej_x, &data->gej_y, NULL);
}
}
void bench_group_add_affine(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_add_ge(&data->gej_x, &data->gej_x, &data->ge_y);
}
}
void bench_group_add_affine_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 200000; i++) {
secp256k1_gej_add_ge_var(&data->gej_x, &data->gej_x, &data->ge_y, NULL);
}
}
void bench_group_jacobi_var(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_gej_has_quad_y_var(&data->gej_x);
}
}
void bench_ecmult_wnaf(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar_x, WINDOW_A);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_wnaf_const(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_wnaf_const(data->wnaf, data->scalar_x, WINDOW_A);
secp256k1_scalar_add(&data->scalar_x, &data->scalar_x, &data->scalar_y);
}
}
void bench_sha256(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
secp256k1_sha256_t sha;
for (i = 0; i < 20000; i++) {
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, data->data, 32);
secp256k1_sha256_finalize(&sha, data->data);
}
}
void bench_hmac_sha256(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
secp256k1_hmac_sha256_t hmac;
for (i = 0; i < 20000; i++) {
secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
secp256k1_hmac_sha256_write(&hmac, data->data, 32);
secp256k1_hmac_sha256_finalize(&hmac, data->data);
}
}
void bench_rfc6979_hmac_sha256(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
secp256k1_rfc6979_hmac_sha256_t rng;
for (i = 0; i < 20000; i++) {
secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64);
secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32);
}
}
void bench_context_verify(void* arg) {
int i;
(void)arg;
for (i = 0; i < 20; i++) {
secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_VERIFY));
}
}
void bench_context_sign(void* arg) {
int i;
(void)arg;
for (i = 0; i < 200; i++) {
secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_SIGN));
}
}
#ifndef USE_NUM_NONE
void bench_num_jacobi(void* arg) {
int i;
bench_inv_t *data = (bench_inv_t*)arg;
secp256k1_num nx, norder;
secp256k1_scalar_get_num(&nx, &data->scalar_x);
secp256k1_scalar_order_get_num(&norder);
secp256k1_scalar_get_num(&norder, &data->scalar_y);
for (i = 0; i < 200000; i++) {
secp256k1_num_jacobi(&nx, &norder);
}
}
#endif
int have_flag(int argc, char** argv, char *flag) {
char** argm = argv + argc;
argv++;
if (argv == argm) {
return 1;
}
while (argv != NULL && argv != argm) {
if (strcmp(*argv, flag) == 0) {
return 1;
}
argv++;
}
return 0;
}
int main(int argc, char **argv) {
bench_inv_t data;
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "sqr")) run_benchmark("scalar_sqr", bench_scalar_sqr, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, 200000);
#ifdef USE_ENDOMORPHISM
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, 20000);
#endif
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, 2000);
if (have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, 2000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, 2000000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, 200000);
if (have_flag(argc, argv, "group") || have_flag(argc, argv, "jacobi")) run_benchmark("group_jacobi_var", bench_group_jacobi_var, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, 20000);
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 20);
if (have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 200);
#ifndef USE_NUM_NONE
if (have_flag(argc, argv, "num") || have_flag(argc, argv, "jacobi")) run_benchmark("num_jacobi", bench_num_jacobi, bench_setup, NULL, &data, 10, 200000);
#endif
return 0;
}

View file

@ -1,65 +0,0 @@
/**********************************************************************
* Copyright (c) 2014, 2015 Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdint.h>
#include "include/secp256k1_rangeproof.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context* ctx;
unsigned char commit[33];
unsigned char proof[5134];
unsigned char blind[32];
int len;
int min_bits;
uint64_t v;
} bench_rangeproof_t;
static void bench_rangeproof_setup(void* arg) {
int i;
uint64_t minv;
uint64_t maxv;
bench_rangeproof_t *data = (bench_rangeproof_t*)arg;
data->v = 0;
for (i = 0; i < 32; i++) data->blind[i] = i + 1;
CHECK(secp256k1_pedersen_commit(data->ctx, data->commit, data->blind, data->v));
data->len = 5134;
CHECK(secp256k1_rangeproof_sign(data->ctx, data->proof, &data->len, 0, data->commit, data->blind, data->commit, 0, data->min_bits, data->v));
CHECK(secp256k1_rangeproof_verify(data->ctx, &minv, &maxv, data->commit, data->proof, data->len));
}
static void bench_rangeproof(void* arg) {
int i;
bench_rangeproof_t *data = (bench_rangeproof_t*)arg;
for (i = 0; i < 1000; i++) {
int j;
uint64_t minv;
uint64_t maxv;
j = secp256k1_rangeproof_verify(data->ctx, &minv, &maxv, data->commit, data->proof, data->len);
for (j = 0; j < 4; j++) {
data->proof[j + 2 + 32 *((data->min_bits + 1) >> 1) - 4] = (i >> 8)&255;
}
}
}
int main(void) {
bench_rangeproof_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
secp256k1_pedersen_context_initialize(data.ctx);
secp256k1_rangeproof_context_initialize(data.ctx);
data.min_bits = 32;
run_benchmark("rangeproof_verify_bit", bench_rangeproof, bench_rangeproof_setup, NULL, &data, 10, 1000 * data.min_bits);
secp256k1_context_destroy(data.ctx);
return 0;
}

View file

@ -1,60 +0,0 @@
/**********************************************************************
* Copyright (c) 2014-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include "include/secp256k1.h"
#include "include/secp256k1_recovery.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
unsigned char sig[64];
} bench_recover_t;
void bench_recover(void* arg) {
int i;
bench_recover_t *data = (bench_recover_t*)arg;
secp256k1_pubkey pubkey;
unsigned char pubkeyc[33];
for (i = 0; i < 20000; i++) {
int j;
size_t pubkeylen = 33;
secp256k1_ecdsa_recoverable_signature sig;
CHECK(secp256k1_ecdsa_recoverable_signature_parse_compact(data->ctx, &sig, data->sig, i % 2));
CHECK(secp256k1_ecdsa_recover(data->ctx, &pubkey, &sig, data->msg));
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, pubkeyc, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED));
for (j = 0; j < 32; j++) {
data->sig[j + 32] = data->msg[j]; /* Move former message to S. */
data->msg[j] = data->sig[j]; /* Move former R to message. */
data->sig[j] = pubkeyc[j + 1]; /* Move recovered pubkey X coordinate to R (which must be a valid X coordinate). */
}
}
}
void bench_recover_setup(void* arg) {
int i;
bench_recover_t *data = (bench_recover_t*)arg;
for (i = 0; i < 32; i++) {
data->msg[i] = 1 + i;
}
for (i = 0; i < 64; i++) {
data->sig[i] = 65 + i;
}
}
int main(void) {
bench_recover_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY);
run_benchmark("ecdsa_recover", bench_recover, bench_recover_setup, NULL, &data, 10, 20000);
secp256k1_context_destroy(data.ctx);
return 0;
}

View file

@ -1,73 +0,0 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdio.h>
#include <string.h>
#include "include/secp256k1.h"
#include "include/secp256k1_schnorr.h"
#include "util.h"
#include "bench.h"
typedef struct {
unsigned char key[32];
unsigned char sig[64];
unsigned char pubkey[33];
size_t pubkeylen;
} benchmark_schnorr_sig_t;
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
benchmark_schnorr_sig_t sigs[64];
int numsigs;
} benchmark_schnorr_verify_t;
static void benchmark_schnorr_init(void* arg) {
int i, k;
benchmark_schnorr_verify_t* data = (benchmark_schnorr_verify_t*)arg;
for (i = 0; i < 32; i++) {
data->msg[i] = 1 + i;
}
for (k = 0; k < data->numsigs; k++) {
secp256k1_pubkey pubkey;
for (i = 0; i < 32; i++) {
data->sigs[k].key[i] = 33 + i + k;
}
secp256k1_schnorr_sign(data->ctx, data->sigs[k].sig, data->msg, data->sigs[k].key, NULL, NULL);
data->sigs[k].pubkeylen = 33;
CHECK(secp256k1_ec_pubkey_create(data->ctx, &pubkey, data->sigs[k].key));
CHECK(secp256k1_ec_pubkey_serialize(data->ctx, data->sigs[k].pubkey, &data->sigs[k].pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED));
}
}
static void benchmark_schnorr_verify(void* arg) {
int i;
benchmark_schnorr_verify_t* data = (benchmark_schnorr_verify_t*)arg;
for (i = 0; i < 20000 / data->numsigs; i++) {
secp256k1_pubkey pubkey;
data->sigs[0].sig[(i >> 8) % 64] ^= (i & 0xFF);
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->sigs[0].pubkey, data->sigs[0].pubkeylen));
CHECK(secp256k1_schnorr_verify(data->ctx, data->sigs[0].sig, data->msg, &pubkey) == ((i & 0xFF) == 0));
data->sigs[0].sig[(i >> 8) % 64] ^= (i & 0xFF);
}
}
int main(void) {
benchmark_schnorr_verify_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
data.numsigs = 1;
run_benchmark("schnorr_verify", benchmark_schnorr_verify, benchmark_schnorr_init, NULL, &data, 10, 20000);
secp256k1_context_destroy(data.ctx);
return 0;
}

View file

@ -1,56 +0,0 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include "include/secp256k1.h"
#include "util.h"
#include "bench.h"
typedef struct {
secp256k1_context* ctx;
unsigned char msg[32];
unsigned char key[32];
} bench_sign_t;
static void bench_sign_setup(void* arg) {
int i;
bench_sign_t *data = (bench_sign_t*)arg;
for (i = 0; i < 32; i++) {
data->msg[i] = i + 1;
}
for (i = 0; i < 32; i++) {
data->key[i] = i + 65;
}
}
static void bench_sign(void* arg) {
int i;
bench_sign_t *data = (bench_sign_t*)arg;
unsigned char sig[74];
for (i = 0; i < 20000; i++) {
size_t siglen = 74;
int j;
secp256k1_ecdsa_signature signature;
CHECK(secp256k1_ecdsa_sign(data->ctx, &signature, data->msg, data->key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data->ctx, sig, &siglen, &signature));
for (j = 0; j < 32; j++) {
data->msg[j] = sig[j];
data->key[j] = sig[j + 32];
}
}
}
int main(void) {
bench_sign_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
run_benchmark("ecdsa_sign", bench_sign, bench_sign_setup, NULL, &data, 10, 20000);
secp256k1_context_destroy(data.ctx);
return 0;
}

View file

@ -1,112 +0,0 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#include <stdio.h>
#include <string.h>
#include "include/secp256k1.h"
#include "util.h"
#include "bench.h"
#ifdef ENABLE_OPENSSL_TESTS
#include <openssl/bn.h>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>
#endif
typedef struct {
secp256k1_context *ctx;
unsigned char msg[32];
unsigned char key[32];
unsigned char sig[72];
size_t siglen;
unsigned char pubkey[33];
size_t pubkeylen;
#ifdef ENABLE_OPENSSL_TESTS
EC_GROUP* ec_group;
#endif
} benchmark_verify_t;
static void benchmark_verify(void* arg) {
int i;
benchmark_verify_t* data = (benchmark_verify_t*)arg;
for (i = 0; i < 20000; i++) {
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
CHECK(secp256k1_ec_pubkey_parse(data->ctx, &pubkey, data->pubkey, data->pubkeylen) == 1);
CHECK(secp256k1_ecdsa_signature_parse_der(data->ctx, &sig, data->sig, data->siglen) == 1);
CHECK(secp256k1_ecdsa_verify(data->ctx, &sig, data->msg, &pubkey) == (i == 0));
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
}
}
#ifdef ENABLE_OPENSSL_TESTS
static void benchmark_verify_openssl(void* arg) {
int i;
benchmark_verify_t* data = (benchmark_verify_t*)arg;
for (i = 0; i < 20000; i++) {
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
{
EC_KEY *pkey = EC_KEY_new();
const unsigned char *pubkey = &data->pubkey[0];
int result;
CHECK(pkey != NULL);
result = EC_KEY_set_group(pkey, data->ec_group);
CHECK(result);
result = (o2i_ECPublicKey(&pkey, &pubkey, data->pubkeylen)) != NULL;
CHECK(result);
result = ECDSA_verify(0, &data->msg[0], sizeof(data->msg), &data->sig[0], data->siglen, pkey) == (i == 0);
CHECK(result);
EC_KEY_free(pkey);
}
data->sig[data->siglen - 1] ^= (i & 0xFF);
data->sig[data->siglen - 2] ^= ((i >> 8) & 0xFF);
data->sig[data->siglen - 3] ^= ((i >> 16) & 0xFF);
}
}
#endif
int main(void) {
int i;
secp256k1_pubkey pubkey;
secp256k1_ecdsa_signature sig;
benchmark_verify_t data;
data.ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
for (i = 0; i < 32; i++) {
data.msg[i] = 1 + i;
}
for (i = 0; i < 32; i++) {
data.key[i] = 33 + i;
}
data.siglen = 72;
CHECK(secp256k1_ecdsa_sign(data.ctx, &sig, data.msg, data.key, NULL, NULL));
CHECK(secp256k1_ecdsa_signature_serialize_der(data.ctx, data.sig, &data.siglen, &sig));
CHECK(secp256k1_ec_pubkey_create(data.ctx, &pubkey, data.key));
data.pubkeylen = 33;
CHECK(secp256k1_ec_pubkey_serialize(data.ctx, data.pubkey, &data.pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED) == 1);
run_benchmark("ecdsa_verify", benchmark_verify, NULL, NULL, &data, 10, 20000);
#ifdef ENABLE_OPENSSL_TESTS
data.ec_group = EC_GROUP_new_by_curve_name(NID_secp256k1);
run_benchmark("ecdsa_verify_openssl", benchmark_verify_openssl, NULL, NULL, &data, 10, 20000);
EC_GROUP_free(data.ec_group);
#endif
secp256k1_context_destroy(data.ctx);
return 0;
}

View file

@ -1,21 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECDSA_
#define _SECP256K1_ECDSA_
#include <stddef.h>
#include "scalar.h"
#include "group.h"
#include "ecmult.h"
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *r, secp256k1_scalar *s, const unsigned char *sig, size_t size);
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar *r, const secp256k1_scalar *s);
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar* r, const secp256k1_scalar* s, const secp256k1_ge *pubkey, const secp256k1_scalar *message);
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar* r, secp256k1_scalar* s, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid);
#endif

View file

@ -1,303 +0,0 @@
/**********************************************************************
* Copyright (c) 2013-2015 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECDSA_IMPL_H_
#define _SECP256K1_ECDSA_IMPL_H_
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult.h"
#include "ecmult_gen.h"
#include "ecdsa.h"
/** Group order for secp256k1 defined as 'n' in "Standards for Efficient Cryptography" (SEC2) 2.7.1
* sage: for t in xrange(1023, -1, -1):
* .. p = 2**256 - 2**32 - t
* .. if p.is_prime():
* .. print '%x'%p
* .. break
* 'fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f'
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (EllipticCurve ([F (a), F (b)]).order())
* 'fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141'
*/
static const secp256k1_fe secp256k1_ecdsa_const_order_as_fe = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
0xBAAEDCE6UL, 0xAF48A03BUL, 0xBFD25E8CUL, 0xD0364141UL
);
/** Difference between field and order, values 'p' and 'n' values defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
* sage: p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
* sage: a = 0
* sage: b = 7
* sage: F = FiniteField (p)
* sage: '%x' % (p - EllipticCurve ([F (a), F (b)]).order())
* '14551231950b75fc4402da1722fc9baee'
*/
static const secp256k1_fe secp256k1_ecdsa_const_p_minus_order = SECP256K1_FE_CONST(
0, 0, 0, 1, 0x45512319UL, 0x50B75FC4UL, 0x402DA172UL, 0x2FC9BAEEUL
);
static int secp256k1_der_read_len(const unsigned char **sigp, const unsigned char *sigend) {
int lenleft, b1;
size_t ret = 0;
if (*sigp >= sigend) {
return -1;
}
b1 = *((*sigp)++);
if (b1 == 0xFF) {
/* X.690-0207 8.1.3.5.c the value 0xFF shall not be used. */
return -1;
}
if ((b1 & 0x80) == 0) {
/* X.690-0207 8.1.3.4 short form length octets */
return b1;
}
if (b1 == 0x80) {
/* Indefinite length is not allowed in DER. */
return -1;
}
/* X.690-207 8.1.3.5 long form length octets */
lenleft = b1 & 0x7F;
if (lenleft > sigend - *sigp) {
return -1;
}
if (**sigp == 0) {
/* Not the shortest possible length encoding. */
return -1;
}
if ((size_t)lenleft > sizeof(size_t)) {
/* The resulting length would exceed the range of a size_t, so
* certainly longer than the passed array size.
*/
return -1;
}
while (lenleft > 0) {
if ((ret >> ((sizeof(size_t) - 1) * 8)) != 0) {
}
ret = (ret << 8) | **sigp;
if (ret + lenleft > (size_t)(sigend - *sigp)) {
/* Result exceeds the length of the passed array. */
return -1;
}
(*sigp)++;
lenleft--;
}
if (ret < 128) {
/* Not the shortest possible length encoding. */
return -1;
}
return ret;
}
static int secp256k1_der_parse_integer(secp256k1_scalar *r, const unsigned char **sig, const unsigned char *sigend) {
int overflow = 0;
unsigned char ra[32] = {0};
int rlen;
if (*sig == sigend || **sig != 0x02) {
/* Not a primitive integer (X.690-0207 8.3.1). */
return 0;
}
(*sig)++;
rlen = secp256k1_der_read_len(sig, sigend);
if (rlen <= 0 || (*sig) + rlen > sigend) {
/* Exceeds bounds or not at least length 1 (X.690-0207 8.3.1). */
return 0;
}
if (**sig == 0x00 && rlen > 1 && (((*sig)[1]) & 0x80) == 0x00) {
/* Excessive 0x00 padding. */
return 0;
}
if (**sig == 0xFF && rlen > 1 && (((*sig)[1]) & 0x80) == 0x80) {
/* Excessive 0xFF padding. */
return 0;
}
if ((**sig & 0x80) == 0x80) {
/* Negative. */
overflow = 1;
}
while (rlen > 0 && **sig == 0) {
/* Skip leading zero bytes */
rlen--;
(*sig)++;
}
if (rlen > 32) {
overflow = 1;
}
if (!overflow) {
memcpy(ra + 32 - rlen, *sig, rlen);
secp256k1_scalar_set_b32(r, ra, &overflow);
}
if (overflow) {
secp256k1_scalar_set_int(r, 0);
}
(*sig) += rlen;
return 1;
}
static int secp256k1_ecdsa_sig_parse(secp256k1_scalar *rr, secp256k1_scalar *rs, const unsigned char *sig, size_t size) {
const unsigned char *sigend = sig + size;
int rlen;
if (sig == sigend || *(sig++) != 0x30) {
/* The encoding doesn't start with a constructed sequence (X.690-0207 8.9.1). */
return 0;
}
rlen = secp256k1_der_read_len(&sig, sigend);
if (rlen < 0 || sig + rlen > sigend) {
/* Tuple exceeds bounds */
return 0;
}
if (sig + rlen != sigend) {
/* Garbage after tuple. */
return 0;
}
if (!secp256k1_der_parse_integer(rr, &sig, sigend)) {
return 0;
}
if (!secp256k1_der_parse_integer(rs, &sig, sigend)) {
return 0;
}
if (sig != sigend) {
/* Trailing garbage inside tuple. */
return 0;
}
return 1;
}
static int secp256k1_ecdsa_sig_serialize(unsigned char *sig, size_t *size, const secp256k1_scalar* ar, const secp256k1_scalar* as) {
unsigned char r[33] = {0}, s[33] = {0};
unsigned char *rp = r, *sp = s;
size_t lenR = 33, lenS = 33;
secp256k1_scalar_get_b32(&r[1], ar);
secp256k1_scalar_get_b32(&s[1], as);
while (lenR > 1 && rp[0] == 0 && rp[1] < 0x80) { lenR--; rp++; }
while (lenS > 1 && sp[0] == 0 && sp[1] < 0x80) { lenS--; sp++; }
if (*size < 6+lenS+lenR) {
*size = 6 + lenS + lenR;
return 0;
}
*size = 6 + lenS + lenR;
sig[0] = 0x30;
sig[1] = 4 + lenS + lenR;
sig[2] = 0x02;
sig[3] = lenR;
memcpy(sig+4, rp, lenR);
sig[4+lenR] = 0x02;
sig[5+lenR] = lenS;
memcpy(sig+lenR+6, sp, lenS);
return 1;
}
static int secp256k1_ecdsa_sig_verify(const secp256k1_ecmult_context *ctx, const secp256k1_scalar *sigr, const secp256k1_scalar *sigs, const secp256k1_ge *pubkey, const secp256k1_scalar *message) {
unsigned char c[32];
secp256k1_scalar sn, u1, u2;
secp256k1_fe xr;
secp256k1_gej pubkeyj;
secp256k1_gej pr;
if (secp256k1_scalar_is_zero(sigr) || secp256k1_scalar_is_zero(sigs)) {
return 0;
}
secp256k1_scalar_inverse_var(&sn, sigs);
secp256k1_scalar_mul(&u1, &sn, message);
secp256k1_scalar_mul(&u2, &sn, sigr);
secp256k1_gej_set_ge(&pubkeyj, pubkey);
secp256k1_ecmult(ctx, &pr, &pubkeyj, &u2, &u1);
if (secp256k1_gej_is_infinity(&pr)) {
return 0;
}
secp256k1_scalar_get_b32(c, sigr);
secp256k1_fe_set_b32(&xr, c);
/** We now have the recomputed R point in pr, and its claimed x coordinate (modulo n)
* in xr. Naively, we would extract the x coordinate from pr (requiring a inversion modulo p),
* compute the remainder modulo n, and compare it to xr. However:
*
* xr == X(pr) mod n
* <=> exists h. (xr + h * n < p && xr + h * n == X(pr))
* [Since 2 * n > p, h can only be 0 or 1]
* <=> (xr == X(pr)) || (xr + n < p && xr + n == X(pr))
* [In Jacobian coordinates, X(pr) is pr.x / pr.z^2 mod p]
* <=> (xr == pr.x / pr.z^2 mod p) || (xr + n < p && xr + n == pr.x / pr.z^2 mod p)
* [Multiplying both sides of the equations by pr.z^2 mod p]
* <=> (xr * pr.z^2 mod p == pr.x) || (xr + n < p && (xr + n) * pr.z^2 mod p == pr.x)
*
* Thus, we can avoid the inversion, but we have to check both cases separately.
* secp256k1_gej_eq_x implements the (xr * pr.z^2 mod p == pr.x) test.
*/
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* xr * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
if (secp256k1_fe_cmp_var(&xr, &secp256k1_ecdsa_const_p_minus_order) >= 0) {
/* xr + n >= p, so we can skip testing the second case. */
return 0;
}
secp256k1_fe_add(&xr, &secp256k1_ecdsa_const_order_as_fe);
if (secp256k1_gej_eq_x_var(&xr, &pr)) {
/* (xr + n) * pr.z^2 mod p == pr.x, so the signature is valid. */
return 1;
}
return 0;
}
static int secp256k1_ecdsa_sig_sign(const secp256k1_ecmult_gen_context *ctx, secp256k1_scalar *sigr, secp256k1_scalar *sigs, const secp256k1_scalar *seckey, const secp256k1_scalar *message, const secp256k1_scalar *nonce, int *recid) {
unsigned char b[32];
secp256k1_gej rp;
secp256k1_ge r;
secp256k1_scalar n;
int overflow = 0;
secp256k1_ecmult_gen(ctx, &rp, nonce);
secp256k1_ge_set_gej(&r, &rp);
secp256k1_fe_normalize(&r.x);
secp256k1_fe_normalize(&r.y);
secp256k1_fe_get_b32(b, &r.x);
secp256k1_scalar_set_b32(sigr, b, &overflow);
if (secp256k1_scalar_is_zero(sigr)) {
/* P.x = order is on the curve, so technically sig->r could end up zero, which would be an invalid signature.
* This branch is cryptographically unreachable as hitting it requires finding the discrete log of P.x = N.
*/
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
return 0;
}
if (recid) {
/* The overflow condition is cryptographically unreachable as hitting it requires finding the discrete log
* of some P where P.x >= order, and only 1 in about 2^127 points meet this criteria.
*/
*recid = (overflow ? 2 : 0) | (secp256k1_fe_is_odd(&r.y) ? 1 : 0);
}
secp256k1_scalar_mul(&n, sigr, seckey);
secp256k1_scalar_add(&n, &n, message);
secp256k1_scalar_inverse(sigs, nonce);
secp256k1_scalar_mul(sigs, sigs, &n);
secp256k1_scalar_clear(&n);
secp256k1_gej_clear(&rp);
secp256k1_ge_clear(&r);
if (secp256k1_scalar_is_zero(sigs)) {
return 0;
}
if (secp256k1_scalar_is_high(sigs)) {
secp256k1_scalar_negate(sigs, sigs);
if (recid) {
*recid ^= 1;
}
}
return 1;
}
#endif

View file

@ -1,25 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECKEY_
#define _SECP256K1_ECKEY_
#include <stddef.h>
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size);
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed);
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak);
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak);
#endif

View file

@ -1,99 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECKEY_IMPL_H_
#define _SECP256K1_ECKEY_IMPL_H_
#include "eckey.h"
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult_gen.h"
static int secp256k1_eckey_pubkey_parse(secp256k1_ge *elem, const unsigned char *pub, size_t size) {
if (size == 33 && (pub[0] == 0x02 || pub[0] == 0x03)) {
secp256k1_fe x;
return secp256k1_fe_set_b32(&x, pub+1) && secp256k1_ge_set_xo_var(elem, &x, pub[0] == 0x03);
} else if (size == 65 && (pub[0] == 0x04 || pub[0] == 0x06 || pub[0] == 0x07)) {
secp256k1_fe x, y;
if (!secp256k1_fe_set_b32(&x, pub+1) || !secp256k1_fe_set_b32(&y, pub+33)) {
return 0;
}
secp256k1_ge_set_xy(elem, &x, &y);
if ((pub[0] == 0x06 || pub[0] == 0x07) && secp256k1_fe_is_odd(&y) != (pub[0] == 0x07)) {
return 0;
}
return secp256k1_ge_is_valid_var(elem);
} else {
return 0;
}
}
static int secp256k1_eckey_pubkey_serialize(secp256k1_ge *elem, unsigned char *pub, size_t *size, int compressed) {
if (secp256k1_ge_is_infinity(elem)) {
return 0;
}
secp256k1_fe_normalize_var(&elem->x);
secp256k1_fe_normalize_var(&elem->y);
secp256k1_fe_get_b32(&pub[1], &elem->x);
if (compressed) {
*size = 33;
pub[0] = 0x02 | (secp256k1_fe_is_odd(&elem->y) ? 0x01 : 0x00);
} else {
*size = 65;
pub[0] = 0x04;
secp256k1_fe_get_b32(&pub[33], &elem->y);
}
return 1;
}
static int secp256k1_eckey_privkey_tweak_add(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
secp256k1_scalar_add(key, key, tweak);
if (secp256k1_scalar_is_zero(key)) {
return 0;
}
return 1;
}
static int secp256k1_eckey_pubkey_tweak_add(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_gej pt;
secp256k1_scalar one;
secp256k1_gej_set_ge(&pt, key);
secp256k1_scalar_set_int(&one, 1);
secp256k1_ecmult(ctx, &pt, &pt, &one, tweak);
if (secp256k1_gej_is_infinity(&pt)) {
return 0;
}
secp256k1_ge_set_gej(key, &pt);
return 1;
}
static int secp256k1_eckey_privkey_tweak_mul(secp256k1_scalar *key, const secp256k1_scalar *tweak) {
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_scalar_mul(key, key, tweak);
return 1;
}
static int secp256k1_eckey_pubkey_tweak_mul(const secp256k1_ecmult_context *ctx, secp256k1_ge *key, const secp256k1_scalar *tweak) {
secp256k1_scalar zero;
secp256k1_gej pt;
if (secp256k1_scalar_is_zero(tweak)) {
return 0;
}
secp256k1_scalar_set_int(&zero, 0);
secp256k1_gej_set_ge(&pt, key);
secp256k1_ecmult(ctx, &pt, &pt, tweak, &zero);
secp256k1_ge_set_gej(key, &pt);
return 1;
}
#endif

View file

@ -1,31 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_
#define _SECP256K1_ECMULT_
#include "num.h"
#include "group.h"
typedef struct {
/* For accelerating the computation of a*P + b*G: */
secp256k1_ge_storage (*pre_g)[]; /* odd multiples of the generator */
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage (*pre_g_128)[]; /* odd multiples of 2^128*generator */
#endif
} secp256k1_ecmult_context;
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx);
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb);
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
const secp256k1_ecmult_context *src, const secp256k1_callback *cb);
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx);
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx);
/** Double multiply: R = na*A + ng*G */
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng);
#endif

View file

@ -1,15 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_CONST_
#define _SECP256K1_ECMULT_CONST_
#include "scalar.h"
#include "group.h"
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *q);
#endif

View file

@ -1,239 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_CONST_IMPL_
#define _SECP256K1_ECMULT_CONST_IMPL_
#include "scalar.h"
#include "group.h"
#include "ecmult_const.h"
#include "ecmult_impl.h"
#ifdef USE_ENDOMORPHISM
#define WNAF_BITS 128
#else
#define WNAF_BITS 256
#endif
#define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w))
/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
int m; \
int abs_n = (n) * (((n) > 0) * 2 - 1); \
int idx_n = abs_n / 2; \
secp256k1_fe neg_y; \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \
/* This loop is used to avoid secret data in array indices. See
* the comment in ecmult_gen_impl.h for rationale. */ \
secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
} \
(r)->infinity = 0; \
secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
} while(0)
/** Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val)
* with the following guarantees:
* - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
* - each wnaf[i] is nonzero
* - the number of words set is returned; this is always (WNAF_BITS + w - 1) / w
*
* Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
* Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
* CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003
*
* Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
*/
static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
int global_sign;
int skew = 0;
int word = 0;
/* 1 2 3 */
int u_last;
int u;
int flip;
int bit;
secp256k1_scalar neg_s;
int not_neg_one;
/* Note that we cannot handle even numbers by negating them to be odd, as is
* done in other implementations, since if our scalars were specified to have
* width < 256 for performance reasons, their negations would have width 256
* and we'd lose any performance benefit. Instead, we use a technique from
* Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
* or 2 (for odd) to the number we are encoding, returning a skew value indicating
* this, and having the caller compensate after doing the multiplication. */
/* Negative numbers will be negated to keep their bit representation below the maximum width */
flip = secp256k1_scalar_is_high(&s);
/* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
bit = flip ^ (s.d[0] & 1);
/* We check for negative one, since adding 2 to it will cause an overflow */
secp256k1_scalar_negate(&neg_s, &s);
not_neg_one = !secp256k1_scalar_is_one(&neg_s);
secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
/* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
* that we added two to it and flipped it. In fact for -1 these operations are
* identical. We only flipped, but since skewing is required (in the sense that
* the skew must be 1 or 2, never zero) and flipping is not, we need to change
* our flags to claim that we only skewed. */
global_sign = secp256k1_scalar_cond_negate(&s, flip);
global_sign *= not_neg_one * 2 - 1;
skew = 1 << bit;
/* 4 */
u_last = secp256k1_scalar_shr_int(&s, w);
while (word * w < WNAF_BITS) {
int sign;
int even;
/* 4.1 4.4 */
u = secp256k1_scalar_shr_int(&s, w);
/* 4.2 */
even = ((u & 1) == 0);
sign = 2 * (u_last > 0) - 1;
u += sign * even;
u_last -= sign * even * (1 << w);
/* 4.3, adapted for global sign change */
wnaf[word++] = u_last * global_sign;
u_last = u;
}
wnaf[word] = u * global_sign;
VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
VERIFY_CHECK(word == WNAF_SIZE(w));
return skew;
}
static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ge tmpa;
secp256k1_fe Z;
int skew_1;
int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
#ifdef USE_ENDOMORPHISM
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
int skew_lam;
secp256k1_scalar q_1, q_lam;
#endif
int i;
secp256k1_scalar sc = *scalar;
/* build wnaf representation for q. */
#ifdef USE_ENDOMORPHISM
/* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1);
skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1);
#else
skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1);
#endif
/* Calculate odd multiples of a.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
*/
secp256k1_gej_set_ge(r, a);
secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_fe_normalize_weak(&pre_a[i].y);
}
#ifdef USE_ENDOMORPHISM
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
}
#endif
/* first loop iteration (separated out so we can directly set r, rather
* than having it start at infinity, get doubled several times, then have
* its new value added to it) */
i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
secp256k1_gej_set_ge(r, &tmpa);
#ifdef USE_ENDOMORPHISM
i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)];
VERIFY_CHECK(i != 0);
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
secp256k1_gej_add_ge(r, r, &tmpa);
#endif
/* remaining loop iterations */
for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
int n;
int j;
for (j = 0; j < WINDOW_A - 1; ++j) {
secp256k1_gej_double_nonzero(r, r, NULL);
}
n = wnaf_1[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
#ifdef USE_ENDOMORPHISM
n = wnaf_lam[i];
ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
VERIFY_CHECK(n != 0);
secp256k1_gej_add_ge(r, r, &tmpa);
#endif
}
secp256k1_fe_mul(&r->z, &r->z, &Z);
{
/* Correct for wNAF skew */
secp256k1_ge correction = *a;
secp256k1_ge_storage correction_1_stor;
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage correction_lam_stor;
#endif
secp256k1_ge_storage a2_stor;
secp256k1_gej tmpj;
secp256k1_gej_set_ge(&tmpj, &correction);
secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
secp256k1_ge_set_gej(&correction, &tmpj);
secp256k1_ge_to_storage(&correction_1_stor, a);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_to_storage(&correction_lam_stor, a);
#endif
secp256k1_ge_to_storage(&a2_stor, &correction);
/* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
#endif
/* Apply the correction */
secp256k1_ge_from_storage(&correction, &correction_1_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
#ifdef USE_ENDOMORPHISM
secp256k1_ge_from_storage(&correction, &correction_lam_stor);
secp256k1_ge_neg(&correction, &correction);
secp256k1_ge_mul_lambda(&correction, &correction);
secp256k1_gej_add_ge(r, r, &correction);
#endif
}
}
#endif

View file

@ -1,43 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_GEN_
#define _SECP256K1_ECMULT_GEN_
#include "scalar.h"
#include "group.h"
typedef struct {
/* For accelerating the computation of a*G:
* To harden against timing attacks, use the following mechanism:
* * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63.
* * Compute sum(n_i * 16^i * G + U_i, i=0..63), where:
* * U_i = U * 2^i (for i=0..62)
* * U_i = U * (1-2^63) (for i=63)
* where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0.
* For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is
* precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63).
* None of the resulting prec group elements have a known scalar, and neither do any of
* the intermediate sums while computing a*G.
*/
secp256k1_ge_storage (*prec)[64][16]; /* prec[j][i] = 16^j * i * G + U_i */
secp256k1_scalar blind;
secp256k1_gej initial;
} secp256k1_ecmult_gen_context;
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context* ctx);
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context* ctx, const secp256k1_callback* cb);
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
const secp256k1_ecmult_gen_context* src, const secp256k1_callback* cb);
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context* ctx);
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx);
/** Multiply with the generator: R = a*G */
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context* ctx, secp256k1_gej *r, const secp256k1_scalar *a);
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32);
#endif

View file

@ -1,213 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_GEN_IMPL_H_
#define _SECP256K1_ECMULT_GEN_IMPL_H_
#include "scalar.h"
#include "group.h"
#include "ecmult_gen.h"
#include "hash_impl.h"
#ifdef USE_ECMULT_STATIC_PRECOMPUTATION
#include "ecmult_static_context.h"
#endif
#include <string.h>
static void secp256k1_ecmult_gen_context_init(secp256k1_ecmult_gen_context *ctx) {
ctx->prec = NULL;
}
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx, const secp256k1_callback* cb) {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
secp256k1_ge prec[1024];
secp256k1_gej gj;
secp256k1_gej nums_gej;
int i, j;
#endif
if (ctx->prec != NULL) {
return;
}
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
ctx->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*ctx->prec));
/* get the generator */
secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
/* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
{
static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
secp256k1_fe nums_x;
secp256k1_ge nums_ge;
int r;
r = secp256k1_fe_set_b32(&nums_x, nums_b32);
(void)r;
VERIFY_CHECK(r);
r = secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0);
(void)r;
VERIFY_CHECK(r);
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
/* Add G to make the bits in x uniformly distributed. */
secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g, NULL);
}
/* compute prec. */
{
secp256k1_gej precj[1024]; /* Jacobian versions of prec. */
secp256k1_gej gbase;
secp256k1_gej numsbase;
gbase = gj; /* 16^j * G */
numsbase = nums_gej; /* 2^j * nums. */
for (j = 0; j < 64; j++) {
/* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
precj[j*16] = numsbase;
for (i = 1; i < 16; i++) {
secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
}
/* Multiply gbase by 16. */
for (i = 0; i < 4; i++) {
secp256k1_gej_double_var(&gbase, &gbase, NULL);
}
/* Multiply numbase by 2. */
secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
if (j == 62) {
/* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
secp256k1_gej_neg(&numsbase, &numsbase);
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
}
}
secp256k1_ge_set_all_gej_var(1024, prec, precj, cb);
}
for (j = 0; j < 64; j++) {
for (i = 0; i < 16; i++) {
secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
}
}
#else
(void)cb;
ctx->prec = (secp256k1_ge_storage (*)[64][16])secp256k1_ecmult_static_context;
#endif
secp256k1_ecmult_gen_blind(ctx, NULL);
}
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
return ctx->prec != NULL;
}
static void secp256k1_ecmult_gen_context_clone(secp256k1_ecmult_gen_context *dst,
const secp256k1_ecmult_gen_context *src, const secp256k1_callback* cb) {
if (src->prec == NULL) {
dst->prec = NULL;
} else {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
dst->prec = (secp256k1_ge_storage (*)[64][16])checked_malloc(cb, sizeof(*dst->prec));
memcpy(dst->prec, src->prec, sizeof(*dst->prec));
#else
(void)cb;
dst->prec = src->prec;
#endif
dst->initial = src->initial;
dst->blind = src->blind;
}
}
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
#ifndef USE_ECMULT_STATIC_PRECOMPUTATION
free(ctx->prec);
#endif
secp256k1_scalar_clear(&ctx->blind);
secp256k1_gej_clear(&ctx->initial);
ctx->prec = NULL;
}
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
secp256k1_ge add;
secp256k1_ge_storage adds;
secp256k1_scalar gnb;
int bits;
int i, j;
memset(&adds, 0, sizeof(adds));
*r = ctx->initial;
/* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
secp256k1_scalar_add(&gnb, gn, &ctx->blind);
add.infinity = 0;
for (j = 0; j < 64; j++) {
bits = secp256k1_scalar_get_bits(&gnb, j * 4, 4);
for (i = 0; i < 16; i++) {
/** This uses a conditional move to avoid any secret data in array indexes.
* _Any_ use of secret indexes has been demonstrated to result in timing
* sidechannels, even when the cache-line access patterns are uniform.
* See also:
* "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
* (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
* "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
* by Dag Arne Osvik, Adi Shamir, and Eran Tromer
* (http://www.tau.ac.il/~tromer/papers/cache.pdf)
*/
secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
}
secp256k1_ge_from_storage(&add, &adds);
secp256k1_gej_add_ge(r, r, &add);
}
bits = 0;
secp256k1_ge_clear(&add);
secp256k1_scalar_clear(&gnb);
}
/* Setup blinding values for secp256k1_ecmult_gen. */
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
secp256k1_scalar b;
secp256k1_gej gb;
secp256k1_fe s;
unsigned char nonce32[32];
secp256k1_rfc6979_hmac_sha256_t rng;
int retry;
unsigned char keydata[64] = {0};
if (seed32 == NULL) {
/* When seed is NULL, reset the initial point and blinding value. */
secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
secp256k1_gej_neg(&ctx->initial, &ctx->initial);
secp256k1_scalar_set_int(&ctx->blind, 1);
}
/* The prior blinding value (if not reset) is chained forward by including it in the hash. */
secp256k1_scalar_get_b32(nonce32, &ctx->blind);
/** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
* and guards against weak or adversarial seeds. This is a simpler and safer interface than
* asking the caller for blinding values directly and expecting them to retry on failure.
*/
memcpy(keydata, nonce32, 32);
if (seed32 != NULL) {
memcpy(keydata + 32, seed32, 32);
}
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
memset(keydata, 0, sizeof(keydata));
/* Retry for out of range results to achieve uniformity. */
do {
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
retry = !secp256k1_fe_set_b32(&s, nonce32);
retry |= secp256k1_fe_is_zero(&s);
} while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > Fp. */
/* Randomize the projection to defend against multiplier sidechannels. */
secp256k1_gej_rescale(&ctx->initial, &s);
secp256k1_fe_clear(&s);
do {
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
secp256k1_scalar_set_b32(&b, nonce32, &retry);
/* A blinding value of 0 works, but would undermine the projection hardening. */
retry |= secp256k1_scalar_is_zero(&b);
} while (retry); /* This branch true is cryptographically unreachable. Requires sha256_hmac output > order. */
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
memset(nonce32, 0, 32);
secp256k1_ecmult_gen(ctx, &gb, &b);
secp256k1_scalar_negate(&b, &b);
ctx->blind = b;
ctx->initial = gb;
secp256k1_scalar_clear(&b);
secp256k1_gej_clear(&gb);
}
#endif

View file

@ -1,391 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_ECMULT_IMPL_H_
#define _SECP256K1_ECMULT_IMPL_H_
#include "group.h"
#include "scalar.h"
#include "ecmult.h"
#include <string.h>
/* optimal for 128-bit and 256-bit exponents. */
#define WINDOW_A 5
/** larger numbers may result in slightly better performance, at the cost of
exponentially larger precomputed tables. */
#ifdef USE_ENDOMORPHISM
/** Two tables for window size 15: 1.375 MiB. */
#define WINDOW_G 15
#else
/** One table for window size 16: 1.375 MiB. */
#define WINDOW_G 16
#endif
/** The number of entries a table with precomputed multiples needs to have. */
#define ECMULT_TABLE_SIZE(w) (1 << ((w)-2))
/** Fill a table 'prej' with precomputed odd multiples of a. Prej will contain
* the values [1*a,3*a,...,(2*n-1)*a], so it space for n values. zr[0] will
* contain prej[0].z / a.z. The other zr[i] values = prej[i].z / prej[i-1].z.
* Prej's Z values are undefined, except for the last value.
*/
static void secp256k1_ecmult_odd_multiples_table(int n, secp256k1_gej *prej, secp256k1_fe *zr, const secp256k1_gej *a) {
secp256k1_gej d;
secp256k1_ge a_ge, d_ge;
int i;
VERIFY_CHECK(!a->infinity);
secp256k1_gej_double_var(&d, a, NULL);
/*
* Perform the additions on an isomorphism where 'd' is affine: drop the z coordinate
* of 'd', and scale the 1P starting value's x/y coordinates without changing its z.
*/
d_ge.x = d.x;
d_ge.y = d.y;
d_ge.infinity = 0;
secp256k1_ge_set_gej_zinv(&a_ge, a, &d.z);
prej[0].x = a_ge.x;
prej[0].y = a_ge.y;
prej[0].z = a->z;
prej[0].infinity = 0;
zr[0] = d.z;
for (i = 1; i < n; i++) {
secp256k1_gej_add_ge_var(&prej[i], &prej[i-1], &d_ge, &zr[i]);
}
/*
* Each point in 'prej' has a z coordinate too small by a factor of 'd.z'. Only
* the final point's z coordinate is actually used though, so just update that.
*/
secp256k1_fe_mul(&prej[n-1].z, &prej[n-1].z, &d.z);
}
/** Fill a table 'pre' with precomputed odd multiples of a.
*
* There are two versions of this function:
* - secp256k1_ecmult_odd_multiples_table_globalz_windowa which brings its
* resulting point set to a single constant Z denominator, stores the X and Y
* coordinates as ge_storage points in pre, and stores the global Z in rz.
* It only operates on tables sized for WINDOW_A wnaf multiples.
* - secp256k1_ecmult_odd_multiples_table_storage_var, which converts its
* resulting point set to actually affine points, and stores those in pre.
* It operates on tables of any size, but uses heap-allocated temporaries.
*
* To compute a*P + b*G, we compute a table for P using the first function,
* and for G using the second (which requires an inverse, but it only needs to
* happen once).
*/
static void secp256k1_ecmult_odd_multiples_table_globalz_windowa(secp256k1_ge *pre, secp256k1_fe *globalz, const secp256k1_gej *a) {
secp256k1_gej prej[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_fe zr[ECMULT_TABLE_SIZE(WINDOW_A)];
/* Compute the odd multiples in Jacobian form. */
secp256k1_ecmult_odd_multiples_table(ECMULT_TABLE_SIZE(WINDOW_A), prej, zr, a);
/* Bring them to the same Z denominator. */
secp256k1_ge_globalz_set_table_gej(ECMULT_TABLE_SIZE(WINDOW_A), pre, globalz, prej, zr);
}
static void secp256k1_ecmult_odd_multiples_table_storage_var(int n, secp256k1_ge_storage *pre, const secp256k1_gej *a, const secp256k1_callback *cb) {
secp256k1_gej *prej = (secp256k1_gej*)checked_malloc(cb, sizeof(secp256k1_gej) * n);
secp256k1_ge *prea = (secp256k1_ge*)checked_malloc(cb, sizeof(secp256k1_ge) * n);
secp256k1_fe *zr = (secp256k1_fe*)checked_malloc(cb, sizeof(secp256k1_fe) * n);
int i;
/* Compute the odd multiples in Jacobian form. */
secp256k1_ecmult_odd_multiples_table(n, prej, zr, a);
/* Convert them in batch to affine coordinates. */
secp256k1_ge_set_table_gej_var(n, prea, prej, zr);
/* Convert them to compact storage form. */
for (i = 0; i < n; i++) {
secp256k1_ge_to_storage(&pre[i], &prea[i]);
}
free(prea);
free(prej);
free(zr);
}
/** The following two macro retrieves a particular odd multiple from a table
* of precomputed multiples. */
#define ECMULT_TABLE_GET_GE(r,pre,n,w) do { \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
if ((n) > 0) { \
*(r) = (pre)[((n)-1)/2]; \
} else { \
secp256k1_ge_neg((r), &(pre)[(-(n)-1)/2]); \
} \
} while(0)
#define ECMULT_TABLE_GET_GE_STORAGE(r,pre,n,w) do { \
VERIFY_CHECK(((n) & 1) == 1); \
VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
if ((n) > 0) { \
secp256k1_ge_from_storage((r), &(pre)[((n)-1)/2]); \
} else { \
secp256k1_ge_from_storage((r), &(pre)[(-(n)-1)/2]); \
secp256k1_ge_neg((r), (r)); \
} \
} while(0)
static void secp256k1_ecmult_context_init(secp256k1_ecmult_context *ctx) {
ctx->pre_g = NULL;
#ifdef USE_ENDOMORPHISM
ctx->pre_g_128 = NULL;
#endif
}
static void secp256k1_ecmult_context_build(secp256k1_ecmult_context *ctx, const secp256k1_callback *cb) {
secp256k1_gej gj;
if (ctx->pre_g != NULL) {
return;
}
/* get the generator */
secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);
ctx->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
/* precompute the tables with odd multiples */
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g, &gj, cb);
#ifdef USE_ENDOMORPHISM
{
secp256k1_gej g_128j;
int i;
ctx->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, sizeof((*ctx->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G));
/* calculate 2^128*generator */
g_128j = gj;
for (i = 0; i < 128; i++) {
secp256k1_gej_double_var(&g_128j, &g_128j, NULL);
}
secp256k1_ecmult_odd_multiples_table_storage_var(ECMULT_TABLE_SIZE(WINDOW_G), *ctx->pre_g_128, &g_128j, cb);
}
#endif
}
static void secp256k1_ecmult_context_clone(secp256k1_ecmult_context *dst,
const secp256k1_ecmult_context *src, const secp256k1_callback *cb) {
if (src->pre_g == NULL) {
dst->pre_g = NULL;
} else {
size_t size = sizeof((*dst->pre_g)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
dst->pre_g = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
memcpy(dst->pre_g, src->pre_g, size);
}
#ifdef USE_ENDOMORPHISM
if (src->pre_g_128 == NULL) {
dst->pre_g_128 = NULL;
} else {
size_t size = sizeof((*dst->pre_g_128)[0]) * ECMULT_TABLE_SIZE(WINDOW_G);
dst->pre_g_128 = (secp256k1_ge_storage (*)[])checked_malloc(cb, size);
memcpy(dst->pre_g_128, src->pre_g_128, size);
}
#endif
}
static int secp256k1_ecmult_context_is_built(const secp256k1_ecmult_context *ctx) {
return ctx->pre_g != NULL;
}
static void secp256k1_ecmult_context_clear(secp256k1_ecmult_context *ctx) {
free(ctx->pre_g);
#ifdef USE_ENDOMORPHISM
free(ctx->pre_g_128);
#endif
secp256k1_ecmult_context_init(ctx);
}
/** Convert a number to WNAF notation. The number becomes represented by sum(2^i * wnaf[i], i=0..bits),
* with the following guarantees:
* - each wnaf[i] is either 0, or an odd integer between -(1<<(w-1) - 1) and (1<<(w-1) - 1)
* - two non-zero entries in wnaf are separated by at least w-1 zeroes.
* - the number of set values in wnaf is returned. This number is at most 256, and at most one more
* than the number of bits in the (absolute value) of the input.
*/
static int secp256k1_ecmult_wnaf(int *wnaf, int len, const secp256k1_scalar *a, int w) {
secp256k1_scalar s = *a;
int last_set_bit = -1;
int bit = 0;
int sign = 1;
int carry = 0;
VERIFY_CHECK(wnaf != NULL);
VERIFY_CHECK(0 <= len && len <= 256);
VERIFY_CHECK(a != NULL);
VERIFY_CHECK(2 <= w && w <= 31);
memset(wnaf, 0, len * sizeof(wnaf[0]));
if (secp256k1_scalar_get_bits(&s, 255, 1)) {
secp256k1_scalar_negate(&s, &s);
sign = -1;
}
while (bit < len) {
int now;
int word;
if (secp256k1_scalar_get_bits(&s, bit, 1) == (unsigned int)carry) {
bit++;
continue;
}
now = w;
if (now > len - bit) {
now = len - bit;
}
word = secp256k1_scalar_get_bits_var(&s, bit, now) + carry;
carry = (word >> (w-1)) & 1;
word -= carry << w;
wnaf[bit] = sign * word;
last_set_bit = bit;
bit += now;
}
#ifdef VERIFY
CHECK(carry == 0);
while (bit < 256) {
CHECK(secp256k1_scalar_get_bits(&s, bit++, 1) == 0);
}
#endif
return last_set_bit + 1;
}
static void secp256k1_ecmult(const secp256k1_ecmult_context *ctx, secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_scalar *na, const secp256k1_scalar *ng) {
secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_ge tmpa;
secp256k1_fe Z;
#ifdef USE_ENDOMORPHISM
secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
secp256k1_scalar na_1, na_lam;
/* Splitted G factors. */
secp256k1_scalar ng_1, ng_128;
int wnaf_na_1[130];
int wnaf_na_lam[130];
int bits_na_1;
int bits_na_lam;
int wnaf_ng_1[129];
int bits_ng_1;
int wnaf_ng_128[129];
int bits_ng_128;
#else
int wnaf_na[256];
int bits_na;
int wnaf_ng[256];
int bits_ng;
#endif
int i;
int bits;
#ifdef USE_ENDOMORPHISM
/* split na into na_1 and na_lam (where na = na_1 + na_lam*lambda, and na_1 and na_lam are ~128 bit) */
secp256k1_scalar_split_lambda(&na_1, &na_lam, na);
/* build wnaf representation for na_1 and na_lam. */
bits_na_1 = secp256k1_ecmult_wnaf(wnaf_na_1, 130, &na_1, WINDOW_A);
bits_na_lam = secp256k1_ecmult_wnaf(wnaf_na_lam, 130, &na_lam, WINDOW_A);
VERIFY_CHECK(bits_na_1 <= 130);
VERIFY_CHECK(bits_na_lam <= 130);
bits = bits_na_1;
if (bits_na_lam > bits) {
bits = bits_na_lam;
}
#else
/* build wnaf representation for na. */
bits_na = secp256k1_ecmult_wnaf(wnaf_na, 256, na, WINDOW_A);
bits = bits_na;
#endif
/* Calculate odd multiples of a.
* All multiples are brought to the same Z 'denominator', which is stored
* in Z. Due to secp256k1' isomorphism we can do all operations pretending
* that the Z coordinate was 1, use affine addition formulae, and correct
* the Z coordinate of the result once at the end.
* The exception is the precomputed G table points, which are actually
* affine. Compared to the base used for other points, they have a Z ratio
* of 1/Z, so we can use secp256k1_gej_add_zinv_var, which uses the same
* isomorphism to efficiently add with a known Z inverse.
*/
secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, a);
#ifdef USE_ENDOMORPHISM
for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
}
/* split ng into ng_1 and ng_128 (where gn = gn_1 + gn_128*2^128, and gn_1 and gn_128 are ~128 bit) */
secp256k1_scalar_split_128(&ng_1, &ng_128, ng);
/* Build wnaf representation for ng_1 and ng_128 */
bits_ng_1 = secp256k1_ecmult_wnaf(wnaf_ng_1, 129, &ng_1, WINDOW_G);
bits_ng_128 = secp256k1_ecmult_wnaf(wnaf_ng_128, 129, &ng_128, WINDOW_G);
if (bits_ng_1 > bits) {
bits = bits_ng_1;
}
if (bits_ng_128 > bits) {
bits = bits_ng_128;
}
#else
bits_ng = secp256k1_ecmult_wnaf(wnaf_ng, 256, ng, WINDOW_G);
if (bits_ng > bits) {
bits = bits_ng;
}
#endif
secp256k1_gej_set_infinity(r);
for (i = bits - 1; i >= 0; i--) {
int n;
secp256k1_gej_double_var(r, r, NULL);
#ifdef USE_ENDOMORPHISM
if (i < bits_na_1 && (n = wnaf_na_1[i])) {
ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
if (i < bits_na_lam && (n = wnaf_na_lam[i])) {
ECMULT_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
if (i < bits_ng_1 && (n = wnaf_ng_1[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
if (i < bits_ng_128 && (n = wnaf_ng_128[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g_128, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
#else
if (i < bits_na && (n = wnaf_na[i])) {
ECMULT_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
secp256k1_gej_add_ge_var(r, r, &tmpa, NULL);
}
if (i < bits_ng && (n = wnaf_ng[i])) {
ECMULT_TABLE_GET_GE_STORAGE(&tmpa, *ctx->pre_g, n, WINDOW_G);
secp256k1_gej_add_zinv_var(r, r, &tmpa, &Z);
}
#endif
}
if (!r->infinity) {
secp256k1_fe_mul(&r->z, &r->z, &Z);
}
}
#endif

View file

@ -1,127 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_
#define _SECP256K1_FIELD_
/** Field element module.
*
* Field elements can be represented in several ways, but code accessing
* it (and implementations) need to take certain properties into account:
* - Each field element can be normalized or not.
* - Each field element has a magnitude, which represents how far away
* its representation is away from normalization. Normalized elements
* always have a magnitude of 1, but a magnitude of 1 doesn't imply
* normality.
*/
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#if defined(USE_FIELD_10X26)
#include "field_10x26.h"
#elif defined(USE_FIELD_5X52)
#include "field_5x52.h"
#else
#error "Please select field implementation"
#endif
/** Normalize a field element. */
static void secp256k1_fe_normalize(secp256k1_fe *r);
/** Weakly normalize a field element: reduce it magnitude to 1, but don't fully normalize. */
static void secp256k1_fe_normalize_weak(secp256k1_fe *r);
/** Normalize a field element, without constant-time guarantee. */
static void secp256k1_fe_normalize_var(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r);
/** Verify whether a field element represents zero i.e. would normalize to a zero value. The field
* implementation may optionally normalize the input, but this should not be relied upon. */
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */
static void secp256k1_fe_set_int(secp256k1_fe *r, int a);
/** Verify whether a field element is zero. Requires the input to be normalized. */
static int secp256k1_fe_is_zero(const secp256k1_fe *a);
/** Check the "oddness" of a field element. Requires the input to be normalized. */
static int secp256k1_fe_is_odd(const secp256k1_fe *a);
/** Compare two field elements. Requires magnitude-1 inputs. */
static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b);
/** Same as secp256k1_fe_equal, but may be variable time. */
static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Compare two field elements. Requires both inputs to be normalized */
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
/** Set a field element equal to 32-byte big endian value. If successful, the resulting field element is normalized. */
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a);
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a);
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
* as an argument. The magnitude of the output is one higher. */
static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m);
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
* small integer. */
static void secp256k1_fe_mul_int(secp256k1_fe *r, int a);
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a);
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a);
/** If a has a square root, it is computed in r and 1 is returned. If a does not
* have a square root, the root of its negation is computed and 0 is returned.
* The input's magnitude can be at most 8. The output magnitude is 1 (but not
* guaranteed to be normalized). The result in r will always be a square
* itself. */
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a);
/** Checks whether a field element is a quadratic residue. */
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a);
/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a);
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
* outputs must not overlap in memory. */
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a);
/** Convert a field element to the storage type. */
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
/** Convert a field element back from the storage type. */
static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
#endif

View file

@ -1,47 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_REPR_
#define _SECP256K1_FIELD_REPR_
#include <stdint.h>
typedef struct {
/* X = sum(i=0..9, elem[i]*2^26) mod n */
uint32_t n[10];
#ifdef VERIFY
int magnitude;
int normalized;
#endif
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) & 0x3FFFFFFUL, \
(((uint32_t)d0) >> 26) | (((uint32_t)(d1) & 0xFFFFFUL) << 6), \
(((uint32_t)d1) >> 20) | (((uint32_t)(d2) & 0x3FFFUL) << 12), \
(((uint32_t)d2) >> 14) | (((uint32_t)(d3) & 0xFFUL) << 18), \
(((uint32_t)d3) >> 8) | (((uint32_t)(d4) & 0x3UL) << 24), \
(((uint32_t)d4) >> 2) & 0x3FFFFFFUL, \
(((uint32_t)d4) >> 28) | (((uint32_t)(d5) & 0x3FFFFFUL) << 4), \
(((uint32_t)d5) >> 22) | (((uint32_t)(d6) & 0xFFFFUL) << 10), \
(((uint32_t)d6) >> 16) | (((uint32_t)(d7) & 0x3FFUL) << 16), \
(((uint32_t)d7) >> 10) \
}
#ifdef VERIFY
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1}
#else
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))}
#endif
typedef struct {
uint32_t n[8];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }}
#define SECP256K1_FE_STORAGE_CONST_GET(d) d.n[7], d.n[6], d.n[5], d.n[4],d.n[3], d.n[2], d.n[1], d.n[0]
#endif

File diff suppressed because it is too large Load diff

View file

@ -1,47 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_REPR_
#define _SECP256K1_FIELD_REPR_
#include <stdint.h>
typedef struct {
/* X = sum(i=0..4, elem[i]*2^52) mod n */
uint64_t n[5];
#ifdef VERIFY
int magnitude;
int normalized;
#endif
} secp256k1_fe;
/* Unpacks a constant into a overlapping multi-limbed FE element. */
#define SECP256K1_FE_CONST_INNER(d7, d6, d5, d4, d3, d2, d1, d0) { \
(d0) | (((uint64_t)(d1) & 0xFFFFFUL) << 32), \
((uint64_t)(d1) >> 20) | (((uint64_t)(d2)) << 12) | (((uint64_t)(d3) & 0xFFUL) << 44), \
((uint64_t)(d3) >> 8) | (((uint64_t)(d4) & 0xFFFFFFFUL) << 24), \
((uint64_t)(d4) >> 28) | (((uint64_t)(d5)) << 4) | (((uint64_t)(d6) & 0xFFFFUL) << 36), \
((uint64_t)(d6) >> 16) | (((uint64_t)(d7)) << 16) \
}
#ifdef VERIFY
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0)), 1, 1}
#else
#define SECP256K1_FE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {SECP256K1_FE_CONST_INNER((d7), (d6), (d5), (d4), (d3), (d2), (d1), (d0))}
#endif
typedef struct {
uint64_t n[4];
} secp256k1_fe_storage;
#define SECP256K1_FE_STORAGE_CONST(d7, d6, d5, d4, d3, d2, d1, d0) {{ \
(d0) | (((uint64_t)(d1)) << 32), \
(d2) | (((uint64_t)(d3)) << 32), \
(d4) | (((uint64_t)(d5)) << 32), \
(d6) | (((uint64_t)(d7)) << 32) \
}}
#endif

View file

@ -1,502 +0,0 @@
/**********************************************************************
* Copyright (c) 2013-2014 Diederik Huys, Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
/**
* Changelog:
* - March 2013, Diederik Huys: original version
* - November 2014, Pieter Wuille: updated to use Peter Dettman's parallel multiplication algorithm
* - December 2014, Pieter Wuille: converted from YASM to GCC inline assembly
*/
#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_
#define _SECP256K1_FIELD_INNER5X52_IMPL_H_
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
/**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* r15:rcx = d
* r10-r14 = a0-a4
* rbx = b
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
/* d += a3 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rcx\n"
"movq %%rdx,%%r15\n"
/* d += a2 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d = a0 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c = a4 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* d += a4 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a0 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* t4 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a4 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a1 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* u0 = d & M (%%rsi) */
"movq %%rcx,%%rsi\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a1 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a4 * b2 */
"movq 16(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a2 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%r15,%%rcx\n"
"xorq %%r15,%%r15\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a2 * b0 */
"movq 0(%%rbx),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a1 * b1 */
"movq 8(%%rbx),%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* c += a0 * b2 (last use of %%r10 = a0) */
"movq 16(%%rbx),%%rax\n"
"mulq %%r10\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0), t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* d += a4 * b3 */
"movq 24(%%rbx),%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* d += a3 * b4 */
"movq 32(%%rbx),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rcx\n"
"adcq %%rdx,%%r15\n"
/* c += (d & M) * R */
"movq %%rcx,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rcx only) */
"shrdq $52,%%r15,%%rcx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rcx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"movq $0xfffffffffffff,%%rdx\n"
"andq %%rdx,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
: "b"(b), "D"(r)
: "%rax", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
/**
* Registers: rdx:rax = multiplication accumulator
* r9:r8 = c
* rcx:rbx = d
* r10-r14 = a0-a4
* r15 = M (0xfffffffffffff)
* rdi = r
* rsi = a / t?
*/
uint64_t tmp1, tmp2, tmp3;
__asm__ __volatile__(
"movq 0(%%rsi),%%r10\n"
"movq 8(%%rsi),%%r11\n"
"movq 16(%%rsi),%%r12\n"
"movq 24(%%rsi),%%r13\n"
"movq 32(%%rsi),%%r14\n"
"movq $0xfffffffffffff,%%r15\n"
/* d = (a0*2) * a3 */
"leaq (%%r10,%%r10,1),%%rax\n"
"mulq %%r13\n"
"movq %%rax,%%rbx\n"
"movq %%rdx,%%rcx\n"
/* d += (a1*2) * a2 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c = a4 * a4 */
"movq %%r14,%%rax\n"
"mulq %%r14\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += (c & M) * R */
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* t3 (tmp1) = d & M */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
"movq %%rsi,%q1\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* a4 *= 2 */
"addq %%r14,%%r14\n"
/* d += a0 * a4 */
"movq %%r10,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d+= (a1*2) * a3 */
"leaq (%%r11,%%r11,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a2 * a2 */
"movq %%r12,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += c * R */
"movq %%r8,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* t4 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* tx = t4 >> 48 (tmp3) */
"movq %%rsi,%%rax\n"
"shrq $48,%%rax\n"
"movq %%rax,%q3\n"
/* t4 &= (M >> 4) (tmp2) */
"movq $0xffffffffffff,%%rax\n"
"andq %%rax,%%rsi\n"
"movq %%rsi,%q2\n"
/* c = a0 * a0 */
"movq %%r10,%%rax\n"
"mulq %%r10\n"
"movq %%rax,%%r8\n"
"movq %%rdx,%%r9\n"
/* d += a1 * a4 */
"movq %%r11,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += (a2*2) * a3 */
"leaq (%%r12,%%r12,1),%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* u0 = d & M (%%rsi) */
"movq %%rbx,%%rsi\n"
"andq %%r15,%%rsi\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* u0 = (u0 << 4) | tx (%%rsi) */
"shlq $4,%%rsi\n"
"movq %q3,%%rax\n"
"orq %%rax,%%rsi\n"
/* c += u0 * (R >> 4) */
"movq $0x1000003d1,%%rax\n"
"mulq %%rsi\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[0] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,0(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* a0 *= 2 */
"addq %%r10,%%r10\n"
/* c += a0 * a1 */
"movq %%r10,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a2 * a4 */
"movq %%r12,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* d += a3 * a3 */
"movq %%r13,%%rax\n"
"mulq %%r13\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 */
"shrdq $52,%%rcx,%%rbx\n"
"xorq %%rcx,%%rcx\n"
/* r[1] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,8(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += a0 * a2 (last use of %%r10) */
"movq %%r10,%%rax\n"
"mulq %%r12\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* fetch t3 (%%r10, overwrites a0),t4 (%%rsi) */
"movq %q2,%%rsi\n"
"movq %q1,%%r10\n"
/* c += a1 * a1 */
"movq %%r11,%%rax\n"
"mulq %%r11\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d += a3 * a4 */
"movq %%r13,%%rax\n"
"mulq %%r14\n"
"addq %%rax,%%rbx\n"
"adcq %%rdx,%%rcx\n"
/* c += (d & M) * R */
"movq %%rbx,%%rax\n"
"andq %%r15,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* d >>= 52 (%%rbx only) */
"shrdq $52,%%rcx,%%rbx\n"
/* r[2] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,16(%%rdi)\n"
/* c >>= 52 */
"shrdq $52,%%r9,%%r8\n"
"xorq %%r9,%%r9\n"
/* c += t3 */
"addq %%r10,%%r8\n"
/* c += d * R */
"movq %%rbx,%%rax\n"
"movq $0x1000003d10,%%rdx\n"
"mulq %%rdx\n"
"addq %%rax,%%r8\n"
"adcq %%rdx,%%r9\n"
/* r[3] = c & M */
"movq %%r8,%%rax\n"
"andq %%r15,%%rax\n"
"movq %%rax,24(%%rdi)\n"
/* c >>= 52 (%%r8 only) */
"shrdq $52,%%r9,%%r8\n"
/* c += t4 (%%r8 only) */
"addq %%rsi,%%r8\n"
/* r[4] = c */
"movq %%r8,32(%%rdi)\n"
: "+S"(a), "=m"(tmp1), "=m"(tmp2), "=m"(tmp3)
: "D"(r)
: "%rax", "%rbx", "%rcx", "%rdx", "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", "cc", "memory"
);
}
#endif

View file

@ -1,455 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_REPR_IMPL_H_
#define _SECP256K1_FIELD_REPR_IMPL_H_
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include "util.h"
#include "num.h"
#include "field.h"
#if defined(USE_ASM_X86_64)
#include "field_5x52_asm_impl.h"
#else
#include "field_5x52_int128_impl.h"
#endif
/** Implements arithmetic modulo FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F,
* represented as 5 uint64_t's in base 2^52. The values are allowed to contain >52 each. In particular,
* each FieldElem has a 'magnitude' associated with it. Internally, a magnitude M means each element
* is at most M*(2^53-1), except the most significant one, which is limited to M*(2^49-1). All operations
* accept any input with magnitude at most M, and have different rules for propagating magnitude to their
* output.
*/
#ifdef VERIFY
static void secp256k1_fe_verify(const secp256k1_fe *a) {
const uint64_t *d = a->n;
int m = a->normalized ? 1 : 2 * a->magnitude, r = 1;
/* secp256k1 'p' value defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
r &= (d[0] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[1] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[2] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[3] <= 0xFFFFFFFFFFFFFULL * m);
r &= (d[4] <= 0x0FFFFFFFFFFFFULL * m);
r &= (a->magnitude >= 0);
r &= (a->magnitude <= 2048);
if (a->normalized) {
r &= (a->magnitude <= 1);
if (r && (d[4] == 0x0FFFFFFFFFFFFULL) && ((d[3] & d[2] & d[1]) == 0xFFFFFFFFFFFFFULL)) {
r &= (d[0] < 0xFFFFEFFFFFC2FULL);
}
}
VERIFY_CHECK(r == 1);
}
#else
static void secp256k1_fe_verify(const secp256k1_fe *a) {
(void)a;
}
#endif
static void secp256k1_fe_normalize(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t m;
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
/* Apply the final reduction (for constant-time behaviour, we do it always) */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
VERIFY_CHECK(t4 >> 48 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t4 &= 0x0FFFFFFFFFFFFULL;
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t m;
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; m = t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; m &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; m &= t3;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
/* At most a single final reduction is needed; check if the value is >= the field characteristic */
x = (t4 >> 48) | ((t4 == 0x0FFFFFFFFFFFFULL) & (m == 0xFFFFFFFFFFFFFULL)
& (t0 >= 0xFFFFEFFFFFC2FULL));
if (x) {
t0 += 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL;
/* If t4 didn't carry to bit 48 already, then it should have after any final reduction */
VERIFY_CHECK(t4 >> 48 == x);
/* Mask off the possible multiple of 2^256 from the final reduction */
t4 &= 0x0FFFFFFFFFFFFULL;
}
r->n[0] = t0; r->n[1] = t1; r->n[2] = t2; r->n[3] = t3; r->n[4] = t4;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
}
static int secp256k1_fe_normalizes_to_zero(secp256k1_fe *r) {
uint64_t t0 = r->n[0], t1 = r->n[1], t2 = r->n[2], t3 = r->n[3], t4 = r->n[4];
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
uint64_t z0, z1;
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
uint64_t x = t4 >> 48; t4 &= 0x0FFFFFFFFFFFFULL;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
t1 += (t0 >> 52); t0 &= 0xFFFFFFFFFFFFFULL; z0 = t0; z1 = t0 ^ 0x1000003D0ULL;
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
static int secp256k1_fe_normalizes_to_zero_var(secp256k1_fe *r) {
uint64_t t0, t1, t2, t3, t4;
uint64_t z0, z1;
uint64_t x;
t0 = r->n[0];
t4 = r->n[4];
/* Reduce t4 at the start so there will be at most a single carry from the first pass */
x = t4 >> 48;
/* The first pass ensures the magnitude is 1, ... */
t0 += x * 0x1000003D1ULL;
/* z0 tracks a possible raw value of 0, z1 tracks a possible raw value of P */
z0 = t0 & 0xFFFFFFFFFFFFFULL;
z1 = z0 ^ 0x1000003D0ULL;
/* Fast return path should catch the majority of cases */
if ((z0 != 0ULL) & (z1 != 0xFFFFFFFFFFFFFULL)) {
return 0;
}
t1 = r->n[1];
t2 = r->n[2];
t3 = r->n[3];
t4 &= 0x0FFFFFFFFFFFFULL;
t1 += (t0 >> 52);
t2 += (t1 >> 52); t1 &= 0xFFFFFFFFFFFFFULL; z0 |= t1; z1 &= t1;
t3 += (t2 >> 52); t2 &= 0xFFFFFFFFFFFFFULL; z0 |= t2; z1 &= t2;
t4 += (t3 >> 52); t3 &= 0xFFFFFFFFFFFFFULL; z0 |= t3; z1 &= t3;
z0 |= t4; z1 &= t4 ^ 0xF000000000000ULL;
/* ... except for a possible carry at bit 48 of t4 (i.e. bit 256 of the field element) */
VERIFY_CHECK(t4 >> 49 == 0);
return (z0 == 0) | (z1 == 0xFFFFFFFFFFFFFULL);
}
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
r->n[0] = a;
r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
}
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
const uint64_t *t = a->n;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
secp256k1_fe_verify(a);
#endif
return (t[0] | t[1] | t[2] | t[3] | t[4]) == 0;
}
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
secp256k1_fe_verify(a);
#endif
return a->n[0] & 1;
}
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
int i;
#ifdef VERIFY
a->magnitude = 0;
a->normalized = 1;
#endif
for (i=0; i<5; i++) {
a->n[i] = 0;
}
}
static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
int i;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
VERIFY_CHECK(b->normalized);
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
#endif
for (i = 4; i >= 0; i--) {
if (a->n[i] > b->n[i]) {
return 1;
}
if (a->n[i] < b->n[i]) {
return -1;
}
}
return 0;
}
static int secp256k1_fe_set_b32(secp256k1_fe *r, const unsigned char *a) {
int i;
r->n[0] = r->n[1] = r->n[2] = r->n[3] = r->n[4] = 0;
for (i=0; i<32; i++) {
int j;
for (j=0; j<2; j++) {
int limb = (8*i+4*j)/52;
int shift = (8*i+4*j)%52;
r->n[limb] |= (uint64_t)((a[31-i] >> (4*j)) & 0xF) << shift;
}
}
if (r->n[4] == 0x0FFFFFFFFFFFFULL && (r->n[3] & r->n[2] & r->n[1]) == 0xFFFFFFFFFFFFFULL && r->n[0] >= 0xFFFFEFFFFFC2FULL) {
return 0;
}
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
secp256k1_fe_verify(r);
#endif
return 1;
}
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
int i;
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
secp256k1_fe_verify(a);
#endif
for (i=0; i<32; i++) {
int j;
int c = 0;
for (j=0; j<2; j++) {
int limb = (8*i+4*j)/52;
int shift = (8*i+4*j)%52;
c |= ((a->n[limb] >> shift) & 0xF) << (4 * j);
}
r[31-i] = c;
}
}
SECP256K1_INLINE static void secp256k1_fe_negate(secp256k1_fe *r, const secp256k1_fe *a, int m) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= m);
secp256k1_fe_verify(a);
#endif
r->n[0] = 0xFFFFEFFFFFC2FULL * 2 * (m + 1) - a->n[0];
r->n[1] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[1];
r->n[2] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[2];
r->n[3] = 0xFFFFFFFFFFFFFULL * 2 * (m + 1) - a->n[3];
r->n[4] = 0x0FFFFFFFFFFFFULL * 2 * (m + 1) - a->n[4];
#ifdef VERIFY
r->magnitude = m + 1;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
SECP256K1_INLINE static void secp256k1_fe_mul_int(secp256k1_fe *r, int a) {
r->n[0] *= a;
r->n[1] *= a;
r->n[2] *= a;
r->n[3] *= a;
r->n[4] *= a;
#ifdef VERIFY
r->magnitude *= a;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
secp256k1_fe_verify(a);
#endif
r->n[0] += a->n[0];
r->n[1] += a->n[1];
r->n[2] += a->n[2];
r->n[3] += a->n[3];
r->n[4] += a->n[4];
#ifdef VERIFY
r->magnitude += a->magnitude;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= 8);
VERIFY_CHECK(b->magnitude <= 8);
secp256k1_fe_verify(a);
secp256k1_fe_verify(b);
VERIFY_CHECK(r != b);
#endif
secp256k1_fe_mul_inner(r->n, a->n, b->n);
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->magnitude <= 8);
secp256k1_fe_verify(a);
#endif
secp256k1_fe_sqr_inner(r->n, a->n);
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 0;
secp256k1_fe_verify(r);
#endif
}
static SECP256K1_INLINE void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
uint64_t mask0, mask1;
mask0 = flag + ~((uint64_t)0);
mask1 = ~mask0;
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
r->n[4] = (r->n[4] & mask0) | (a->n[4] & mask1);
#ifdef VERIFY
if (a->magnitude > r->magnitude) {
r->magnitude = a->magnitude;
}
r->normalized &= a->normalized;
#endif
}
static SECP256K1_INLINE void secp256k1_fe_storage_cmov(secp256k1_fe_storage *r, const secp256k1_fe_storage *a, int flag) {
uint64_t mask0, mask1;
mask0 = flag + ~((uint64_t)0);
mask1 = ~mask0;
r->n[0] = (r->n[0] & mask0) | (a->n[0] & mask1);
r->n[1] = (r->n[1] & mask0) | (a->n[1] & mask1);
r->n[2] = (r->n[2] & mask0) | (a->n[2] & mask1);
r->n[3] = (r->n[3] & mask0) | (a->n[3] & mask1);
}
static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
#ifdef VERIFY
VERIFY_CHECK(a->normalized);
#endif
r->n[0] = a->n[0] | a->n[1] << 52;
r->n[1] = a->n[1] >> 12 | a->n[2] << 40;
r->n[2] = a->n[2] >> 24 | a->n[3] << 28;
r->n[3] = a->n[3] >> 36 | a->n[4] << 16;
}
static SECP256K1_INLINE void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
r->n[0] = a->n[0] & 0xFFFFFFFFFFFFFULL;
r->n[1] = a->n[0] >> 52 | ((a->n[1] << 12) & 0xFFFFFFFFFFFFFULL);
r->n[2] = a->n[1] >> 40 | ((a->n[2] << 24) & 0xFFFFFFFFFFFFFULL);
r->n[3] = a->n[2] >> 28 | ((a->n[3] << 36) & 0xFFFFFFFFFFFFFULL);
r->n[4] = a->n[3] >> 16;
#ifdef VERIFY
r->magnitude = 1;
r->normalized = 1;
#endif
}
#endif

View file

@ -1,277 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_INNER5X52_IMPL_H_
#define _SECP256K1_FIELD_INNER5X52_IMPL_H_
#include <stdint.h>
#ifdef VERIFY
#define VERIFY_BITS(x, n) VERIFY_CHECK(((x) >> (n)) == 0)
#else
#define VERIFY_BITS(x, n) do { } while(0)
#endif
SECP256K1_INLINE static void secp256k1_fe_mul_inner(uint64_t *r, const uint64_t *a, const uint64_t * SECP256K1_RESTRICT b) {
uint128_t c, d;
uint64_t t3, t4, tx, u0;
uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56);
VERIFY_BITS(a[3], 56);
VERIFY_BITS(a[4], 52);
VERIFY_BITS(b[0], 56);
VERIFY_BITS(b[1], 56);
VERIFY_BITS(b[2], 56);
VERIFY_BITS(b[3], 56);
VERIFY_BITS(b[4], 52);
VERIFY_CHECK(r != b);
/* [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
* px is a shorthand for sum(a[i]*b[x-i], i=0..x).
* Note that [x 0 0 0 0 0] = [x*R].
*/
d = (uint128_t)a0 * b[3]
+ (uint128_t)a1 * b[2]
+ (uint128_t)a2 * b[1]
+ (uint128_t)a3 * b[0];
VERIFY_BITS(d, 114);
/* [d 0 0 0] = [p3 0 0 0] */
c = (uint128_t)a4 * b[4];
VERIFY_BITS(c, 112);
/* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
d += (c & M) * R; c >>= 52;
VERIFY_BITS(d, 115);
VERIFY_BITS(c, 60);
/* [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
t3 = d & M; d >>= 52;
VERIFY_BITS(t3, 52);
VERIFY_BITS(d, 63);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
d += (uint128_t)a0 * b[4]
+ (uint128_t)a1 * b[3]
+ (uint128_t)a2 * b[2]
+ (uint128_t)a3 * b[1]
+ (uint128_t)a4 * b[0];
VERIFY_BITS(d, 115);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
d += c * R;
VERIFY_BITS(d, 116);
/* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
t4 = d & M; d >>= 52;
VERIFY_BITS(t4, 52);
VERIFY_BITS(d, 64);
/* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
tx = (t4 >> 48); t4 &= (M >> 4);
VERIFY_BITS(tx, 4);
VERIFY_BITS(t4, 48);
/* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
c = (uint128_t)a0 * b[0];
VERIFY_BITS(c, 112);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
d += (uint128_t)a1 * b[4]
+ (uint128_t)a2 * b[3]
+ (uint128_t)a3 * b[2]
+ (uint128_t)a4 * b[1];
VERIFY_BITS(d, 115);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = d & M; d >>= 52;
VERIFY_BITS(u0, 52);
VERIFY_BITS(d, 63);
/* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
/* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = (u0 << 4) | tx;
VERIFY_BITS(u0, 56);
/* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
c += (uint128_t)u0 * (R >> 4);
VERIFY_BITS(c, 115);
/* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
r[0] = c & M; c >>= 52;
VERIFY_BITS(r[0], 52);
VERIFY_BITS(c, 61);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
c += (uint128_t)a0 * b[1]
+ (uint128_t)a1 * b[0];
VERIFY_BITS(c, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
d += (uint128_t)a2 * b[4]
+ (uint128_t)a3 * b[3]
+ (uint128_t)a4 * b[2];
VERIFY_BITS(d, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
r[1] = c & M; c >>= 52;
VERIFY_BITS(r[1], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (uint128_t)a0 * b[2]
+ (uint128_t)a1 * b[1]
+ (uint128_t)a2 * b[0];
VERIFY_BITS(c, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
d += (uint128_t)a3 * b[4]
+ (uint128_t)a4 * b[3];
VERIFY_BITS(d, 114);
/* [d 0 0 t4 t3 c t1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
/* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[2] = c & M; c >>= 52;
VERIFY_BITS(r[2], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += d * R + t3;
VERIFY_BITS(c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = c & M; c >>= 52;
VERIFY_BITS(r[3], 52);
VERIFY_BITS(c, 48);
/* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += t4;
VERIFY_BITS(c, 49);
/* [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[4] = c;
VERIFY_BITS(r[4], 49);
/* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
SECP256K1_INLINE static void secp256k1_fe_sqr_inner(uint64_t *r, const uint64_t *a) {
uint128_t c, d;
uint64_t a0 = a[0], a1 = a[1], a2 = a[2], a3 = a[3], a4 = a[4];
int64_t t3, t4, tx, u0;
const uint64_t M = 0xFFFFFFFFFFFFFULL, R = 0x1000003D10ULL;
VERIFY_BITS(a[0], 56);
VERIFY_BITS(a[1], 56);
VERIFY_BITS(a[2], 56);
VERIFY_BITS(a[3], 56);
VERIFY_BITS(a[4], 52);
/** [... a b c] is a shorthand for ... + a<<104 + b<<52 + c<<0 mod n.
* px is a shorthand for sum(a[i]*a[x-i], i=0..x).
* Note that [x 0 0 0 0 0] = [x*R].
*/
d = (uint128_t)(a0*2) * a3
+ (uint128_t)(a1*2) * a2;
VERIFY_BITS(d, 114);
/* [d 0 0 0] = [p3 0 0 0] */
c = (uint128_t)a4 * a4;
VERIFY_BITS(c, 112);
/* [c 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
d += (c & M) * R; c >>= 52;
VERIFY_BITS(d, 115);
VERIFY_BITS(c, 60);
/* [c 0 0 0 0 0 d 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
t3 = d & M; d >>= 52;
VERIFY_BITS(t3, 52);
VERIFY_BITS(d, 63);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 0 p3 0 0 0] */
a4 *= 2;
d += (uint128_t)a0 * a4
+ (uint128_t)(a1*2) * a3
+ (uint128_t)a2 * a2;
VERIFY_BITS(d, 115);
/* [c 0 0 0 0 d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
d += c * R;
VERIFY_BITS(d, 116);
/* [d t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
t4 = d & M; d >>= 52;
VERIFY_BITS(t4, 52);
VERIFY_BITS(d, 64);
/* [d t4 t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
tx = (t4 >> 48); t4 &= (M >> 4);
VERIFY_BITS(tx, 4);
VERIFY_BITS(t4, 48);
/* [d t4+(tx<<48) t3 0 0 0] = [p8 0 0 0 p4 p3 0 0 0] */
c = (uint128_t)a0 * a0;
VERIFY_BITS(c, 112);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 0 p4 p3 0 0 p0] */
d += (uint128_t)a1 * a4
+ (uint128_t)(a2*2) * a3;
VERIFY_BITS(d, 114);
/* [d t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = d & M; d >>= 52;
VERIFY_BITS(u0, 52);
VERIFY_BITS(d, 62);
/* [d u0 t4+(tx<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
/* [d 0 t4+(tx<<48)+(u0<<52) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
u0 = (u0 << 4) | tx;
VERIFY_BITS(u0, 56);
/* [d 0 t4+(u0<<48) t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
c += (uint128_t)u0 * (R >> 4);
VERIFY_BITS(c, 113);
/* [d 0 t4 t3 0 0 c] = [p8 0 0 p5 p4 p3 0 0 p0] */
r[0] = c & M; c >>= 52;
VERIFY_BITS(r[0], 52);
VERIFY_BITS(c, 61);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 0 p0] */
a0 *= 2;
c += (uint128_t)a0 * a1;
VERIFY_BITS(c, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 0 p5 p4 p3 0 p1 p0] */
d += (uint128_t)a2 * a4
+ (uint128_t)a3 * a3;
VERIFY_BITS(d, 114);
/* [d 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 t4 t3 0 c r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
r[1] = c & M; c >>= 52;
VERIFY_BITS(r[1], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 0 p1 p0] */
c += (uint128_t)a0 * a2
+ (uint128_t)a1 * a1;
VERIFY_BITS(c, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 0 p6 p5 p4 p3 p2 p1 p0] */
d += (uint128_t)a3 * a4;
VERIFY_BITS(d, 114);
/* [d 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += (d & M) * R; d >>= 52;
VERIFY_BITS(c, 115);
VERIFY_BITS(d, 62);
/* [d 0 0 0 t4 t3 c r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[2] = c & M; c >>= 52;
VERIFY_BITS(r[2], 52);
VERIFY_BITS(c, 63);
/* [d 0 0 0 t4 t3+c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += d * R + t3;
VERIFY_BITS(c, 100);
/* [t4 c r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[3] = c & M; c >>= 52;
VERIFY_BITS(r[3], 52);
VERIFY_BITS(c, 48);
/* [t4+c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
c += t4;
VERIFY_BITS(c, 49);
/* [c r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
r[4] = c;
VERIFY_BITS(r[4], 49);
/* [r4 r3 r2 r1 r0] = [p8 p7 p6 p5 p4 p3 p2 p1 p0] */
}
#endif

View file

@ -1,315 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_IMPL_H_
#define _SECP256K1_FIELD_IMPL_H_
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#include "util.h"
#if defined(USE_FIELD_10X26)
#include "field_10x26_impl.h"
#elif defined(USE_FIELD_5X52)
#include "field_5x52_impl.h"
#else
#error "Please select field implementation"
#endif
SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero(&na);
}
SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
secp256k1_fe na;
secp256k1_fe_negate(&na, a, 1);
secp256k1_fe_add(&na, b);
return secp256k1_fe_normalizes_to_zero_var(&na);
}
static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
/** Given that p is congruent to 3 mod 4, we can compute the square root of
* a mod p as the (p+1)/4'th power of a.
*
* As (p+1)/4 is an even number, it will have the same result for a and for
* (-a). Only one of these two numbers actually has a square root however,
* so we test at the end by squaring and comparing to the input.
* Also because (p+1)/4 is an even number, the computed square root is
* itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
*/
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;
/** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
* { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
x6 = x3;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x6, &x6);
}
secp256k1_fe_mul(&x6, &x6, &x3);
x9 = x6;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x9, &x9);
}
secp256k1_fe_mul(&x9, &x9, &x3);
x11 = x9;
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&x11, &x11);
}
secp256k1_fe_mul(&x11, &x11, &x2);
x22 = x11;
for (j=0; j<11; j++) {
secp256k1_fe_sqr(&x22, &x22);
}
secp256k1_fe_mul(&x22, &x22, &x11);
x44 = x22;
for (j=0; j<22; j++) {
secp256k1_fe_sqr(&x44, &x44);
}
secp256k1_fe_mul(&x44, &x44, &x22);
x88 = x44;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x88, &x88);
}
secp256k1_fe_mul(&x88, &x88, &x44);
x176 = x88;
for (j=0; j<88; j++) {
secp256k1_fe_sqr(&x176, &x176);
}
secp256k1_fe_mul(&x176, &x176, &x88);
x220 = x176;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x220, &x220);
}
secp256k1_fe_mul(&x220, &x220, &x44);
x223 = x220;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x223, &x223);
}
secp256k1_fe_mul(&x223, &x223, &x3);
/* The final result is then assembled using a sliding window over the blocks. */
t1 = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<6; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x2);
secp256k1_fe_sqr(&t1, &t1);
secp256k1_fe_sqr(r, &t1);
/* Check that a square root was actually calculated */
secp256k1_fe_sqr(&t1, r);
return secp256k1_fe_equal(&t1, a);
}
static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
int j;
/** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
* { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
* [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
secp256k1_fe_sqr(&x2, a);
secp256k1_fe_mul(&x2, &x2, a);
secp256k1_fe_sqr(&x3, &x2);
secp256k1_fe_mul(&x3, &x3, a);
x6 = x3;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x6, &x6);
}
secp256k1_fe_mul(&x6, &x6, &x3);
x9 = x6;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x9, &x9);
}
secp256k1_fe_mul(&x9, &x9, &x3);
x11 = x9;
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&x11, &x11);
}
secp256k1_fe_mul(&x11, &x11, &x2);
x22 = x11;
for (j=0; j<11; j++) {
secp256k1_fe_sqr(&x22, &x22);
}
secp256k1_fe_mul(&x22, &x22, &x11);
x44 = x22;
for (j=0; j<22; j++) {
secp256k1_fe_sqr(&x44, &x44);
}
secp256k1_fe_mul(&x44, &x44, &x22);
x88 = x44;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x88, &x88);
}
secp256k1_fe_mul(&x88, &x88, &x44);
x176 = x88;
for (j=0; j<88; j++) {
secp256k1_fe_sqr(&x176, &x176);
}
secp256k1_fe_mul(&x176, &x176, &x88);
x220 = x176;
for (j=0; j<44; j++) {
secp256k1_fe_sqr(&x220, &x220);
}
secp256k1_fe_mul(&x220, &x220, &x44);
x223 = x220;
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&x223, &x223);
}
secp256k1_fe_mul(&x223, &x223, &x3);
/* The final result is then assembled using a sliding window over the blocks. */
t1 = x223;
for (j=0; j<23; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x22);
for (j=0; j<5; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, a);
for (j=0; j<3; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(&t1, &t1, &x2);
for (j=0; j<2; j++) {
secp256k1_fe_sqr(&t1, &t1);
}
secp256k1_fe_mul(r, a, &t1);
}
static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
#if defined(USE_FIELD_INV_BUILTIN)
secp256k1_fe_inv(r, a);
#elif defined(USE_FIELD_INV_NUM)
secp256k1_num n, m;
static const secp256k1_fe negone = SECP256K1_FE_CONST(
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
);
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
static const unsigned char prime[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
unsigned char b[32];
int res;
secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_set_bin(&m, prime, 32);
secp256k1_num_mod_inverse(&n, &n, &m);
secp256k1_num_get_bin(b, 32, &n);
res = secp256k1_fe_set_b32(r, b);
(void)res;
VERIFY_CHECK(res);
/* Verify the result is the (unique) valid inverse using non-GMP code. */
secp256k1_fe_mul(&c, &c, r);
secp256k1_fe_add(&c, &negone);
CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
#else
#error "Please select field inverse implementation"
#endif
}
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a) {
secp256k1_fe u;
size_t i;
if (len < 1) {
return;
}
VERIFY_CHECK((r + len <= a) || (a + len <= r));
r[0] = a[0];
i = 0;
while (++i < len) {
secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
}
secp256k1_fe_inv_var(&u, &r[--i]);
while (i > 0) {
size_t j = i--;
secp256k1_fe_mul(&r[j], &r[i], &u);
secp256k1_fe_mul(&u, &u, &a[j]);
}
r[0] = u;
}
static int secp256k1_fe_is_quad_var(const secp256k1_fe *a) {
#ifndef USE_NUM_NONE
unsigned char b[32];
secp256k1_num n;
secp256k1_num m;
/* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
static const unsigned char prime[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
};
secp256k1_fe c = *a;
secp256k1_fe_normalize_var(&c);
secp256k1_fe_get_b32(b, &c);
secp256k1_num_set_bin(&n, b, 32);
secp256k1_num_set_bin(&m, prime, 32);
return secp256k1_num_jacobi(&n, &m) >= 0;
#else
secp256k1_fe r;
return secp256k1_fe_sqrt(&r, a);
#endif
}
#endif

View file

@ -1,74 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014, 2015 Thomas Daede, Cory Fields *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#define USE_BASIC_CONFIG 1
#include "basic-config.h"
#include "include/secp256k1.h"
#include "field_impl.h"
#include "scalar_impl.h"
#include "group_impl.h"
#include "ecmult_gen_impl.h"
static void default_error_callback_fn(const char* str, void* data) {
(void)data;
fprintf(stderr, "[libsecp256k1] internal consistency check failed: %s\n", str);
abort();
}
static const secp256k1_callback default_error_callback = {
default_error_callback_fn,
NULL
};
int main(int argc, char **argv) {
secp256k1_ecmult_gen_context ctx;
int inner;
int outer;
FILE* fp;
(void)argc;
(void)argv;
fp = fopen("src/ecmult_static_context.h","w");
if (fp == NULL) {
fprintf(stderr, "Could not open src/ecmult_static_context.h for writing!\n");
return -1;
}
fprintf(fp, "#ifndef _SECP256K1_ECMULT_STATIC_CONTEXT_\n");
fprintf(fp, "#define _SECP256K1_ECMULT_STATIC_CONTEXT_\n");
fprintf(fp, "#include \"group.h\"\n");
fprintf(fp, "#define SC SECP256K1_GE_STORAGE_CONST\n");
fprintf(fp, "static const secp256k1_ge_storage secp256k1_ecmult_static_context[64][16] = {\n");
secp256k1_ecmult_gen_context_init(&ctx);
secp256k1_ecmult_gen_context_build(&ctx, &default_error_callback);
for(outer = 0; outer != 64; outer++) {
fprintf(fp,"{\n");
for(inner = 0; inner != 16; inner++) {
fprintf(fp," SC(%uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu, %uu)", SECP256K1_GE_STORAGE_CONST_GET((*ctx.prec)[outer][inner]));
if (inner != 15) {
fprintf(fp,",\n");
} else {
fprintf(fp,"\n");
}
}
if (outer != 63) {
fprintf(fp,"},\n");
} else {
fprintf(fp,"}\n");
}
}
fprintf(fp,"};\n");
secp256k1_ecmult_gen_context_clear(&ctx);
fprintf(fp, "#undef SC\n");
fprintf(fp, "#endif\n");
fclose(fp);
return 0;
}

View file

@ -1,144 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_GROUP_
#define _SECP256K1_GROUP_
#include "num.h"
#include "field.h"
/** A group element of the secp256k1 curve, in affine coordinates. */
typedef struct {
secp256k1_fe x;
secp256k1_fe y;
int infinity; /* whether this represents the point at infinity */
} secp256k1_ge;
#define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0}
#define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
/** A group element of the secp256k1 curve, in jacobian coordinates. */
typedef struct {
secp256k1_fe x; /* actual X: x/z^2 */
secp256k1_fe y; /* actual Y: y/z^3 */
secp256k1_fe z;
int infinity; /* whether this represents the point at infinity */
} secp256k1_gej;
#define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0}
#define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1}
typedef struct {
secp256k1_fe_storage x;
secp256k1_fe_storage y;
} secp256k1_ge_storage;
#define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))}
#define SECP256K1_GE_STORAGE_CONST_GET(t) SECP256K1_FE_STORAGE_CONST_GET(t.x), SECP256K1_FE_STORAGE_CONST_GET(t.y)
/** Set a group element equal to the point with given X and Y coordinates */
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y);
/** Set a group element (affine) equal to the point with the given X coordinate
* and a Y coordinate that is a quadratic residue modulo p. The return value
* is true iff a coordinate with the given X coordinate exists.
*/
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x);
/** Set a group element (affine) equal to the point with the given X coordinate, and given oddness
* for Y. Return value indicates whether the result is valid. */
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd);
/** Check whether a group element is the point at infinity. */
static int secp256k1_ge_is_infinity(const secp256k1_ge *a);
/** Check whether a group element is valid (i.e., on the curve). */
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a);
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a);
/** Set a group element equal to another which is given in jacobian coordinates */
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a);
/** Set a batch of group elements equal to the inputs given in jacobian coordinates */
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb);
/** Set a batch of group elements equal to the inputs given in jacobian
* coordinates (with known z-ratios). zr must contain the known z-ratios such
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */
static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr);
/** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to
* the same global z "denominator". zr must contain the known z-ratios such
* that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y
* coordinates of the result are stored in r, the common z coordinate is
* stored in globalz. */
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr);
/** Set a group element (jacobian) equal to the point at infinity. */
static void secp256k1_gej_set_infinity(secp256k1_gej *r);
/** Set a group element (jacobian) equal to another which is given in affine coordinates. */
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a);
/** Compare the X coordinate of a group element (jacobian). */
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a);
/** Set r equal to the inverse of a (i.e., mirrored around the X axis) */
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a);
/** Check whether a group element is the point at infinity. */
static int secp256k1_gej_is_infinity(const secp256k1_gej *a);
/** Check whether a group element's y coordinate is a quadratic residue. */
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a);
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0).
* a may not be zero. Constant time. */
static void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
/** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b);
/** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient
than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time
guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr);
/** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv);
#ifdef USE_ENDOMORPHISM
/** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a);
#endif
/** Clear a secp256k1_gej to prevent leaking sensitive information. */
static void secp256k1_gej_clear(secp256k1_gej *r);
/** Clear a secp256k1_ge to prevent leaking sensitive information. */
static void secp256k1_ge_clear(secp256k1_ge *r);
/** Convert a group element to the storage type. */
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a);
/** Convert a group element back from the storage type. */
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag);
/** Rescale a jacobian point by b which must be non-zero. Constant-time. */
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *b);
#endif

View file

@ -1,650 +0,0 @@
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_GROUP_IMPL_H_
#define _SECP256K1_GROUP_IMPL_H_
#include "num.h"
#include "field.h"
#include "group.h"
/** Generator for secp256k1, value 'g' defined in
* "Standards for Efficient Cryptography" (SEC2) 2.7.1.
*/
static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
);
static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
secp256k1_fe zi2;
secp256k1_fe zi3;
secp256k1_fe_sqr(&zi2, zi);
secp256k1_fe_mul(&zi3, &zi2, zi);
secp256k1_fe_mul(&r->x, &a->x, &zi2);
secp256k1_fe_mul(&r->y, &a->y, &zi3);
r->infinity = a->infinity;
}
static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
r->infinity = 0;
r->x = *x;
r->y = *y;
}
static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
return a->infinity;
}
static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
*r = *a;
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
}
static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe z2, z3;
r->infinity = a->infinity;
secp256k1_fe_inv(&a->z, &a->z);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_mul(&z3, &a->z, &z2);
secp256k1_fe_mul(&a->x, &a->x, &z2);
secp256k1_fe_mul(&a->y, &a->y, &z3);
secp256k1_fe_set_int(&a->z, 1);
r->x = a->x;
r->y = a->y;
}
static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
secp256k1_fe z2, z3;
r->infinity = a->infinity;
if (a->infinity) {
return;
}
secp256k1_fe_inv_var(&a->z, &a->z);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_mul(&z3, &a->z, &z2);
secp256k1_fe_mul(&a->x, &a->x, &z2);
secp256k1_fe_mul(&a->y, &a->y, &z3);
secp256k1_fe_set_int(&a->z, 1);
r->x = a->x;
r->y = a->y;
}
static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb) {
secp256k1_fe *az;
secp256k1_fe *azi;
size_t i;
size_t count = 0;
az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len);
for (i = 0; i < len; i++) {
if (!a[i].infinity) {
az[count++] = a[i].z;
}
}
azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
secp256k1_fe_inv_all_var(count, azi, az);
free(az);
count = 0;
for (i = 0; i < len; i++) {
r[i].infinity = a[i].infinity;
if (!a[i].infinity) {
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
}
}
free(azi);
}
static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr) {
size_t i = len - 1;
secp256k1_fe zi;
if (len > 0) {
/* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
secp256k1_fe_inv(&zi, &a[i].z);
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
/* Work out way backwards, using the z-ratios to scale the x/y values. */
while (i > 0) {
secp256k1_fe_mul(&zi, &zi, &zr[i]);
i--;
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
}
}
}
static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
size_t i = len - 1;
secp256k1_fe zs;
if (len > 0) {
/* The z of the final point gives us the "global Z" for the table. */
r[i].x = a[i].x;
r[i].y = a[i].y;
*globalz = a[i].z;
r[i].infinity = 0;
zs = zr[i];
/* Work our way backwards, using the z-ratios to scale the x/y values. */
while (i > 0) {
if (i != len - 1) {
secp256k1_fe_mul(&zs, &zs, &zr[i]);
}
i--;
secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
}
}
}
static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
r->infinity = 1;
secp256k1_fe_set_int(&r->x, 0);
secp256k1_fe_set_int(&r->y, 0);
secp256k1_fe_set_int(&r->z, 0);
}
static void secp256k1_gej_clear(secp256k1_gej *r) {
r->infinity = 0;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
secp256k1_fe_clear(&r->z);
}
static void secp256k1_ge_clear(secp256k1_ge *r) {
r->infinity = 0;
secp256k1_fe_clear(&r->x);
secp256k1_fe_clear(&r->y);
}
static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x) {
secp256k1_fe x2, x3, c;
r->x = *x;
secp256k1_fe_sqr(&x2, x);
secp256k1_fe_mul(&x3, x, &x2);
r->infinity = 0;
secp256k1_fe_set_int(&c, 7);
secp256k1_fe_add(&c, &x3);
return secp256k1_fe_sqrt(&r->y, &c);
}
static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
if (!secp256k1_ge_set_xquad(r, x)) {
return 0;
}
secp256k1_fe_normalize_var(&r->y);
if (secp256k1_fe_is_odd(&r->y) != odd) {
secp256k1_fe_negate(&r->y, &r->y, 1);
}
return 1;
}
static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
secp256k1_fe_set_int(&r->z, 1);
}
static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
secp256k1_fe r, r2;
VERIFY_CHECK(!a->infinity);
secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
r2 = a->x; secp256k1_fe_normalize_weak(&r2);
return secp256k1_fe_equal_var(&r, &r2);
}
static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
r->infinity = a->infinity;
r->x = a->x;
r->y = a->y;
r->z = a->z;
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_negate(&r->y, &r->y, 1);
}
static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
return a->infinity;
}
static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
secp256k1_fe y2, x3, z2, z6;
if (a->infinity) {
return 0;
}
/** y^2 = x^3 + 7
* (Y/Z^3)^2 = (X/Z^2)^3 + 7
* Y^2 / Z^6 = X^3 / Z^6 + 7
* Y^2 = X^3 + 7*Z^6
*/
secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_sqr(&z2, &a->z);
secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
secp256k1_fe_mul_int(&z6, 7);
secp256k1_fe_add(&x3, &z6);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
}
static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
secp256k1_fe y2, x3, c;
if (a->infinity) {
return 0;
}
/* y^2 = x^3 + 7 */
secp256k1_fe_sqr(&y2, &a->y);
secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
secp256k1_fe_set_int(&c, 7);
secp256k1_fe_add(&x3, &c);
secp256k1_fe_normalize_weak(&x3);
return secp256k1_fe_equal_var(&y2, &x3);
}
static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
/* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate.
*
* Note that there is an implementation described at
* https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
* which trades a multiply for a square, but in practice this is actually slower,
* mainly because it requires more normalizations.
*/
secp256k1_fe t1,t2,t3,t4;
/** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
* Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
* y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
*
* Having said this, if this function receives a point on a sextic twist, e.g. by
* a fault attack, it is possible for y to be 0. This happens for y^2 = x^3 + 6,
* since -6 does have a cube root mod p. For this point, this function will not set
* the infinity flag even though the point doubles to infinity, and the result
* point will be gibberish (z = 0 but infinity = 0).
*/
r->infinity = a->infinity;
if (r->infinity) {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
return;
}
if (rzr != NULL) {
*rzr = a->y;
secp256k1_fe_normalize_weak(rzr);
secp256k1_fe_mul_int(rzr, 2);
}
secp256k1_fe_mul(&r->z, &a->z, &a->y);
secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
secp256k1_fe_sqr(&t1, &a->x);
secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
secp256k1_fe_sqr(&t3, &a->y);
secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
secp256k1_fe_sqr(&t4, &t3);
secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
r->x = t3;
secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
}
static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
secp256k1_gej_double_var(r, a, rzr);
}
static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
/* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
if (a->infinity) {
VERIFY_CHECK(rzr == NULL);
*r = *b;
return;
}
if (b->infinity) {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
*r = *a;
return;
}
r->infinity = 0;
secp256k1_fe_sqr(&z22, &b->z);
secp256k1_fe_sqr(&z12, &a->z);
secp256k1_fe_mul(&u1, &a->x, &z22);
secp256k1_fe_mul(&u2, &b->x, &z12);
secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, rzr);
} else {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 0);
}
r->infinity = 1;
}
return;
}
secp256k1_fe_sqr(&i2, &i);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_mul(&h3, &h, &h2);
secp256k1_fe_mul(&h, &h, &b->z);
if (rzr != NULL) {
*rzr = h;
}
secp256k1_fe_mul(&r->z, &a->z, &h);
secp256k1_fe_mul(&t, &u1, &h2);
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
secp256k1_fe_add(&r->y, &h3);
}
static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
/* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
if (a->infinity) {
VERIFY_CHECK(rzr == NULL);
secp256k1_gej_set_ge(r, b);
return;
}
if (b->infinity) {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 1);
}
*r = *a;
return;
}
r->infinity = 0;
secp256k1_fe_sqr(&z12, &a->z);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, rzr);
} else {
if (rzr != NULL) {
secp256k1_fe_set_int(rzr, 0);
}
r->infinity = 1;
}
return;
}
secp256k1_fe_sqr(&i2, &i);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_mul(&h3, &h, &h2);
if (rzr != NULL) {
*rzr = h;
}
secp256k1_fe_mul(&r->z, &a->z, &h);
secp256k1_fe_mul(&t, &u1, &h2);
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
secp256k1_fe_add(&r->y, &h3);
}
static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
/* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
if (b->infinity) {
*r = *a;
return;
}
if (a->infinity) {
secp256k1_fe bzinv2, bzinv3;
r->infinity = b->infinity;
secp256k1_fe_sqr(&bzinv2, bzinv);
secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
secp256k1_fe_set_int(&r->z, 1);
return;
}
r->infinity = 0;
/** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
* secp256k1's isomorphism we can multiply the Z coordinates on both sides
* by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
* This means that (rx,ry,rz) can be calculated as
* (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
* The variable az below holds the modified Z coordinate for a, which is used
* for the computation of rx and ry, but not for rz.
*/
secp256k1_fe_mul(&az, &a->z, bzinv);
secp256k1_fe_sqr(&z12, &az);
u1 = a->x; secp256k1_fe_normalize_weak(&u1);
secp256k1_fe_mul(&u2, &b->x, &z12);
s1 = a->y; secp256k1_fe_normalize_weak(&s1);
secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
if (secp256k1_fe_normalizes_to_zero_var(&h)) {
if (secp256k1_fe_normalizes_to_zero_var(&i)) {
secp256k1_gej_double_var(r, a, NULL);
} else {
r->infinity = 1;
}
return;
}
secp256k1_fe_sqr(&i2, &i);
secp256k1_fe_sqr(&h2, &h);
secp256k1_fe_mul(&h3, &h, &h2);
r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
secp256k1_fe_mul(&t, &u1, &h2);
r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
secp256k1_fe_add(&r->y, &h3);
}
static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
/* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
secp256k1_fe m_alt, rr_alt;
int infinity, degenerate;
VERIFY_CHECK(!b->infinity);
VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
/** In:
* Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
* In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
* we find as solution for a unified addition/doubling formula:
* lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
* x3 = lambda^2 - (x1 + x2)
* 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
*
* Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
* U1 = X1*Z2^2, U2 = X2*Z1^2
* S1 = Y1*Z2^3, S2 = Y2*Z1^3
* Z = Z1*Z2
* T = U1+U2
* M = S1+S2
* Q = T*M^2
* R = T^2-U1*U2
* X3 = 4*(R^2-Q)
* Y3 = 4*(R*(3*Q-2*R^2)-M^4)
* Z3 = 2*M*Z
* (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
*
* This formula has the benefit of being the same for both addition
* of distinct points and doubling. However, it breaks down in the
* case that either point is infinity, or that y1 = -y2. We handle
* these cases in the following ways:
*
* - If b is infinity we simply bail by means of a VERIFY_CHECK.
*
* - If a is infinity, we detect this, and at the end of the
* computation replace the result (which will be meaningless,
* but we compute to be constant-time) with b.x : b.y : 1.
*
* - If a = -b, we have y1 = -y2, which is a degenerate case.
* But here the answer is infinity, so we simply set the
* infinity flag of the result, overriding the computed values
* without even needing to cmov.
*
* - If y1 = -y2 but x1 != x2, which does occur thanks to certain
* properties of our curve (specifically, 1 has nontrivial cube
* roots in our field, and the curve equation has no x coefficient)
* then the answer is not infinity but also not given by the above
* equation. In this case, we cmov in place an alternate expression
* for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
* expressions for lambda are defined, they are equal, and can be
* obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
* then substitution of x^3 + 7 for y^2 (using the curve equation).
* For all pairs of nonzero points (a, b) at least one is defined,
* so this covers everything.
*/
secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */
secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
/** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
* case that Z = z1z2 = 0, and this is special-cased later on). */
degenerate = secp256k1_fe_normalizes_to_zero(&m) &
secp256k1_fe_normalizes_to_zero(&rr);
/* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
* This means either x1 == beta*x2 or beta*x1 == x2, where beta is
* a nontrivial cube root of one. In either case, an alternate
* non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
* so we set R/M equal to this. */
rr_alt = s1;
secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
secp256k1_fe_cmov(&m_alt, &m, !degenerate);
/* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
* From here on out Ralt and Malt represent the numerator
* and denominator of lambda; R and M represent the explicit
* expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
/* These two lines use the observation that either M == Malt or M == 0,
* so M^3 * Malt is either Malt^4 (which is computed by squaring), or
* zero (which is "computed" by cmov). So the cost is one squaring
* versus two multiplications. */
secp256k1_fe_sqr(&n, &n);
secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */
infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */
secp256k1_fe_normalize_weak(&t);
r->x = t; /* r->x = Ralt^2-Q (1) */
secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */
secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
secp256k1_fe_normalize_weak(&r->y);
secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
/** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
r->infinity = infinity;
}
static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
/* Operations: 4 mul, 1 sqr */
secp256k1_fe zz;
VERIFY_CHECK(!secp256k1_fe_is_zero(s));
secp256k1_fe_sqr(&zz, s);
secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
secp256k1_fe_mul(&r->y, &r->y, &zz);
secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
}
static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
secp256k1_fe x, y;
VERIFY_CHECK(!a->infinity);
x = a->x;
secp256k1_fe_normalize(&x);
y = a->y;
secp256k1_fe_normalize(&y);
secp256k1_fe_to_storage(&r->x, &x);
secp256k1_fe_to_storage(&r->y, &y);
}
static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
secp256k1_fe_from_storage(&r->x, &a->x);
secp256k1_fe_from_storage(&r->y, &a->y);
r->infinity = 0;
}
static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
}
#ifdef USE_ENDOMORPHISM
static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
static const secp256k1_fe beta = SECP256K1_FE_CONST(
0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
);
*r = *a;
secp256k1_fe_mul(&r->x, &r->x, &beta);
}
#endif
static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) {
secp256k1_fe yz;
if (a->infinity) {
return 0;
}
/* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as
* that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z
is */
secp256k1_fe_mul(&yz, &a->y, &a->z);
return secp256k1_fe_is_quad_var(&yz);
}
#endif

View file

@ -1,41 +0,0 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_HASH_
#define _SECP256K1_HASH_
#include <stdlib.h>
#include <stdint.h>
typedef struct {
uint32_t s[8];
uint32_t buf[16]; /* In big endian */
size_t bytes;
} secp256k1_sha256_t;
static void secp256k1_sha256_initialize(secp256k1_sha256_t *hash);
static void secp256k1_sha256_write(secp256k1_sha256_t *hash, const unsigned char *data, size_t size);
static void secp256k1_sha256_finalize(secp256k1_sha256_t *hash, unsigned char *out32);
typedef struct {
secp256k1_sha256_t inner, outer;
} secp256k1_hmac_sha256_t;
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256_t *hash, const unsigned char *key, size_t size);
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256_t *hash, const unsigned char *data, size_t size);
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256_t *hash, unsigned char *out32);
typedef struct {
unsigned char v[32];
unsigned char k[32];
int retry;
} secp256k1_rfc6979_hmac_sha256_t;
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen);
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256_t *rng, unsigned char *out, size_t outlen);
static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256_t *rng);
#endif

View file

@ -1,281 +0,0 @@
/**********************************************************************
* Copyright (c) 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_HASH_IMPL_H_
#define _SECP256K1_HASH_IMPL_H_
#include "hash.h"
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x,y,z) (((x) & (y)) | ((z) & ((x) | (y))))
#define Sigma0(x) (((x) >> 2 | (x) << 30) ^ ((x) >> 13 | (x) << 19) ^ ((x) >> 22 | (x) << 10))
#define Sigma1(x) (((x) >> 6 | (x) << 26) ^ ((x) >> 11 | (x) << 21) ^ ((x) >> 25 | (x) << 7))
#define sigma0(x) (((x) >> 7 | (x) << 25) ^ ((x) >> 18 | (x) << 14) ^ ((x) >> 3))
#define sigma1(x) (((x) >> 17 | (x) << 15) ^ ((x) >> 19 | (x) << 13) ^ ((x) >> 10))
#define Round(a,b,c,d,e,f,g,h,k,w) do { \
uint32_t t1 = (h) + Sigma1(e) + Ch((e), (f), (g)) + (k) + (w); \
uint32_t t2 = Sigma0(a) + Maj((a), (b), (c)); \
(d) += t1; \
(h) = t1 + t2; \
} while(0)
#ifdef WORDS_BIGENDIAN
#define BE32(x) (x)
#else
#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24))
#endif
static void secp256k1_sha256_initialize(secp256k1_sha256_t *hash) {
hash->s[0] = 0x6a09e667ul;
hash->s[1] = 0xbb67ae85ul;
hash->s[2] = 0x3c6ef372ul;
hash->s[3] = 0xa54ff53aul;
hash->s[4] = 0x510e527ful;
hash->s[5] = 0x9b05688cul;
hash->s[6] = 0x1f83d9abul;
hash->s[7] = 0x5be0cd19ul;
hash->bytes = 0;
}
/** Perform one SHA-256 transformation, processing 16 big endian 32-bit words. */
static void secp256k1_sha256_transform(uint32_t* s, const uint32_t* chunk) {
uint32_t a = s[0], b = s[1], c = s[2], d = s[3], e = s[4], f = s[5], g = s[6], h = s[7];
uint32_t w0, w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15;
Round(a, b, c, d, e, f, g, h, 0x428a2f98, w0 = BE32(chunk[0]));
Round(h, a, b, c, d, e, f, g, 0x71374491, w1 = BE32(chunk[1]));
Round(g, h, a, b, c, d, e, f, 0xb5c0fbcf, w2 = BE32(chunk[2]));
Round(f, g, h, a, b, c, d, e, 0xe9b5dba5, w3 = BE32(chunk[3]));
Round(e, f, g, h, a, b, c, d, 0x3956c25b, w4 = BE32(chunk[4]));
Round(d, e, f, g, h, a, b, c, 0x59f111f1, w5 = BE32(chunk[5]));
Round(c, d, e, f, g, h, a, b, 0x923f82a4, w6 = BE32(chunk[6]));
Round(b, c, d, e, f, g, h, a, 0xab1c5ed5, w7 = BE32(chunk[7]));
Round(a, b, c, d, e, f, g, h, 0xd807aa98, w8 = BE32(chunk[8]));
Round(h, a, b, c, d, e, f, g, 0x12835b01, w9 = BE32(chunk[9]));
Round(g, h, a, b, c, d, e, f, 0x243185be, w10 = BE32(chunk[10]));
Round(f, g, h, a, b, c, d, e, 0x550c7dc3, w11 = BE32(chunk[11]));
Round(e, f, g, h, a, b, c, d, 0x72be5d74, w12 = BE32(chunk[12]));
Round(d, e, f, g, h, a, b, c, 0x80deb1fe, w13 = BE32(chunk[13]));
Round(c, d, e, f, g, h, a, b, 0x9bdc06a7, w14 = BE32(chunk[14]));
Round(b, c, d, e, f, g, h, a, 0xc19bf174, w15 = BE32(chunk[15]));
Round(a, b, c, d, e, f, g, h, 0xe49b69c1, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0xefbe4786, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x0fc19dc6, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x240ca1cc, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x2de92c6f, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4a7484aa, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5cb0a9dc, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x76f988da, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x983e5152, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa831c66d, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xb00327c8, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xbf597fc7, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xc6e00bf3, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd5a79147, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0x06ca6351, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x14292967, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x27b70a85, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x2e1b2138, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x4d2c6dfc, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x53380d13, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x650a7354, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x766a0abb, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x81c2c92e, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x92722c85, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0xa2bfe8a1, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0xa81a664b, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0xc24b8b70, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0xc76c51a3, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0xd192e819, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xd6990624, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xf40e3585, w14 += sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0x106aa070, w15 += sigma1(w13) + w8 + sigma0(w0));
Round(a, b, c, d, e, f, g, h, 0x19a4c116, w0 += sigma1(w14) + w9 + sigma0(w1));
Round(h, a, b, c, d, e, f, g, 0x1e376c08, w1 += sigma1(w15) + w10 + sigma0(w2));
Round(g, h, a, b, c, d, e, f, 0x2748774c, w2 += sigma1(w0) + w11 + sigma0(w3));
Round(f, g, h, a, b, c, d, e, 0x34b0bcb5, w3 += sigma1(w1) + w12 + sigma0(w4));
Round(e, f, g, h, a, b, c, d, 0x391c0cb3, w4 += sigma1(w2) + w13 + sigma0(w5));
Round(d, e, f, g, h, a, b, c, 0x4ed8aa4a, w5 += sigma1(w3) + w14 + sigma0(w6));
Round(c, d, e, f, g, h, a, b, 0x5b9cca4f, w6 += sigma1(w4) + w15 + sigma0(w7));
Round(b, c, d, e, f, g, h, a, 0x682e6ff3, w7 += sigma1(w5) + w0 + sigma0(w8));
Round(a, b, c, d, e, f, g, h, 0x748f82ee, w8 += sigma1(w6) + w1 + sigma0(w9));
Round(h, a, b, c, d, e, f, g, 0x78a5636f, w9 += sigma1(w7) + w2 + sigma0(w10));
Round(g, h, a, b, c, d, e, f, 0x84c87814, w10 += sigma1(w8) + w3 + sigma0(w11));
Round(f, g, h, a, b, c, d, e, 0x8cc70208, w11 += sigma1(w9) + w4 + sigma0(w12));
Round(e, f, g, h, a, b, c, d, 0x90befffa, w12 += sigma1(w10) + w5 + sigma0(w13));
Round(d, e, f, g, h, a, b, c, 0xa4506ceb, w13 += sigma1(w11) + w6 + sigma0(w14));
Round(c, d, e, f, g, h, a, b, 0xbef9a3f7, w14 + sigma1(w12) + w7 + sigma0(w15));
Round(b, c, d, e, f, g, h, a, 0xc67178f2, w15 + sigma1(w13) + w8 + sigma0(w0));
s[0] += a;
s[1] += b;
s[2] += c;
s[3] += d;
s[4] += e;
s[5] += f;
s[6] += g;
s[7] += h;
}
static void secp256k1_sha256_write(secp256k1_sha256_t *hash, const unsigned char *data, size_t len) {
size_t bufsize = hash->bytes & 0x3F;
hash->bytes += len;
while (bufsize + len >= 64) {
/* Fill the buffer, and process it. */
memcpy(((unsigned char*)hash->buf) + bufsize, data, 64 - bufsize);
data += 64 - bufsize;
len -= 64 - bufsize;
secp256k1_sha256_transform(hash->s, hash->buf);
bufsize = 0;
}
if (len) {
/* Fill the buffer with what remains. */
memcpy(((unsigned char*)hash->buf) + bufsize, data, len);
}
}
static void secp256k1_sha256_finalize(secp256k1_sha256_t *hash, unsigned char *out32) {
static const unsigned char pad[64] = {0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint32_t sizedesc[2];
uint32_t out[8];
int i = 0;
sizedesc[0] = BE32(hash->bytes >> 29);
sizedesc[1] = BE32(hash->bytes << 3);
secp256k1_sha256_write(hash, pad, 1 + ((119 - (hash->bytes % 64)) % 64));
secp256k1_sha256_write(hash, (const unsigned char*)sizedesc, 8);
for (i = 0; i < 8; i++) {
out[i] = BE32(hash->s[i]);
hash->s[i] = 0;
}
memcpy(out32, (const unsigned char*)out, 32);
}
static void secp256k1_hmac_sha256_initialize(secp256k1_hmac_sha256_t *hash, const unsigned char *key, size_t keylen) {
int n;
unsigned char rkey[64];
if (keylen <= 64) {
memcpy(rkey, key, keylen);
memset(rkey + keylen, 0, 64 - keylen);
} else {
secp256k1_sha256_t sha256;
secp256k1_sha256_initialize(&sha256);
secp256k1_sha256_write(&sha256, key, keylen);
secp256k1_sha256_finalize(&sha256, rkey);
memset(rkey + 32, 0, 32);
}
secp256k1_sha256_initialize(&hash->outer);
for (n = 0; n < 64; n++) {
rkey[n] ^= 0x5c;
}
secp256k1_sha256_write(&hash->outer, rkey, 64);
secp256k1_sha256_initialize(&hash->inner);
for (n = 0; n < 64; n++) {
rkey[n] ^= 0x5c ^ 0x36;
}
secp256k1_sha256_write(&hash->inner, rkey, 64);
memset(rkey, 0, 64);
}
static void secp256k1_hmac_sha256_write(secp256k1_hmac_sha256_t *hash, const unsigned char *data, size_t size) {
secp256k1_sha256_write(&hash->inner, data, size);
}
static void secp256k1_hmac_sha256_finalize(secp256k1_hmac_sha256_t *hash, unsigned char *out32) {
unsigned char temp[32];
secp256k1_sha256_finalize(&hash->inner, temp);
secp256k1_sha256_write(&hash->outer, temp, 32);
memset(temp, 0, 32);
secp256k1_sha256_finalize(&hash->outer, out32);
}
static void secp256k1_rfc6979_hmac_sha256_initialize(secp256k1_rfc6979_hmac_sha256_t *rng, const unsigned char *key, size_t keylen) {
secp256k1_hmac_sha256_t hmac;
static const unsigned char zero[1] = {0x00};
static const unsigned char one[1] = {0x01};
memset(rng->v, 0x01, 32); /* RFC6979 3.2.b. */
memset(rng->k, 0x00, 32); /* RFC6979 3.2.c. */
/* RFC6979 3.2.d. */
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, zero, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
/* RFC6979 3.2.f. */
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, one, 1);
secp256k1_hmac_sha256_write(&hmac, key, keylen);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
rng->retry = 0;
}
static void secp256k1_rfc6979_hmac_sha256_generate(secp256k1_rfc6979_hmac_sha256_t *rng, unsigned char *out, size_t outlen) {
/* RFC6979 3.2.h. */
static const unsigned char zero[1] = {0x00};
if (rng->retry) {
secp256k1_hmac_sha256_t hmac;
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_write(&hmac, zero, 1);
secp256k1_hmac_sha256_finalize(&hmac, rng->k);
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
}
while (outlen > 0) {
secp256k1_hmac_sha256_t hmac;
int now = outlen;
secp256k1_hmac_sha256_initialize(&hmac, rng->k, 32);
secp256k1_hmac_sha256_write(&hmac, rng->v, 32);
secp256k1_hmac_sha256_finalize(&hmac, rng->v);
if (now > 32) {
now = 32;
}
memcpy(out, rng->v, now);
out += now;
outlen -= now;
}
rng->retry = 1;
}
static void secp256k1_rfc6979_hmac_sha256_finalize(secp256k1_rfc6979_hmac_sha256_t *rng) {
memset(rng->k, 0, 32);
memset(rng->v, 0, 32);
rng->retry = 0;
}
#undef BE32
#undef Round
#undef sigma1
#undef sigma0
#undef Sigma1
#undef Sigma0
#undef Maj
#undef Ch
#endif

View file

@ -1,478 +0,0 @@
/*
* Copyright 2013 Google Inc.
* Copyright 2014-2016 the libsecp256k1 contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.bitcoin;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.math.BigInteger;
import com.google.common.base.Preconditions;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import static org.bitcoin.NativeSecp256k1Util.*;
/**
* <p>This class holds native methods to handle ECDSA verification.</p>
*
* <p>You can find an example library that can be used for this at https://github.com/bitcoin/secp256k1</p>
*
* <p>To build secp256k1 for use with bitcoinj, run
* `./configure --enable-jni --enable-experimental --enable-module-schnorr --enable-module-ecdh`
* and `make` then copy `.libs/libsecp256k1.so` to your system library path
* or point the JVM to the folder containing it with -Djava.library.path
* </p>
*/
public class NativeSecp256k1 {
private static final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private static final Lock r = rwl.readLock();
private static final Lock w = rwl.writeLock();
private static ThreadLocal<ByteBuffer> nativeECDSABuffer = new ThreadLocal<ByteBuffer>();
/**
* Verifies the given secp256k1 signature in native code.
* Calling when enabled == false is undefined (probably library not loaded)
*
* @param data The data which was signed, must be exactly 32 bytes
* @param signature The signature
* @param pub The public key which did the signing
*/
public static boolean verify(byte[] data, byte[] signature, byte[] pub) throws AssertFailException{
Preconditions.checkArgument(data.length == 32 && signature.length <= 520 && pub.length <= 520);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < 520) {
byteBuff = ByteBuffer.allocateDirect(520);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(data);
byteBuff.put(signature);
byteBuff.put(pub);
byte[][] retByteArray;
r.lock();
try {
return secp256k1_ecdsa_verify(byteBuff, Secp256k1Context.getContext(), signature.length, pub.length) == 1;
} finally {
r.unlock();
}
}
/**
* libsecp256k1 Create an ECDSA signature.
*
* @param data Message hash, 32 bytes
* @param key Secret key, 32 bytes
*
* Return values
* @param sig byte array of signature
*/
public static byte[] sign(byte[] data, byte[] sec) throws AssertFailException{
Preconditions.checkArgument(data.length == 32 && sec.length <= 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < 32 + 32) {
byteBuff = ByteBuffer.allocateDirect(32 + 32);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(data);
byteBuff.put(sec);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_ecdsa_sign(byteBuff, Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] sigArr = retByteArray[0];
int sigLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(sigArr.length, sigLen, "Got bad signature length.");
return retVal == 0 ? new byte[0] : sigArr;
}
/**
* libsecp256k1 Seckey Verify - returns 1 if valid, 0 if invalid
*
* @param seckey ECDSA Secret key, 32 bytes
*/
public static boolean secKeyVerify(byte[] seckey) {
Preconditions.checkArgument(seckey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < seckey.length) {
byteBuff = ByteBuffer.allocateDirect(seckey.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seckey);
r.lock();
try {
return secp256k1_ec_seckey_verify(byteBuff,Secp256k1Context.getContext()) == 1;
} finally {
r.unlock();
}
}
/**
* libsecp256k1 Compute Pubkey - computes public key from secret key
*
* @param seckey ECDSA Secret key, 32 bytes
*
* Return values
* @param pubkey ECDSA Public key, 33 or 65 bytes
*/
//TODO add a 'compressed' arg
public static byte[] computePubkey(byte[] seckey) throws AssertFailException{
Preconditions.checkArgument(seckey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < seckey.length) {
byteBuff = ByteBuffer.allocateDirect(seckey.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seckey);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_ec_pubkey_create(byteBuff, Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] pubArr = retByteArray[0];
int pubLen = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
return retVal == 0 ? new byte[0]: pubArr;
}
/**
* libsecp256k1 Cleanup - This destroys the secp256k1 context object
* This should be called at the end of the program for proper cleanup of the context.
*/
public static synchronized void cleanup() {
w.lock();
try {
secp256k1_destroy_context(Secp256k1Context.getContext());
} finally {
w.unlock();
}
}
public static long cloneContext() {
r.lock();
try {
return secp256k1_ctx_clone(Secp256k1Context.getContext());
} finally { r.unlock(); }
}
/**
* libsecp256k1 PrivKey Tweak-Mul - Tweak privkey by multiplying to it
*
* @param tweak some bytes to tweak with
* @param seckey 32-byte seckey
*/
public static byte[] privKeyTweakMul(byte[] privkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(privkey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(privkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_privkey_tweak_mul(byteBuff,Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] privArr = retByteArray[0];
int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(privArr.length, privLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return privArr;
}
/**
* libsecp256k1 PrivKey Tweak-Add - Tweak privkey by adding to it
*
* @param tweak some bytes to tweak with
* @param seckey 32-byte seckey
*/
public static byte[] privKeyTweakAdd(byte[] privkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(privkey.length == 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < privkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(privkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(privkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_privkey_tweak_add(byteBuff,Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] privArr = retByteArray[0];
int privLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(privArr.length, privLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return privArr;
}
/**
* libsecp256k1 PubKey Tweak-Add - Tweak pubkey by adding to it
*
* @param tweak some bytes to tweak with
* @param pubkey 32-byte seckey
*/
public static byte[] pubKeyTweakAdd(byte[] pubkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(pubkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_pubkey_tweak_add(byteBuff,Secp256k1Context.getContext(), pubkey.length);
} finally {
r.unlock();
}
byte[] pubArr = retByteArray[0];
int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return pubArr;
}
/**
* libsecp256k1 PubKey Tweak-Mul - Tweak pubkey by multiplying to it
*
* @param tweak some bytes to tweak with
* @param pubkey 32-byte seckey
*/
public static byte[] pubKeyTweakMul(byte[] pubkey, byte[] tweak) throws AssertFailException{
Preconditions.checkArgument(pubkey.length == 33 || pubkey.length == 65);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < pubkey.length + tweak.length) {
byteBuff = ByteBuffer.allocateDirect(pubkey.length + tweak.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(pubkey);
byteBuff.put(tweak);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_pubkey_tweak_mul(byteBuff,Secp256k1Context.getContext(), pubkey.length);
} finally {
r.unlock();
}
byte[] pubArr = retByteArray[0];
int pubLen = (byte) new BigInteger(new byte[] { retByteArray[1][0] }).intValue() & 0xFF;
int retVal = new BigInteger(new byte[] { retByteArray[1][1] }).intValue();
assertEquals(pubArr.length, pubLen, "Got bad pubkey length.");
assertEquals(retVal, 1, "Failed return value check.");
return pubArr;
}
/**
* libsecp256k1 create ECDH secret - constant time ECDH calculation
*
* @param seckey byte array of secret key used in exponentiaion
* @param pubkey byte array of public key used in exponentiaion
*/
public static byte[] createECDHSecret(byte[] seckey, byte[] pubkey) throws AssertFailException{
Preconditions.checkArgument(seckey.length <= 32 && pubkey.length <= 65);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < 32 + pubkey.length) {
byteBuff = ByteBuffer.allocateDirect(32 + pubkey.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seckey);
byteBuff.put(pubkey);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_ecdh(byteBuff, Secp256k1Context.getContext(), pubkey.length);
} finally {
r.unlock();
}
byte[] resArr = retByteArray[0];
int retVal = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
assertEquals(resArr.length, 32, "Got bad result length.");
assertEquals(retVal, 1, "Failed return value check.");
return resArr;
}
/**
* libsecp256k1 randomize - updates the context randomization
*
* @param seed 32-byte random seed
*/
public static synchronized boolean randomize(byte[] seed) throws AssertFailException{
Preconditions.checkArgument(seed.length == 32 || seed == null);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null || byteBuff.capacity() < seed.length) {
byteBuff = ByteBuffer.allocateDirect(seed.length);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(seed);
w.lock();
try {
return secp256k1_context_randomize(byteBuff, Secp256k1Context.getContext()) == 1;
} finally {
w.unlock();
}
}
public static byte[] schnorrSign(byte[] data, byte[] sec) throws AssertFailException {
Preconditions.checkArgument(data.length == 32 && sec.length <= 32);
ByteBuffer byteBuff = nativeECDSABuffer.get();
if (byteBuff == null) {
byteBuff = ByteBuffer.allocateDirect(32 + 32);
byteBuff.order(ByteOrder.nativeOrder());
nativeECDSABuffer.set(byteBuff);
}
byteBuff.rewind();
byteBuff.put(data);
byteBuff.put(sec);
byte[][] retByteArray;
r.lock();
try {
retByteArray = secp256k1_schnorr_sign(byteBuff, Secp256k1Context.getContext());
} finally {
r.unlock();
}
byte[] sigArr = retByteArray[0];
int retVal = new BigInteger(new byte[] { retByteArray[1][0] }).intValue();
assertEquals(sigArr.length, 64, "Got bad signature length.");
return retVal == 0 ? new byte[0] : sigArr;
}
private static native long secp256k1_ctx_clone(long context);
private static native int secp256k1_context_randomize(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_privkey_tweak_add(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_privkey_tweak_mul(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_pubkey_tweak_add(ByteBuffer byteBuff, long context, int pubLen);
private static native byte[][] secp256k1_pubkey_tweak_mul(ByteBuffer byteBuff, long context, int pubLen);
private static native void secp256k1_destroy_context(long context);
private static native int secp256k1_ecdsa_verify(ByteBuffer byteBuff, long context, int sigLen, int pubLen);
private static native byte[][] secp256k1_ecdsa_sign(ByteBuffer byteBuff, long context);
private static native int secp256k1_ec_seckey_verify(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_ec_pubkey_create(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_ec_pubkey_parse(ByteBuffer byteBuff, long context, int inputLen);
private static native byte[][] secp256k1_schnorr_sign(ByteBuffer byteBuff, long context);
private static native byte[][] secp256k1_ecdh(ByteBuffer byteBuff, long context, int inputLen);
}

View file

@ -1,247 +0,0 @@
package org.bitcoin;
import com.google.common.io.BaseEncoding;
import java.util.Arrays;
import java.math.BigInteger;
import javax.xml.bind.DatatypeConverter;
import static org.bitcoin.NativeSecp256k1Util.*;
/**
* This class holds test cases defined for testing this library.
*/
public class NativeSecp256k1Test {
//TODO improve comments/add more tests
/**
* This tests verify() for a valid signature
*/
public static void testVerifyPos() throws AssertFailException{
boolean result = false;
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase());
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
result = NativeSecp256k1.verify( data, sig, pub);
assertEquals( result, true , "testVerifyPos");
}
/**
* This tests verify() for a non-valid signature
*/
public static void testVerifyNeg() throws AssertFailException{
boolean result = false;
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A91".toLowerCase()); //sha256hash of "testing"
byte[] sig = BaseEncoding.base16().lowerCase().decode("3044022079BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F817980220294F14E883B3F525B5367756C2A11EF6CF84B730B36C17CB0C56F0AAB2C98589".toLowerCase());
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
result = NativeSecp256k1.verify( data, sig, pub);
//System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
assertEquals( result, false , "testVerifyNeg");
}
/**
* This tests secret key verify() for a valid secretkey
*/
public static void testSecKeyVerifyPos() throws AssertFailException{
boolean result = false;
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
result = NativeSecp256k1.secKeyVerify( sec );
//System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
assertEquals( result, true , "testSecKeyVerifyPos");
}
/**
* This tests secret key verify() for a invalid secretkey
*/
public static void testSecKeyVerifyNeg() throws AssertFailException{
boolean result = false;
byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
result = NativeSecp256k1.secKeyVerify( sec );
//System.out.println(" TEST " + new BigInteger(1, resultbytes).toString(16));
assertEquals( result, false , "testSecKeyVerifyNeg");
}
/**
* This tests public key create() for a valid secretkey
*/
public static void testPubKeyCreatePos() throws AssertFailException{
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] resultArr = NativeSecp256k1.computePubkey( sec);
String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( pubkeyString , "04C591A8FF19AC9C4E4E5793673B83123437E975285E7B442F4EE2654DFFCA5E2D2103ED494718C697AC9AEBCFD19612E224DB46661011863ED2FC54E71861E2A6" , "testPubKeyCreatePos");
}
/**
* This tests public key create() for a invalid secretkey
*/
public static void testPubKeyCreateNeg() throws AssertFailException{
byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
byte[] resultArr = NativeSecp256k1.computePubkey( sec);
String pubkeyString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( pubkeyString, "" , "testPubKeyCreateNeg");
}
/**
* This tests sign() for a valid secretkey
*/
public static void testSignPos() throws AssertFailException{
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] resultArr = NativeSecp256k1.sign(data, sec);
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString, "30440220182A108E1448DC8F1FB467D06A0F3BB8EA0533584CB954EF8DA112F1D60E39A202201C66F36DA211C087F3AF88B50EDF4F9BDAA6CF5FD6817E74DCA34DB12390C6E9" , "testSignPos");
}
/**
* This tests sign() for a invalid secretkey
*/
public static void testSignNeg() throws AssertFailException{
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sec = BaseEncoding.base16().lowerCase().decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF".toLowerCase());
byte[] resultArr = NativeSecp256k1.sign(data, sec);
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString, "" , "testSignNeg");
}
/**
* This tests private key tweak-add
*/
public static void testPrivKeyTweakAdd_1() throws AssertFailException {
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.privKeyTweakAdd( sec , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "A168571E189E6F9A7E2D657A4B53AE99B909F7E712D1C23CED28093CD57C88F3" , "testPrivKeyAdd_1");
}
/**
* This tests private key tweak-mul
*/
public static void testPrivKeyTweakMul_1() throws AssertFailException {
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.privKeyTweakMul( sec , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "97F8184235F101550F3C71C927507651BD3F1CDB4A5A33B8986ACF0DEE20FFFC" , "testPrivKeyMul_1");
}
/**
* This tests private key tweak-add uncompressed
*/
public static void testPrivKeyTweakAdd_2() throws AssertFailException {
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.pubKeyTweakAdd( pub , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "0411C6790F4B663CCE607BAAE08C43557EDC1A4D11D88DFCB3D841D0C6A941AF525A268E2A863C148555C48FB5FBA368E88718A46E205FABC3DBA2CCFFAB0796EF" , "testPrivKeyAdd_2");
}
/**
* This tests private key tweak-mul uncompressed
*/
public static void testPrivKeyTweakMul_2() throws AssertFailException {
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
byte[] data = BaseEncoding.base16().lowerCase().decode("3982F19BEF1615BCCFBB05E321C10E1D4CBA3DF0E841C2E41EEB6016347653C3".toLowerCase()); //sha256hash of "tweak"
byte[] resultArr = NativeSecp256k1.pubKeyTweakMul( pub , data );
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString , "04E0FE6FE55EBCA626B98A807F6CAF654139E14E5E3698F01A9A658E21DC1D2791EC060D4F412A794D5370F672BC94B722640B5F76914151CFCA6E712CA48CC589" , "testPrivKeyMul_2");
}
/**
* This tests seed randomization
*/
public static void testRandomize() throws AssertFailException {
byte[] seed = BaseEncoding.base16().lowerCase().decode("A441B15FE9A3CF56661190A0B93B9DEC7D04127288CC87250967CF3B52894D11".toLowerCase()); //sha256hash of "random"
boolean result = NativeSecp256k1.randomize(seed);
assertEquals( result, true, "testRandomize");
}
/**
* This tests signSchnorr() for a valid secretkey
*/
public static void testSchnorrSign() throws AssertFailException{
byte[] data = BaseEncoding.base16().lowerCase().decode("CF80CD8AED482D5D1527D7DC72FCEFF84E6326592848447D2DC0B0E87DFC9A90".toLowerCase()); //sha256hash of "testing"
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] resultArr = NativeSecp256k1.schnorrSign(data, sec);
String sigString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( sigString, "C5E929AA058B982048760422D3B563749B7D0E50C5EBD8CD2FFC23214BD6A2F1B072C13880997EBA847CF20F2F90FCE07C1CA33A890A4127095A351127F8D95F" , "testSchnorrSign");
}
/**
* This tests signSchnorr() for a valid secretkey
*/
public static void testCreateECDHSecret() throws AssertFailException{
byte[] sec = BaseEncoding.base16().lowerCase().decode("67E56582298859DDAE725F972992A07C6C4FB9F62A8FFF58CE3CA926A1063530".toLowerCase());
byte[] pub = BaseEncoding.base16().lowerCase().decode("040A629506E1B65CD9D2E0BA9C75DF9C4FED0DB16DC9625ED14397F0AFC836FAE595DC53F8B0EFE61E703075BD9B143BAC75EC0E19F82A2208CAEB32BE53414C40".toLowerCase());
byte[] resultArr = NativeSecp256k1.createECDHSecret(sec, pub);
String ecdhString = javax.xml.bind.DatatypeConverter.printHexBinary(resultArr);
assertEquals( ecdhString, "2A2A67007A926E6594AF3EB564FC74005B37A9C8AEF2033C4552051B5C87F043" , "testCreateECDHSecret");
}
public static void main(String[] args) throws AssertFailException{
System.out.println("\n libsecp256k1 enabled: " + Secp256k1Context.isEnabled() + "\n");
assertEquals( Secp256k1Context.isEnabled(), true, "isEnabled" );
//Test verify() success/fail
testVerifyPos();
testVerifyNeg();
//Test secKeyVerify() success/fail
testSecKeyVerifyPos();
testSecKeyVerifyNeg();
//Test computePubkey() success/fail
testPubKeyCreatePos();
testPubKeyCreateNeg();
//Test sign() success/fail
testSignPos();
testSignNeg();
//Test Schnorr (partial support) //TODO
testSchnorrSign();
//testSchnorrVerify
//testSchnorrRecovery
//Test privKeyTweakAdd() 1
testPrivKeyTweakAdd_1();
//Test privKeyTweakMul() 2
testPrivKeyTweakMul_1();
//Test privKeyTweakAdd() 3
testPrivKeyTweakAdd_2();
//Test privKeyTweakMul() 4
testPrivKeyTweakMul_2();
//Test randomize()
testRandomize();
//Test ECDH
testCreateECDHSecret();
NativeSecp256k1.cleanup();
System.out.println(" All tests passed." );
}
}

View file

@ -1,45 +0,0 @@
/*
* Copyright 2014-2016 the libsecp256k1 contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.bitcoin;
public class NativeSecp256k1Util{
public static void assertEquals( int val, int val2, String message ) throws AssertFailException{
if( val != val2 )
throw new AssertFailException("FAIL: " + message);
}
public static void assertEquals( boolean val, boolean val2, String message ) throws AssertFailException{
if( val != val2 )
throw new AssertFailException("FAIL: " + message);
else
System.out.println("PASS: " + message);
}
public static void assertEquals( String val, String val2, String message ) throws AssertFailException{
if( !val.equals(val2) )
throw new AssertFailException("FAIL: " + message);
else
System.out.println("PASS: " + message);
}
public static class AssertFailException extends Exception {
public AssertFailException(String message) {
super( message );
}
}
}

View file

@ -1,51 +0,0 @@
/*
* Copyright 2014-2016 the libsecp256k1 contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.bitcoin;
/**
* This class holds the context reference used in native methods
* to handle ECDSA operations.
*/
public class Secp256k1Context {
private static final boolean enabled; //true if the library is loaded
private static final long context; //ref to pointer to context obj
static { //static initializer
boolean isEnabled = true;
long contextRef = -1;
try {
System.loadLibrary("secp256k1");
contextRef = secp256k1_init_context();
} catch (UnsatisfiedLinkError e) {
System.out.println("UnsatisfiedLinkError: " + e.toString());
isEnabled = false;
}
enabled = isEnabled;
context = contextRef;
}
public static boolean isEnabled() {
return enabled;
}
public static long getContext() {
if(!enabled) return -1; //sanity check
return context;
}
private static native long secp256k1_init_context();
}

View file

@ -1,411 +0,0 @@
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "org_bitcoin_NativeSecp256k1.h"
#include "include/secp256k1.h"
#include "include/secp256k1_ecdh.h"
#include "include/secp256k1_recovery.h"
#include "include/secp256k1_schnorr.h"
SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone
(JNIEnv* env, jclass classObject, jlong ctx_l)
{
const secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
jlong ctx_clone_l = (uintptr_t) secp256k1_context_clone(ctx);
(void)classObject;(void)env;
return ctx_clone_l;
}
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
const unsigned char* seed = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
(void)classObject;
return secp256k1_context_randomize(ctx, seed);
}
SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context
(JNIEnv* env, jclass classObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
secp256k1_context_destroy(ctx);
(void)classObject;(void)env;
}
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint siglen, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* sigdata = { (unsigned char*) (data + 32) };
const unsigned char* pubdata = { (unsigned char*) (data + siglen + 32) };
secp256k1_ecdsa_signature sig;
secp256k1_pubkey pubkey;
int ret = secp256k1_ecdsa_signature_parse_der(ctx, &sig, sigdata, siglen);
if( ret ) {
ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen);
if( ret ) {
ret = secp256k1_ecdsa_verify(ctx, &sig, data, &pubkey);
}
}
(void)classObject;
return ret;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
unsigned char* secKey = (unsigned char*) (data + 32);
jobjectArray retArray;
jbyteArray sigArray, intsByteArray;
unsigned char intsarray[2];
secp256k1_ecdsa_signature sig[72];
int ret = secp256k1_ecdsa_sign(ctx, sig, data, secKey, NULL, NULL );
unsigned char outputSer[72];
size_t outputLen = 72;
if( ret ) {
int ret2 = secp256k1_ecdsa_signature_serialize_der(ctx,outputSer, &outputLen, sig ); (void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
sigArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, sigArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, sigArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
(void)classObject;
return secp256k1_ec_seckey_verify(ctx, secKey);
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
const unsigned char* secKey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
secp256k1_pubkey pubkey;
jobjectArray retArray;
jbyteArray pubkeyArray, intsByteArray;
unsigned char intsarray[2];
int ret = secp256k1_ec_pubkey_create(ctx, &pubkey, secKey);
unsigned char outputSer[65];
size_t outputLen = 65;
if( ret ) {
int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
pubkeyArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, pubkeyArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, pubkeyArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (privkey + 32);
jobjectArray retArray;
jbyteArray privArray, intsByteArray;
unsigned char intsarray[2];
int privkeylen = 32;
int ret = secp256k1_ec_privkey_tweak_add(ctx, privkey, tweak);
intsarray[0] = privkeylen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
privArray = (*env)->NewByteArray(env, privkeylen);
(*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey);
(*env)->SetObjectArrayElement(env, retArray, 0, privArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* privkey = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (privkey + 32);
jobjectArray retArray;
jbyteArray privArray, intsByteArray;
unsigned char intsarray[2];
int privkeylen = 32;
int ret = secp256k1_ec_privkey_tweak_mul(ctx, privkey, tweak);
intsarray[0] = privkeylen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
privArray = (*env)->NewByteArray(env, privkeylen);
(*env)->SetByteArrayRegion(env, privArray, 0, privkeylen, (jbyte*)privkey);
(*env)->SetObjectArrayElement(env, retArray, 0, privArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
/* secp256k1_pubkey* pubkey = (secp256k1_pubkey*) (*env)->GetDirectBufferAddress(env, byteBufferObject);*/
unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (pkey + publen);
jobjectArray retArray;
jbyteArray pubArray, intsByteArray;
unsigned char intsarray[2];
unsigned char outputSer[65];
size_t outputLen = 65;
secp256k1_pubkey pubkey;
int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen);
if( ret ) {
ret = secp256k1_ec_pubkey_tweak_add(ctx, &pubkey, tweak);
}
if( ret ) {
int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
pubArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, pubArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* pkey = (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* tweak = (unsigned char*) (pkey + publen);
jobjectArray retArray;
jbyteArray pubArray, intsByteArray;
unsigned char intsarray[2];
unsigned char outputSer[65];
size_t outputLen = 65;
secp256k1_pubkey pubkey;
int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pkey, publen);
if ( ret ) {
ret = secp256k1_ec_pubkey_tweak_mul(ctx, &pubkey, tweak);
}
if( ret ) {
int ret2 = secp256k1_ec_pubkey_serialize(ctx,outputSer, &outputLen, &pubkey,SECP256K1_EC_UNCOMPRESSED );(void)ret2;
}
intsarray[0] = outputLen;
intsarray[1] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
pubArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, pubArray, 0, outputLen, (jbyte*)outputSer);
(*env)->SetObjectArrayElement(env, retArray, 0, pubArray);
intsByteArray = (*env)->NewByteArray(env, 2);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 2, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1pubkey_1combine
(JNIEnv * env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint numkeys)
{
(void)classObject;(void)env;(void)byteBufferObject;(void)ctx_l;(void)numkeys;
return 0;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1schnorr_1sign
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
unsigned char* data = (unsigned char*) (*env)->GetDirectBufferAddress(env, byteBufferObject);
unsigned char* secKey = (unsigned char*) (data + 32);
jobjectArray retArray;
jbyteArray sigArray, intsByteArray;
unsigned char intsarray[1];
unsigned char sig[64];
int ret = secp256k1_schnorr_sign(ctx, sig, data, secKey, NULL, NULL);
intsarray[0] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
sigArray = (*env)->NewByteArray(env, 64);
(*env)->SetByteArrayRegion(env, sigArray, 0, 64, (jbyte*)sig);
(*env)->SetObjectArrayElement(env, retArray, 0, sigArray);
intsByteArray = (*env)->NewByteArray(env, 1);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 1, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen)
{
secp256k1_context *ctx = (secp256k1_context*)(uintptr_t)ctx_l;
const unsigned char* secdata = (*env)->GetDirectBufferAddress(env, byteBufferObject);
const unsigned char* pubdata = (const unsigned char*) (secdata + 32);
jobjectArray retArray;
jbyteArray outArray, intsByteArray;
unsigned char intsarray[1];
secp256k1_pubkey pubkey;
unsigned char nonce_res[32];
size_t outputLen = 32;
int ret = secp256k1_ec_pubkey_parse(ctx, &pubkey, pubdata, publen);
if (ret) {
ret = secp256k1_ecdh(
ctx,
nonce_res,
&pubkey,
secdata
);
}
intsarray[0] = ret;
retArray = (*env)->NewObjectArray(env, 2,
(*env)->FindClass(env, "[B"),
(*env)->NewByteArray(env, 1));
outArray = (*env)->NewByteArray(env, outputLen);
(*env)->SetByteArrayRegion(env, outArray, 0, 32, (jbyte*)nonce_res);
(*env)->SetObjectArrayElement(env, retArray, 0, outArray);
intsByteArray = (*env)->NewByteArray(env, 1);
(*env)->SetByteArrayRegion(env, intsByteArray, 0, 1, (jbyte*)intsarray);
(*env)->SetObjectArrayElement(env, retArray, 1, intsByteArray);
(void)classObject;
return retArray;
}

View file

@ -1,127 +0,0 @@
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
#include "include/secp256k1.h"
/* Header for class org_bitcoin_NativeSecp256k1 */
#ifndef _Included_org_bitcoin_NativeSecp256k1
#define _Included_org_bitcoin_NativeSecp256k1
#ifdef __cplusplus
extern "C" {
#endif
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ctx_clone
* Signature: (J)J
*/
SECP256K1_API jlong JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ctx_1clone
(JNIEnv *, jclass, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_context_randomize
* Signature: (Ljava/nio/ByteBuffer;J)I
*/
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1context_1randomize
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_privkey_tweak_add
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1add
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_privkey_tweak_mul
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1privkey_1tweak_1mul
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_pubkey_tweak_add
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1add
(JNIEnv *, jclass, jobject, jlong, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_pubkey_tweak_mul
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1pubkey_1tweak_1mul
(JNIEnv *, jclass, jobject, jlong, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_destroy_context
* Signature: (J)V
*/
SECP256K1_API void JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1destroy_1context
(JNIEnv *, jclass, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ecdsa_verify
* Signature: (Ljava/nio/ByteBuffer;JII)I
*/
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1verify
(JNIEnv *, jclass, jobject, jlong, jint, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ecdsa_sign
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdsa_1sign
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ec_seckey_verify
* Signature: (Ljava/nio/ByteBuffer;J)I
*/
SECP256K1_API jint JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1seckey_1verify
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ec_pubkey_create
* Signature: (Ljava/nio/ByteBuffer;J)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1create
(JNIEnv *, jclass, jobject, jlong);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ec_pubkey_parse
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ec_1pubkey_1parse
(JNIEnv *, jclass, jobject, jlong, jint);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_schnorr_sign
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1schnorr_1sign
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l);
/*
* Class: org_bitcoin_NativeSecp256k1
* Method: secp256k1_ecdh
* Signature: (Ljava/nio/ByteBuffer;JI)[[B
*/
SECP256K1_API jobjectArray JNICALL Java_org_bitcoin_NativeSecp256k1_secp256k1_1ecdh
(JNIEnv* env, jclass classObject, jobject byteBufferObject, jlong ctx_l, jint publen);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,15 +0,0 @@
#include <stdlib.h>
#include <stdint.h>
#include "org_bitcoin_Secp256k1Context.h"
#include "include/secp256k1.h"
SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context
(JNIEnv* env, jclass classObject)
{
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN | SECP256K1_CONTEXT_VERIFY);
(void)classObject;(void)env;
return (uintptr_t)ctx;
}

View file

@ -1,22 +0,0 @@
/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
#include "include/secp256k1.h"
/* Header for class org_bitcoin_Secp256k1Context */
#ifndef _Included_org_bitcoin_Secp256k1Context
#define _Included_org_bitcoin_Secp256k1Context
#ifdef __cplusplus
extern "C" {
#endif
/*
* Class: org_bitcoin_Secp256k1Context
* Method: secp256k1_init_context
* Signature: ()J
*/
SECP256K1_API jlong JNICALL Java_org_bitcoin_Secp256k1Context_secp256k1_1init_1context
(JNIEnv *, jclass);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -1,8 +0,0 @@
include_HEADERS += include/secp256k1_ecdh.h
noinst_HEADERS += src/modules/ecdh/main_impl.h
noinst_HEADERS += src/modules/ecdh/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_ecdh
bench_ecdh_SOURCES = src/bench_ecdh.c
bench_ecdh_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif

View file

@ -1,54 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_MODULE_ECDH_MAIN_
#define _SECP256K1_MODULE_ECDH_MAIN_
#include "include/secp256k1_ecdh.h"
#include "ecmult_const_impl.h"
int secp256k1_ecdh(const secp256k1_context* ctx, unsigned char *result, const secp256k1_pubkey *point, const unsigned char *scalar) {
int ret = 0;
int overflow = 0;
secp256k1_gej res;
secp256k1_ge pt;
secp256k1_scalar s;
ARG_CHECK(result != NULL);
ARG_CHECK(point != NULL);
ARG_CHECK(scalar != NULL);
(void)ctx;
secp256k1_pubkey_load(ctx, &pt, point);
secp256k1_scalar_set_b32(&s, scalar, &overflow);
if (overflow || secp256k1_scalar_is_zero(&s)) {
ret = 0;
} else {
unsigned char x[32];
unsigned char y[1];
secp256k1_sha256_t sha;
secp256k1_ecmult_const(&res, &pt, &s);
secp256k1_ge_set_gej(&pt, &res);
/* Compute a hash of the point in compressed form
* Note we cannot use secp256k1_eckey_pubkey_serialize here since it does not
* expect its output to be secret and has a timing sidechannel. */
secp256k1_fe_normalize(&pt.x);
secp256k1_fe_normalize(&pt.y);
secp256k1_fe_get_b32(x, &pt.x);
y[0] = 0x02 | secp256k1_fe_is_odd(&pt.y);
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, y, sizeof(y));
secp256k1_sha256_write(&sha, x, sizeof(x));
secp256k1_sha256_finalize(&sha, result);
ret = 1;
}
secp256k1_scalar_clear(&s);
return ret;
}
#endif

View file

@ -1,75 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Andrew Poelstra *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_MODULE_ECDH_TESTS_
#define _SECP256K1_MODULE_ECDH_TESTS_
void test_ecdh_generator_basepoint(void) {
unsigned char s_one[32] = { 0 };
secp256k1_pubkey point[2];
int i;
s_one[31] = 1;
/* Check against pubkey creation when the basepoint is the generator */
for (i = 0; i < 100; ++i) {
secp256k1_sha256_t sha;
unsigned char s_b32[32];
unsigned char output_ecdh[32];
unsigned char output_ser[32];
unsigned char point_ser[33];
size_t point_ser_len = sizeof(point_ser);
secp256k1_scalar s;
random_scalar_order(&s);
secp256k1_scalar_get_b32(s_b32, &s);
/* compute using ECDH function */
CHECK(secp256k1_ec_pubkey_create(ctx, &point[0], s_one) == 1);
CHECK(secp256k1_ecdh(ctx, output_ecdh, &point[0], s_b32) == 1);
/* compute "explicitly" */
CHECK(secp256k1_ec_pubkey_create(ctx, &point[1], s_b32) == 1);
CHECK(secp256k1_ec_pubkey_serialize(ctx, point_ser, &point_ser_len, &point[1], SECP256K1_EC_COMPRESSED) == 1);
CHECK(point_ser_len == sizeof(point_ser));
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, point_ser, point_ser_len);
secp256k1_sha256_finalize(&sha, output_ser);
/* compare */
CHECK(memcmp(output_ecdh, output_ser, sizeof(output_ser)) == 0);
}
}
void test_bad_scalar(void) {
unsigned char s_zero[32] = { 0 };
unsigned char s_overflow[32] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41
};
unsigned char s_rand[32] = { 0 };
unsigned char output[32];
secp256k1_scalar rand;
secp256k1_pubkey point;
/* Create random point */
random_scalar_order(&rand);
secp256k1_scalar_get_b32(s_rand, &rand);
CHECK(secp256k1_ec_pubkey_create(ctx, &point, s_rand) == 1);
/* Try to multiply it by bad values */
CHECK(secp256k1_ecdh(ctx, output, &point, s_zero) == 0);
CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 0);
/* ...and a good one */
s_overflow[31] -= 1;
CHECK(secp256k1_ecdh(ctx, output, &point, s_overflow) == 1);
}
void run_ecdh_tests(void) {
test_ecdh_generator_basepoint();
test_bad_scalar();
}
#endif

View file

@ -1,15 +0,0 @@
include_HEADERS += include/secp256k1_rangeproof.h
noinst_HEADERS += src/modules/rangeproof/main_impl.h
noinst_HEADERS += src/modules/rangeproof/pedersen.h
noinst_HEADERS += src/modules/rangeproof/pedersen_impl.h
noinst_HEADERS += src/modules/rangeproof/borromean.h
noinst_HEADERS += src/modules/rangeproof/borromean_impl.h
noinst_HEADERS += src/modules/rangeproof/rangeproof.h
noinst_HEADERS += src/modules/rangeproof/rangeproof_impl.h
noinst_HEADERS += src/modules/rangeproof/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_rangeproof
bench_rangeproof_SOURCES = src/bench_rangeproof.c
bench_rangeproof_LDADD = libsecp256k1.la $(SECP_LIBS)
bench_rangeproof_LDFLAGS = -static
endif

View file

@ -1,24 +0,0 @@
/**********************************************************************
* Copyright (c) 2014, 2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_BORROMEAN_H_
#define _SECP256K1_BORROMEAN_H_
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult.h"
#include "ecmult_gen.h"
int secp256k1_borromean_verify(const secp256k1_ecmult_context* ecmult_ctx, secp256k1_scalar *evalues, const unsigned char *e0, const secp256k1_scalar *s,
const secp256k1_gej *pubs, const int *rsizes, int nrings, const unsigned char *m, int mlen);
int secp256k1_borromean_sign(const secp256k1_ecmult_context* ecmult_ctx, const secp256k1_ecmult_gen_context *ecmult_gen_ctx,
unsigned char *e0, secp256k1_scalar *s, const secp256k1_gej *pubs, const secp256k1_scalar *k, const secp256k1_scalar *sec,
const int *rsizes, const int *secidx, int nrings, const unsigned char *m, int mlen);
#endif

View file

@ -1,201 +0,0 @@
/**********************************************************************
* Copyright (c) 2014, 2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_BORROMEAN_IMPL_H_
#define _SECP256K1_BORROMEAN_IMPL_H_
#include "scalar.h"
#include "field.h"
#include "group.h"
#include "ecmult.h"
#include "ecmult_gen.h"
#include "borromean.h"
#include <limits.h>
#ifdef WORDS_BIGENDIAN
#define BE32(x) (x)
#else
#define BE32(p) ((((p) & 0xFF) << 24) | (((p) & 0xFF00) << 8) | (((p) & 0xFF0000) >> 8) | (((p) & 0xFF000000) >> 24))
#endif
SECP256K1_INLINE static void secp256k1_borromean_hash(unsigned char *hash, const unsigned char *m, int mlen, const unsigned char *e, int elen,
int ridx, int eidx) {
uint32_t ring;
uint32_t epos;
secp256k1_sha256_t sha256_en;
secp256k1_sha256_initialize(&sha256_en);
ring = BE32((uint32_t)ridx);
epos = BE32((uint32_t)eidx);
secp256k1_sha256_write(&sha256_en, e, elen);
secp256k1_sha256_write(&sha256_en, m, mlen);
secp256k1_sha256_write(&sha256_en, (unsigned char*)&ring, 4);
secp256k1_sha256_write(&sha256_en, (unsigned char*)&epos, 4);
secp256k1_sha256_finalize(&sha256_en, hash);
}
/** "Borromean" ring signature.
* Verifies nrings concurrent ring signatures all sharing a challenge value.
* Signature is one s value per pubkey and a hash.
* Verification equation:
* | m = H(P_{0..}||message) (Message must contain pubkeys or a pubkey commitment)
* | For each ring i:
* | | en = to_scalar(H(e0||m||i||0))
* | | For each pubkey j:
* | | | r = s_i_j G + en * P_i_j
* | | | e = H(r||m||i||j)
* | | | en = to_scalar(e)
* | | r_i = r
* | return e_0 ==== H(r_{0..i}||m)
*/
int secp256k1_borromean_verify(const secp256k1_ecmult_context* ecmult_ctx, secp256k1_scalar *evalues, const unsigned char *e0,
const secp256k1_scalar *s, const secp256k1_gej *pubs, const int *rsizes, int nrings, const unsigned char *m, int mlen) {
secp256k1_gej rgej;
secp256k1_ge rge;
secp256k1_scalar ens;
secp256k1_sha256_t sha256_e0;
unsigned char tmp[33];
int i;
int j;
int count;
size_t size;
int overflow;
VERIFY_CHECK(ecmult_ctx != NULL);
VERIFY_CHECK(e0 != NULL);
VERIFY_CHECK(s != NULL);
VERIFY_CHECK(pubs != NULL);
VERIFY_CHECK(rsizes != NULL);
VERIFY_CHECK(nrings > 0);
VERIFY_CHECK(m != NULL);
count = 0;
secp256k1_sha256_initialize(&sha256_e0);
for (i = 0; i < nrings; i++) {
VERIFY_CHECK(INT_MAX - count > rsizes[i]);
secp256k1_borromean_hash(tmp, m, mlen, e0, 32, i, 0);
secp256k1_scalar_set_b32(&ens, tmp, &overflow);
for (j = 0; j < rsizes[i]; j++) {
if (overflow || secp256k1_scalar_is_zero(&s[count]) || secp256k1_scalar_is_zero(&ens) || secp256k1_gej_is_infinity(&pubs[count])) {
return 0;
}
if (evalues) {
/*If requested, save the challenges for proof rewind.*/
evalues[count] = ens;
}
secp256k1_ecmult(ecmult_ctx, &rgej, &pubs[count], &ens, &s[count]);
if (secp256k1_gej_is_infinity(&rgej)) {
return 0;
}
/* OPT: loop can be hoisted and split to use batch inversion across all the rings; this would make it much faster. */
secp256k1_ge_set_gej_var(&rge, &rgej);
secp256k1_eckey_pubkey_serialize(&rge, tmp, &size, 1);
if (j != rsizes[i] - 1) {
secp256k1_borromean_hash(tmp, m, mlen, tmp, 33, i, j + 1);
secp256k1_scalar_set_b32(&ens, tmp, &overflow);
} else {
secp256k1_sha256_write(&sha256_e0, tmp, size);
}
count++;
}
}
secp256k1_sha256_write(&sha256_e0, m, mlen);
secp256k1_sha256_finalize(&sha256_e0, tmp);
return memcmp(e0, tmp, 32) == 0;
}
int secp256k1_borromean_sign(const secp256k1_ecmult_context* ecmult_ctx, const secp256k1_ecmult_gen_context *ecmult_gen_ctx,
unsigned char *e0, secp256k1_scalar *s, const secp256k1_gej *pubs, const secp256k1_scalar *k, const secp256k1_scalar *sec,
const int *rsizes, const int *secidx, int nrings, const unsigned char *m, int mlen) {
secp256k1_gej rgej;
secp256k1_ge rge;
secp256k1_scalar ens;
secp256k1_sha256_t sha256_e0;
unsigned char tmp[33];
int i;
int j;
int count;
size_t size;
int overflow;
VERIFY_CHECK(ecmult_ctx != NULL);
VERIFY_CHECK(ecmult_gen_ctx != NULL);
VERIFY_CHECK(e0 != NULL);
VERIFY_CHECK(s != NULL);
VERIFY_CHECK(pubs != NULL);
VERIFY_CHECK(k != NULL);
VERIFY_CHECK(sec != NULL);
VERIFY_CHECK(rsizes != NULL);
VERIFY_CHECK(secidx != NULL);
VERIFY_CHECK(nrings > 0);
VERIFY_CHECK(m != NULL);
secp256k1_sha256_initialize(&sha256_e0);
count = 0;
for (i = 0; i < nrings; i++) {
VERIFY_CHECK(INT_MAX - count > rsizes[i]);
secp256k1_ecmult_gen(ecmult_gen_ctx, &rgej, &k[i]);
secp256k1_ge_set_gej(&rge, &rgej);
if (secp256k1_gej_is_infinity(&rgej)) {
return 0;
}
secp256k1_eckey_pubkey_serialize(&rge, tmp, &size, 1);
for (j = secidx[i] + 1; j < rsizes[i]; j++) {
secp256k1_borromean_hash(tmp, m, mlen, tmp, 33, i, j);
secp256k1_scalar_set_b32(&ens, tmp, &overflow);
if (overflow || secp256k1_scalar_is_zero(&ens)) {
return 0;
}
/** The signing algorithm as a whole is not memory uniform so there is likely a cache sidechannel that
* leaks which members are non-forgeries. That the forgeries themselves are variable time may leave
* an additional privacy impacting timing side-channel, but not a key loss one.
*/
secp256k1_ecmult(ecmult_ctx, &rgej, &pubs[count + j], &ens, &s[count + j]);
if (secp256k1_gej_is_infinity(&rgej)) {
return 0;
}
secp256k1_ge_set_gej_var(&rge, &rgej);
secp256k1_eckey_pubkey_serialize(&rge, tmp, &size, 1);
}
secp256k1_sha256_write(&sha256_e0, tmp, size);
count += rsizes[i];
}
secp256k1_sha256_write(&sha256_e0, m, mlen);
secp256k1_sha256_finalize(&sha256_e0, e0);
count = 0;
for (i = 0; i < nrings; i++) {
VERIFY_CHECK(INT_MAX - count > rsizes[i]);
secp256k1_borromean_hash(tmp, m, mlen, e0, 32, i, 0);
secp256k1_scalar_set_b32(&ens, tmp, &overflow);
if (overflow || secp256k1_scalar_is_zero(&ens)) {
return 0;
}
for (j = 0; j < secidx[i]; j++) {
secp256k1_ecmult(ecmult_ctx, &rgej, &pubs[count + j], &ens, &s[count + j]);
if (secp256k1_gej_is_infinity(&rgej)) {
return 0;
}
secp256k1_ge_set_gej_var(&rge, &rgej);
secp256k1_eckey_pubkey_serialize(&rge, tmp, &size, 1);
secp256k1_borromean_hash(tmp, m, mlen, tmp, 33, i, j + 1);
secp256k1_scalar_set_b32(&ens, tmp, &overflow);
if (overflow || secp256k1_scalar_is_zero(&ens)) {
return 0;
}
}
secp256k1_scalar_mul(&s[count + j], &ens, &sec[i]);
secp256k1_scalar_negate(&s[count + j], &s[count + j]);
secp256k1_scalar_add(&s[count + j], &s[count + j], &k[i]);
if (secp256k1_scalar_is_zero(&s[count + j])) {
return 0;
}
count += rsizes[i];
}
secp256k1_scalar_clear(&ens);
secp256k1_ge_clear(&rge);
secp256k1_gej_clear(&rgej);
memset(tmp, 0, 33);
return 1;
}
#endif

View file

@ -1,244 +0,0 @@
/**********************************************************************
* Copyright (c) 2014-2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_RANGEPROOF_MAIN
#define SECP256K1_MODULE_RANGEPROOF_MAIN
#include "modules/rangeproof/pedersen_impl.h"
#include "modules/rangeproof/borromean_impl.h"
#include "modules/rangeproof/rangeproof_impl.h"
#include "modules/rangeproof/switch_impl.h"
void secp256k1_switch_context_initialize(secp256k1_context* ctx) {
secp256k1_pedersen_context_build(&ctx->switch_ctx, secp256k1_ge_const_g3, &ctx->error_callback);
}
/* Generates a simple switch commitment: *commit = blind * G3. The commitment is 33 bytes, the blinding factor is 32 bytes.*/
int secp256k1_switch_commit(const secp256k1_context* ctx, unsigned char *commit, unsigned char *blind) {
secp256k1_gej rj;
secp256k1_ge r;
secp256k1_scalar sec;
size_t sz;
int overflow;
int ret = 0;
ARG_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_pedersen_context_is_built(&ctx->switch_ctx));
ARG_CHECK(commit != NULL);
ARG_CHECK(blind != NULL);
secp256k1_scalar_set_b32(&sec, blind, &overflow);
if (!overflow) {
secp256k1_switch_ecmult(&ctx->switch_ctx, &rj, &sec);
if (!secp256k1_gej_is_infinity(&rj)) {
secp256k1_ge_set_gej(&r, &rj);
sz = 33;
ret = secp256k1_eckey_pubkey_serialize(&r, commit, &sz, 1);
}
secp256k1_gej_clear(&rj);
secp256k1_ge_clear(&r);
}
secp256k1_scalar_clear(&sec);
return ret;
}
void secp256k1_pedersen_context_initialize(secp256k1_context* ctx) {
secp256k1_pedersen_context_build(&ctx->pedersen_ctx, secp256k1_ge_const_g2, &ctx->error_callback);
}
/* Generates a pedersen commitment: *commit = blind * G + value * G2. The commitment is 33 bytes, the blinding factor is 32 bytes.*/
int secp256k1_pedersen_commit(const secp256k1_context* ctx, unsigned char *commit, unsigned char *blind, uint64_t value) {
secp256k1_gej rj;
secp256k1_ge r;
secp256k1_scalar sec;
size_t sz;
int overflow;
int ret = 0;
ARG_CHECK(ctx != NULL);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(secp256k1_pedersen_context_is_built(&ctx->pedersen_ctx));
ARG_CHECK(commit != NULL);
ARG_CHECK(blind != NULL);
secp256k1_scalar_set_b32(&sec, blind, &overflow);
if (!overflow) {
secp256k1_pedersen_ecmult(&ctx->ecmult_gen_ctx, &ctx->pedersen_ctx, &rj, &sec, value);
if (!secp256k1_gej_is_infinity(&rj)) {
secp256k1_ge_set_gej(&r, &rj);
sz = 33;
ret = secp256k1_eckey_pubkey_serialize(&r, commit, &sz, 1);
}
secp256k1_gej_clear(&rj);
secp256k1_ge_clear(&r);
}
secp256k1_scalar_clear(&sec);
return ret;
}
/** Takes a list of n pointers to 32 byte blinding values, the first negs of which are treated with positive sign and the rest
* negative, then calculates an additional blinding value that adds to zero.
*/
int secp256k1_pedersen_blind_sum(const secp256k1_context* ctx, unsigned char *blind_out, const unsigned char * const *blinds, int n, int npositive) {
secp256k1_scalar acc;
secp256k1_scalar x;
int i;
int overflow;
ARG_CHECK(ctx != NULL);
ARG_CHECK(blind_out != NULL);
ARG_CHECK(blinds != NULL);
secp256k1_scalar_set_int(&acc, 0);
for (i = 0; i < n; i++) {
secp256k1_scalar_set_b32(&x, blinds[i], &overflow);
if (overflow) {
return 0;
}
if (i >= npositive) {
secp256k1_scalar_negate(&x, &x);
}
secp256k1_scalar_add(&acc, &acc, &x);
}
secp256k1_scalar_get_b32(blind_out, &acc);
secp256k1_scalar_clear(&acc);
secp256k1_scalar_clear(&x);
return 1;
}
/* Takes two list of 33-byte commitments and sums the first set, subtracts the second and returns the resulting commitment. */
int secp256k1_pedersen_commit_sum(const secp256k1_context* ctx, unsigned char *commit_out,
const unsigned char * const *commits, int pcnt, const unsigned char * const *ncommits, int ncnt) {
secp256k1_gej accj;
secp256k1_ge add;
int i;
int ret = 0;
ARG_CHECK(ctx != NULL);
ARG_CHECK(!pcnt || (commits != NULL));
ARG_CHECK(!ncnt || (ncommits != NULL));
ARG_CHECK(commit_out != NULL);
ARG_CHECK(secp256k1_pedersen_context_is_built(&ctx->pedersen_ctx));
secp256k1_gej_set_infinity(&accj);
for (i = 0; i < ncnt; i++) {
if (!secp256k1_eckey_pubkey_parse(&add, ncommits[i], 33)) {
return 0;
}
secp256k1_gej_add_ge_var(&accj, &accj, &add, NULL);
}
secp256k1_gej_neg(&accj, &accj);
for (i = 0; i < pcnt; i++) {
if (!secp256k1_eckey_pubkey_parse(&add, commits[i], 33)) {
return 0;
}
secp256k1_gej_add_ge_var(&accj, &accj, &add, NULL);
}
if (!secp256k1_gej_is_infinity(&accj)) {
size_t sz = 33;
secp256k1_ge acc;
secp256k1_ge_set_gej(&acc, &accj);
ret = secp256k1_eckey_pubkey_serialize(&acc, commit_out, &sz, 1);
}
return ret;
}
/* Takes two list of 33-byte commitments and sums the first set and subtracts the second and verifies that they sum to excess. */
int secp256k1_pedersen_verify_tally(const secp256k1_context* ctx, const unsigned char * const *commits, int pcnt,
const unsigned char * const *ncommits, int ncnt, int64_t excess) {
secp256k1_gej accj;
secp256k1_ge add;
int i;
ARG_CHECK(ctx != NULL);
ARG_CHECK(!pcnt || (commits != NULL));
ARG_CHECK(!ncnt || (ncommits != NULL));
ARG_CHECK(secp256k1_pedersen_context_is_built(&ctx->pedersen_ctx));
secp256k1_gej_set_infinity(&accj);
if (excess) {
uint64_t ex;
int neg;
/* Take the absolute value, and negate the result if the input was negative. */
neg = secp256k1_sign_and_abs64(&ex, excess);
secp256k1_pedersen_ecmult_small(&ctx->pedersen_ctx, &accj, ex);
if (neg) {
secp256k1_gej_neg(&accj, &accj);
}
}
for (i = 0; i < ncnt; i++) {
if (!secp256k1_eckey_pubkey_parse(&add, ncommits[i], 33)) {
return 0;
}
secp256k1_gej_add_ge_var(&accj, &accj, &add, NULL);
}
secp256k1_gej_neg(&accj, &accj);
for (i = 0; i < pcnt; i++) {
if (!secp256k1_eckey_pubkey_parse(&add, commits[i], 33)) {
return 0;
}
secp256k1_gej_add_ge_var(&accj, &accj, &add, NULL);
}
return secp256k1_gej_is_infinity(&accj);
}
void secp256k1_rangeproof_context_initialize(secp256k1_context* ctx) {
secp256k1_rangeproof_context_build(&ctx->rangeproof_ctx, &ctx->error_callback);
}
int secp256k1_rangeproof_info(const secp256k1_context* ctx, int *exp, int *mantissa,
uint64_t *min_value, uint64_t *max_value, const unsigned char *proof, int plen) {
int offset;
uint64_t scale;
ARG_CHECK(exp != NULL);
ARG_CHECK(mantissa != NULL);
ARG_CHECK(min_value != NULL);
ARG_CHECK(max_value != NULL);
offset = 0;
scale = 1;
(void)ctx;
return secp256k1_rangeproof_getheader_impl(&offset, exp, mantissa, &scale, min_value, max_value, proof, plen);
}
int secp256k1_rangeproof_rewind(const secp256k1_context* ctx,
unsigned char *blind_out, uint64_t *value_out, unsigned char *message_out, int *outlen, const unsigned char *nonce,
uint64_t *min_value, uint64_t *max_value,
const unsigned char *commit, const unsigned char *proof, int plen) {
ARG_CHECK(ctx != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(proof != NULL);
ARG_CHECK(min_value != NULL);
ARG_CHECK(max_value != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(secp256k1_pedersen_context_is_built(&ctx->pedersen_ctx));
ARG_CHECK(secp256k1_rangeproof_context_is_built(&ctx->rangeproof_ctx));
return secp256k1_rangeproof_verify_impl(&ctx->ecmult_ctx, &ctx->ecmult_gen_ctx, &ctx->pedersen_ctx, &ctx->rangeproof_ctx,
blind_out, value_out, message_out, outlen, nonce, min_value, max_value, commit, proof, plen);
}
int secp256k1_rangeproof_verify(const secp256k1_context* ctx, uint64_t *min_value, uint64_t *max_value,
const unsigned char *commit, const unsigned char *proof, int plen) {
ARG_CHECK(ctx != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(proof != NULL);
ARG_CHECK(min_value != NULL);
ARG_CHECK(max_value != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(secp256k1_pedersen_context_is_built(&ctx->pedersen_ctx));
ARG_CHECK(secp256k1_rangeproof_context_is_built(&ctx->rangeproof_ctx));
return secp256k1_rangeproof_verify_impl(&ctx->ecmult_ctx, NULL, &ctx->pedersen_ctx, &ctx->rangeproof_ctx,
NULL, NULL, NULL, NULL, NULL, min_value, max_value, commit, proof, plen);
}
int secp256k1_rangeproof_sign(const secp256k1_context* ctx, unsigned char *proof, int *plen, uint64_t min_value,
const unsigned char *commit, const unsigned char *blind, const unsigned char *nonce, int exp, int min_bits, uint64_t value){
ARG_CHECK(ctx != NULL);
ARG_CHECK(proof != NULL);
ARG_CHECK(plen != NULL);
ARG_CHECK(commit != NULL);
ARG_CHECK(blind != NULL);
ARG_CHECK(nonce != NULL);
ARG_CHECK(secp256k1_ecmult_context_is_built(&ctx->ecmult_ctx));
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(secp256k1_pedersen_context_is_built(&ctx->pedersen_ctx));
ARG_CHECK(secp256k1_rangeproof_context_is_built(&ctx->rangeproof_ctx));
return secp256k1_rangeproof_sign_impl(&ctx->ecmult_ctx, &ctx->ecmult_gen_ctx, &ctx->pedersen_ctx, &ctx->rangeproof_ctx,
proof, plen, min_value, commit, blind, nonce, exp, min_bits, value);
}
#endif

View file

@ -1,35 +0,0 @@
/**********************************************************************
* Copyright (c) 2014, 2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_PEDERSEN_H_
#define _SECP256K1_PEDERSEN_H_
#include "group.h"
#include "scalar.h"
#include <stdint.h>
typedef struct {
secp256k1_ge_storage (*prec)[16][16]; /* prec[j][i] = 16^j * i * G + U_i */
} secp256k1_pedersen_context;
static void secp256k1_pedersen_context_init(secp256k1_pedersen_context* ctx);
static void secp256k1_pedersen_context_build(secp256k1_pedersen_context* ctx, const secp256k1_ge ge,
const secp256k1_callback* cb);
static void secp256k1_pedersen_context_clone(secp256k1_pedersen_context *dst,
const secp256k1_pedersen_context* src, const secp256k1_callback* cb);
static void secp256k1_pedersen_context_clear(secp256k1_pedersen_context* ctx);
static int secp256k1_pedersen_context_is_built(const secp256k1_pedersen_context* ctx);
/** Multiply a small number with the generator: r = gn*G2 */
static void secp256k1_pedersen_ecmult_small(const secp256k1_pedersen_context *ctx, secp256k1_gej *r, uint64_t gn);
/* sec * G + value * G2. */
static void secp256k1_pedersen_ecmult(const secp256k1_ecmult_gen_context *ecmult_gen_ctx,
const secp256k1_pedersen_context *pedersen_ctx, secp256k1_gej *rj, const secp256k1_scalar *sec, uint64_t value);
#endif

View file

@ -1,140 +0,0 @@
/***********************************************************************
* Copyright (c) 2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php. *
***********************************************************************/
#ifndef _SECP256K1_PEDERSEN_IMPL_H_
#define _SECP256K1_PEDERSEN_IMPL_H_
/** Alternative generator for secp256k1.
* This is the sha256 of 'g' after DER encoding (without compression),
* which happens to be a point on the curve.
* sage: G2 = EllipticCurve ([F (0), F (7)]).lift_x(int(hashlib.sha256('0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8'.decode('hex')).hexdigest(),16))
* sage: '%x %x'%G2.xy()
*/
static const secp256k1_ge secp256k1_ge_const_g2 = SECP256K1_GE_CONST(
0x50929b74UL, 0xc1a04954UL, 0xb78b4b60UL, 0x35e97a5eUL,
0x078a5a0fUL, 0x28ec96d5UL, 0x47bfee9aUL, 0xce803ac0UL,
0x31d3c686UL, 0x3973926eUL, 0x049e637cUL, 0xb1b5f40aUL,
0x36dac28aUL, 0xf1766968UL, 0xc30c2313UL, 0xf3a38904UL
);
static void secp256k1_pedersen_context_init(secp256k1_pedersen_context *ctx) {
ctx->prec = NULL;
}
static void secp256k1_pedersen_context_build(secp256k1_pedersen_context *ctx, const secp256k1_ge ge, const secp256k1_callback *cb) {
secp256k1_ge prec[256];
secp256k1_gej gj;
secp256k1_gej nums_gej;
int i, j;
if (ctx->prec != NULL) {
return;
}
ctx->prec = (secp256k1_ge_storage (*)[16][16])checked_malloc(cb, sizeof(*ctx->prec));
/* get the generator */
secp256k1_gej_set_ge(&gj, &ge);
/* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
{
static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
secp256k1_fe nums_x;
secp256k1_ge nums_ge;
VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32));
VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0));
secp256k1_gej_set_ge(&nums_gej, &nums_ge);
/* Add G to make the bits in x uniformly distributed. */
secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g2, NULL);
}
/* compute prec. */
{
secp256k1_gej precj[256]; /* Jacobian versions of prec. */
secp256k1_gej gbase;
secp256k1_gej numsbase;
gbase = gj; /* 16^j * G */
numsbase = nums_gej; /* 2^j * nums. */
for (j = 0; j < 16; j++) {
/* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
precj[j*16] = numsbase;
for (i = 1; i < 16; i++) {
secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase, NULL);
}
/* Multiply gbase by 16. */
for (i = 0; i < 4; i++) {
secp256k1_gej_double_var(&gbase, &gbase, NULL);
}
/* Multiply numbase by 2. */
secp256k1_gej_double_var(&numsbase, &numsbase, NULL);
if (j == 14) {
/* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
secp256k1_gej_neg(&numsbase, &numsbase);
secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej, NULL);
}
}
secp256k1_ge_set_all_gej_var(256, prec, precj, cb);
}
for (j = 0; j < 16; j++) {
for (i = 0; i < 16; i++) {
secp256k1_ge_to_storage(&(*ctx->prec)[j][i], &prec[j*16 + i]);
}
}
}
static int secp256k1_pedersen_context_is_built(const secp256k1_pedersen_context* ctx) {
return ctx->prec != NULL;
}
static void secp256k1_pedersen_context_clone(secp256k1_pedersen_context *dst,
const secp256k1_pedersen_context *src, const secp256k1_callback *cb) {
if (src->prec == NULL) {
dst->prec = NULL;
} else {
dst->prec = (secp256k1_ge_storage (*)[16][16])checked_malloc(cb, sizeof(*dst->prec));
memcpy(dst->prec, src->prec, sizeof(*dst->prec));
}
}
static void secp256k1_pedersen_context_clear(secp256k1_pedersen_context *ctx) {
free(ctx->prec);
ctx->prec = NULL;
}
/* Version of secp256k1_ecmult_gen using the second generator and working only on numbers in the range [0 .. 2^64). */
static void secp256k1_pedersen_ecmult_small(const secp256k1_pedersen_context *ctx, secp256k1_gej *r, uint64_t gn) {
secp256k1_ge add;
secp256k1_ge_storage adds;
int bits;
int i, j;
memset(&adds, 0, sizeof(adds));
secp256k1_gej_set_infinity(r);
add.infinity = 0;
for (j = 0; j < 16; j++) {
bits = (gn >> (j * 4)) & 15;
for (i = 0; i < 16; i++) {
secp256k1_ge_storage_cmov(&adds, &(*ctx->prec)[j][i], i == bits);
}
secp256k1_ge_from_storage(&add, &adds);
secp256k1_gej_add_ge(r, r, &add);
}
bits = 0;
secp256k1_ge_clear(&add);
}
/* sec * G + value * G2. */
SECP256K1_INLINE static void secp256k1_pedersen_ecmult(const secp256k1_ecmult_gen_context *ecmult_gen_ctx,
const secp256k1_pedersen_context *pedersen_ctx, secp256k1_gej *rj, const secp256k1_scalar *sec, uint64_t value) {
secp256k1_gej vj;
secp256k1_ecmult_gen(ecmult_gen_ctx, rj, sec);
secp256k1_pedersen_ecmult_small(pedersen_ctx, &vj, value);
/* FIXME: constant time. */
secp256k1_gej_add_var(rj, rj, &vj, NULL);
secp256k1_gej_clear(&vj);
}
#endif

View file

@ -1,31 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_RANGEPROOF_H_
#define _SECP256K1_RANGEPROOF_H_
#include "scalar.h"
#include "group.h"
typedef struct {
secp256k1_ge_storage (*prec)[1005];
} secp256k1_rangeproof_context;
static void secp256k1_rangeproof_context_init(secp256k1_rangeproof_context* ctx);
static void secp256k1_rangeproof_context_build(secp256k1_rangeproof_context* ctx, const secp256k1_callback* cb);
static void secp256k1_rangeproof_context_clone(secp256k1_rangeproof_context *dst,
const secp256k1_rangeproof_context* src, const secp256k1_callback* cb);
static void secp256k1_rangeproof_context_clear(secp256k1_rangeproof_context* ctx);
static int secp256k1_rangeproof_context_is_built(const secp256k1_rangeproof_context* ctx);
static int secp256k1_rangeproof_verify_impl(const secp256k1_ecmult_context* ecmult_ctx,
const secp256k1_ecmult_gen_context* ecmult_gen_ctx,
const secp256k1_pedersen_context* pedersen_ctx, const secp256k1_rangeproof_context* rangeproof_ctx,
unsigned char *blindout, uint64_t *value_out, unsigned char *message_out, int *outlen, const unsigned char *nonce,
uint64_t *min_value, uint64_t *max_value, const unsigned char *commit, const unsigned char *proof, int plen);
#endif

View file

@ -1,736 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_RANGEPROOF_IMPL_H_
#define _SECP256K1_RANGEPROOF_IMPL_H_
#include "scalar.h"
#include "group.h"
#include "rangeproof.h"
#include "hash_impl.h"
#include "modules/rangeproof/pedersen.h"
#include "modules/rangeproof/borromean.h"
static const int secp256k1_rangeproof_offsets[20] = {
0, 96, 189, 276, 360, 438, 510, 579, 642,
699, 753, 801, 843, 882, 915, 942, 966, 984,
996, 1005,
};
static void secp256k1_rangeproof_context_init(secp256k1_rangeproof_context *ctx) {
ctx->prec = NULL;
}
static void secp256k1_rangeproof_context_build(secp256k1_rangeproof_context *ctx, const secp256k1_callback* cb) {
secp256k1_ge *prec;
secp256k1_gej *precj;
secp256k1_gej gj;
secp256k1_gej one;
int i, pos;
if (ctx->prec != NULL) {
return;
}
precj = (secp256k1_gej (*))checked_malloc(cb, sizeof(*precj) * 1005);
if (precj == NULL) {
return;
}
prec = (secp256k1_ge (*))checked_malloc(cb, sizeof(*prec) * 1005);
if (prec == NULL) {
free(precj);
return;
}
/* get the generator */
secp256k1_gej_set_ge(&one, &secp256k1_ge_const_g2);
secp256k1_gej_neg(&one, &one);
/* compute prec. */
pos = 0;
for (i = 0; i < 19; i++) {
int pmax;
pmax = secp256k1_rangeproof_offsets[i + 1];
gj = one;
while (pos < pmax) {
precj[pos] = gj;
pos++;
secp256k1_gej_double_var(&precj[pos], &gj, NULL);
pos++;
secp256k1_gej_add_var(&precj[pos], &precj[pos - 1], &gj, NULL);
pos++;
if (pos < pmax - 1) {
secp256k1_gej_double_var(&gj, &precj[pos - 2], NULL);
}
}
if (i < 18) {
secp256k1_gej_double_var(&gj, &one, NULL);
one = gj;
secp256k1_gej_double_var(&gj, &gj, NULL);
secp256k1_gej_double_var(&gj, &gj, NULL);
secp256k1_gej_add_var(&one, &one, &gj, NULL);
}
}
VERIFY_CHECK(pos == 1005);
secp256k1_ge_set_all_gej_var(1005, prec, precj, cb);
free(precj);
ctx->prec = (secp256k1_ge_storage (*)[1005])checked_malloc(cb, sizeof(*ctx->prec));
if (ctx->prec == NULL) {
free(prec);
return;
}
for (i = 0; i < 1005; i++) {
secp256k1_ge_to_storage(&(*ctx->prec)[i], &prec[i]);
}
free(prec);
}
static int secp256k1_rangeproof_context_is_built(const secp256k1_rangeproof_context* ctx) {
return ctx->prec != NULL;
}
static void secp256k1_rangeproof_context_clone(secp256k1_rangeproof_context *dst,
const secp256k1_rangeproof_context *src, const secp256k1_callback* cb) {
if (src->prec == NULL) {
dst->prec = NULL;
} else {
dst->prec = (secp256k1_ge_storage (*)[1005])checked_malloc(cb, sizeof(*dst->prec));
memcpy(dst->prec, src->prec, sizeof(*dst->prec));
}
}
static void secp256k1_rangeproof_context_clear(secp256k1_rangeproof_context *ctx) {
free(ctx->prec);
ctx->prec = NULL;
}
SECP256K1_INLINE static void secp256k1_rangeproof_pub_expand(const secp256k1_rangeproof_context *ctx, secp256k1_gej *pubs,
int exp, int *rsizes, int rings) {
secp256k1_ge ge;
secp256k1_ge_storage *basis;
int i;
int j;
int npub;
VERIFY_CHECK(exp < 19);
if (exp < 0) {
exp = 0;
}
basis = &(*ctx->prec)[secp256k1_rangeproof_offsets[exp]];
npub = 0;
for (i = 0; i < rings; i++) {
for (j = 1; j < rsizes[i]; j++) {
secp256k1_ge_from_storage(&ge, &basis[i * 3 + j - 1]);
secp256k1_gej_add_ge_var(&pubs[npub + j], &pubs[npub], &ge, NULL);
}
npub += rsizes[i];
}
}
SECP256K1_INLINE static int secp256k1_rangeproof_genrand(secp256k1_scalar *sec, secp256k1_scalar *s, unsigned char *message,
int *rsizes, int rings, const unsigned char *nonce, const unsigned char *commit, const unsigned char *proof, int len) {
unsigned char tmp[32];
unsigned char rngseed[32 + 33 + 10];
secp256k1_rfc6979_hmac_sha256_t rng;
secp256k1_scalar acc;
int overflow;
int ret;
int i;
int j;
int b;
int npub;
VERIFY_CHECK(len <= 10);
memcpy(rngseed, nonce, 32);
memcpy(rngseed + 32, commit, 33);
memcpy(rngseed + 65, proof, len);
secp256k1_rfc6979_hmac_sha256_initialize(&rng, rngseed, 32 + 33 + len);
secp256k1_scalar_clear(&acc);
npub = 0;
ret = 1;
for (i = 0; i < rings; i++) {
if (i < rings - 1) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, tmp, 32);
do {
secp256k1_rfc6979_hmac_sha256_generate(&rng, tmp, 32);
secp256k1_scalar_set_b32(&sec[i], tmp, &overflow);
} while (overflow || secp256k1_scalar_is_zero(&sec[i]));
secp256k1_scalar_add(&acc, &acc, &sec[i]);
} else {
secp256k1_scalar_negate(&acc, &acc);
sec[i] = acc;
}
for (j = 0; j < rsizes[i]; j++) {
secp256k1_rfc6979_hmac_sha256_generate(&rng, tmp, 32);
if (message) {
for (b = 0; b < 32; b++) {
tmp[b] ^= message[(i * 4 + j) * 32 + b];
message[(i * 4 + j) * 32 + b] = tmp[b];
}
}
secp256k1_scalar_set_b32(&s[npub], tmp, &overflow);
ret &= !(overflow || secp256k1_scalar_is_zero(&s[npub]));
npub++;
}
}
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
secp256k1_scalar_clear(&acc);
memset(tmp, 0, 32);
return ret;
}
SECP256K1_INLINE static int secp256k1_range_proveparams(uint64_t *v, int *rings, int *rsizes, int *npub, int *secidx, uint64_t *min_value,
int *mantissa, uint64_t *scale, int *exp, int *min_bits, uint64_t value) {
int i;
*rings = 1;
rsizes[0] = 1;
secidx[0] = 0;
*scale = 1;
*mantissa = 0;
*npub = 0;
if (*min_value == UINT64_MAX) {
/* If the minimum value is the maximal representable value, then we cannot code a range. */
*exp = -1;
}
if (*exp >= 0) {
int max_bits;
uint64_t v2;
if ((*min_value && value > INT64_MAX) || (value && *min_value >= INT64_MAX)) {
/* If either value or min_value is >= 2^63-1 then the other must by zero to avoid overflowing the proven range. */
return 0;
}
max_bits = *min_value ? secp256k1_clz64_var(*min_value) : 64;
if (*min_bits > max_bits) {
*min_bits = max_bits;
}
if (*min_bits > 61 || value > INT64_MAX) {
/** Ten is not a power of two, so dividing by ten and then representing in base-2 times ten
* expands the representable range. The verifier requires the proven range is within 0..2**64.
* For very large numbers (all over 2**63) we must change our exponent to compensate.
* Rather than handling it precisely, this just disables use of the exponent for big values.
*/
*exp = 0;
}
/* Mask off the least significant digits, as requested. */
*v = value - *min_value;
/* If the user has asked for more bits of proof then there is room for in the exponent, reduce the exponent. */
v2 = *min_bits ? (UINT64_MAX>>(64-*min_bits)) : 0;
for (i = 0; i < *exp && (v2 <= UINT64_MAX / 10); i++) {
*v /= 10;
v2 *= 10;
}
*exp = i;
v2 = *v;
for (i = 0; i < *exp; i++) {
v2 *= 10;
*scale *= 10;
}
/* If the masked number isn't precise, compute the public offset. */
*min_value = value - v2;
/* How many bits do we need to represent our value? */
*mantissa = *v ? 64 - secp256k1_clz64_var(*v) : 1;
if (*min_bits > *mantissa) {
/* If the user asked for more precision, give it to them. */
*mantissa = *min_bits;
}
/* Digits in radix-4, except for the last digit if our mantissa length is odd. */
*rings = (*mantissa + 1) >> 1;
for (i = 0; i < *rings; i++) {
rsizes[i] = ((i < *rings - 1) | (!(*mantissa&1))) ? 4 : 2;
*npub += rsizes[i];
secidx[i] = (*v >> (i*2)) & 3;
}
VERIFY_CHECK(*mantissa>0);
VERIFY_CHECK((*v & ~(UINT64_MAX>>(64-*mantissa))) == 0); /* Did this get all the bits? */
} else {
/* A proof for an exact value. */
*exp = 0;
*min_value = value;
*v = 0;
*npub = 2;
}
VERIFY_CHECK(*v * *scale + *min_value == value);
VERIFY_CHECK(*rings > 0);
VERIFY_CHECK(*rings <= 32);
VERIFY_CHECK(*npub <= 128);
return 1;
}
/* strawman interface, writes proof in proof, a buffer of plen, proves with respect to min_value the range for commit which has the provided blinding factor and value. */
SECP256K1_INLINE static int secp256k1_rangeproof_sign_impl(const secp256k1_ecmult_context* ecmult_ctx,
const secp256k1_ecmult_gen_context* ecmult_gen_ctx, const secp256k1_pedersen_context* pedersen_ctx,
const secp256k1_rangeproof_context* rangeproof_ctx, unsigned char *proof, int *plen, uint64_t min_value,
const unsigned char *commit, const unsigned char *blind, const unsigned char *nonce, int exp, int min_bits, uint64_t value){
secp256k1_gej pubs[128]; /* Candidate digits for our proof, most inferred. */
secp256k1_scalar s[128]; /* Signatures in our proof, most forged. */
secp256k1_scalar sec[32]; /* Blinding factors for the correct digits. */
secp256k1_scalar k[32]; /* Nonces for our non-forged signatures. */
secp256k1_scalar stmp;
secp256k1_sha256_t sha256_m;
unsigned char prep[4096];
unsigned char tmp[33];
unsigned char *signs; /* Location of sign flags in the proof. */
uint64_t v;
uint64_t scale; /* scale = 10^exp. */
int mantissa; /* Number of bits proven in the blinded value. */
int rings; /* How many digits will our proof cover. */
int rsizes[32]; /* How many possible values there are for each place. */
int secidx[32]; /* Which digit is the correct one. */
int len; /* Number of bytes used so far. */
int i;
int overflow;
int npub;
len = 0;
if (*plen < 65 || min_value > value || min_bits > 64 || min_bits < 0 || exp < -1 || exp > 18) {
return 0;
}
if (!secp256k1_range_proveparams(&v, &rings, rsizes, &npub, secidx, &min_value, &mantissa, &scale, &exp, &min_bits, value)) {
return 0;
}
proof[len] = (rsizes[0] > 1 ? (64 | exp) : 0) | (min_value ? 32 : 0);
len++;
if (rsizes[0] > 1) {
VERIFY_CHECK(mantissa > 0 && mantissa <= 64);
proof[len] = mantissa - 1;
len++;
}
if (min_value) {
for (i = 0; i < 8; i++) {
proof[len + i] = (min_value >> ((7-i) * 8)) & 255;
}
len += 8;
}
/* Do we have enough room for the proof? */
if (*plen - len < 32 * (npub + rings - 1) + 32 + ((rings+6) >> 3)) {
return 0;
}
secp256k1_sha256_initialize(&sha256_m);
secp256k1_sha256_write(&sha256_m, commit, 33);
secp256k1_sha256_write(&sha256_m, proof, len);
memset(prep, 0, 4096);
/* Note, the data corresponding to the blinding factors must be zero. */
if (rsizes[rings - 1] > 1) {
int idx;
/* Value encoding sidechannel. */
idx = rsizes[rings - 1] - 1;
idx -= secidx[rings - 1] == idx;
idx = ((rings - 1) * 4 + idx) * 32;
for (i = 0; i < 8; i++) {
prep[8 + i + idx] = prep[16 + i + idx] = prep[24 + i + idx] = (v >> (56 - i * 8)) & 255;
prep[i + idx] = 0;
}
prep[idx] = 128;
}
if (!secp256k1_rangeproof_genrand(sec, s, prep, rsizes, rings, nonce, commit, proof, len)) {
return 0;
}
memset(prep, 0, 4096);
for (i = 0; i < rings; i++) {
/* Sign will overwrite the non-forged signature, move that random value into the nonce. */
k[i] = s[i * 4 + secidx[i]];
secp256k1_scalar_clear(&s[i * 4 + secidx[i]]);
}
/** Genrand returns the last blinding factor as -sum(rest),
* adding in the blinding factor for our commitment, results in the blinding factor for
* the commitment to the last digit that the verifier can compute for itself by subtracting
* all the digits in the proof from the commitment. This lets the prover skip sending the
* blinded value for one digit.
*/
secp256k1_scalar_set_b32(&stmp, blind, &overflow);
secp256k1_scalar_add(&sec[rings - 1], &sec[rings - 1], &stmp);
if (overflow || secp256k1_scalar_is_zero(&sec[rings - 1])) {
return 0;
}
signs = &proof[len];
/* We need one sign bit for each blinded value we send. */
for (i = 0; i < (rings + 6) >> 3; i++) {
signs[i] = 0;
len++;
}
npub = 0;
for (i = 0; i < rings; i++) {
/*OPT: Use the precomputed gen2 basis?*/
secp256k1_pedersen_ecmult(ecmult_gen_ctx, pedersen_ctx, &pubs[npub], &sec[i], ((uint64_t)secidx[i] * scale) << (i*2));
if (secp256k1_gej_is_infinity(&pubs[npub])) {
return 0;
}
if (i < rings - 1) {
size_t size = 33;
secp256k1_ge c;
/*OPT: split loop and batch invert.*/
secp256k1_ge_set_gej_var(&c, &pubs[npub]);
if(!secp256k1_eckey_pubkey_serialize(&c, tmp, &size, 1)) {
return 0;
}
secp256k1_sha256_write(&sha256_m, tmp, 33);
signs[i>>3] |= (tmp[0] == 3) << (i&7);
memcpy(&proof[len], &tmp[1], 32);
len += 32;
}
npub += rsizes[i];
}
secp256k1_rangeproof_pub_expand(rangeproof_ctx, pubs, exp, rsizes, rings);
secp256k1_sha256_finalize(&sha256_m, tmp);
if (!secp256k1_borromean_sign(ecmult_ctx, ecmult_gen_ctx, &proof[len], s, pubs, k, sec, rsizes, secidx, rings, tmp, 32)) {
return 0;
}
len += 32;
for (i = 0; i < npub; i++) {
secp256k1_scalar_get_b32(&proof[len],&s[i]);
len += 32;
}
VERIFY_CHECK(len <= *plen);
*plen = len;
memset(prep, 0, 4096);
return 1;
}
/* Computes blinding factor x given k, s, and the challenge e. */
SECP256K1_INLINE static void secp256k1_rangeproof_recover_x(secp256k1_scalar *x, const secp256k1_scalar *k, const secp256k1_scalar *e,
const secp256k1_scalar *s) {
secp256k1_scalar stmp;
secp256k1_scalar_negate(x, s);
secp256k1_scalar_add(x, x, k);
secp256k1_scalar_inverse(&stmp, e);
secp256k1_scalar_mul(x, x, &stmp);
}
/* Computes ring's nonce given the blinding factor x, the challenge e, and the signature s. */
SECP256K1_INLINE static void secp256k1_rangeproof_recover_k(secp256k1_scalar *k, const secp256k1_scalar *x, const secp256k1_scalar *e,
const secp256k1_scalar *s) {
secp256k1_scalar stmp;
secp256k1_scalar_mul(&stmp, x, e);
secp256k1_scalar_add(k, s, &stmp);
}
SECP256K1_INLINE static void secp256k1_rangeproof_ch32xor(unsigned char *x, const unsigned char *y) {
int i;
for (i = 0; i < 32; i++) {
x[i] ^= y[i];
}
}
SECP256K1_INLINE static int secp256k1_rangeproof_rewind_inner(secp256k1_scalar *blind, uint64_t *v,
unsigned char *m, int *mlen, secp256k1_scalar *ev, secp256k1_scalar *s,
int *rsizes, int rings, const unsigned char *nonce, const unsigned char *commit, const unsigned char *proof, int len) {
secp256k1_scalar s_orig[128];
secp256k1_scalar sec[32];
secp256k1_scalar stmp;
unsigned char prep[4096];
unsigned char tmp[32];
uint64_t value;
int offset;
int i;
int j;
int b;
int skip1;
int skip2;
int npub;
npub = ((rings - 1) << 2) + rsizes[rings-1];
VERIFY_CHECK(npub <= 128);
VERIFY_CHECK(npub >= 1);
memset(prep, 0, 4096);
/* Reconstruct the provers random values. */
secp256k1_rangeproof_genrand(sec, s_orig, prep, rsizes, rings, nonce, commit, proof, len);
*v = UINT64_MAX;
secp256k1_scalar_clear(blind);
if (rings == 1 && rsizes[0] == 1) {
/* With only a single proof, we can only recover the blinding factor. */
secp256k1_rangeproof_recover_x(blind, &s_orig[0], &ev[0], &s[0]);
if (v) {
*v = 0;
}
if (mlen) {
*mlen = 0;
}
return 1;
}
npub = (rings - 1) << 2;
for (j = 0; j < 2; j++) {
int idx;
/* Look for a value encoding in the last ring. */
idx = npub + rsizes[rings - 1] - 1 - j;
secp256k1_scalar_get_b32(tmp, &s[idx]);
secp256k1_rangeproof_ch32xor(tmp, &prep[idx * 32]);
if ((tmp[0] & 128) && (memcmp(&tmp[16], &tmp[24], 8) == 0) && (memcmp(&tmp[8], &tmp[16], 8) == 0)) {
value = 0;
for (i = 0; i < 8; i++) {
value = (value << 8) + tmp[24 + i];
}
if (v) {
*v = value;
}
memcpy(&prep[idx * 32], tmp, 32);
break;
}
}
if (j > 1) {
/* Couldn't extract a value. */
if (mlen) {
*mlen = 0;
}
return 0;
}
skip1 = rsizes[rings - 1] - 1 - j;
skip2 = ((value >> ((rings - 1) << 1)) & 3);
if (skip1 == skip2) {
/*Value is in wrong position.*/
if (mlen) {
*mlen = 0;
}
return 0;
}
skip1 += (rings - 1) << 2;
skip2 += (rings - 1) << 2;
/* Like in the rsize[] == 1 case, Having figured out which s is the one which was not forged, we can recover the blinding factor. */
secp256k1_rangeproof_recover_x(&stmp, &s_orig[skip2], &ev[skip2], &s[skip2]);
secp256k1_scalar_negate(&sec[rings - 1], &sec[rings - 1]);
secp256k1_scalar_add(blind, &stmp, &sec[rings - 1]);
if (!m || !mlen || *mlen == 0) {
if (mlen) {
*mlen = 0;
}
/* FIXME: cleanup in early out/failure cases. */
return 1;
}
offset = 0;
npub = 0;
for (i = 0; i < rings; i++) {
int idx;
idx = (value >> (i << 1)) & 3;
for (j = 0; j < rsizes[i]; j++) {
if (npub == skip1 || npub == skip2) {
npub++;
continue;
}
if (idx == j) {
/** For the non-forged signatures the signature is calculated instead of random, instead we recover the prover's nonces.
* this could just as well recover the blinding factors and messages could be put there as is done for recovering the
* blinding factor in the last ring, but it takes an inversion to recover x so it's faster to put the message data in k.
*/
secp256k1_rangeproof_recover_k(&stmp, &sec[i], &ev[npub], &s[npub]);
} else {
stmp = s[npub];
}
secp256k1_scalar_get_b32(tmp, &stmp);
secp256k1_rangeproof_ch32xor(tmp, &prep[npub * 32]);
for (b = 0; b < 32 && offset < *mlen; b++) {
m[offset] = tmp[b];
offset++;
}
npub++;
}
}
*mlen = offset;
memset(prep, 0, 4096);
for (i = 0; i < 128; i++) {
secp256k1_scalar_clear(&s_orig[i]);
}
for (i = 0; i < 32; i++) {
secp256k1_scalar_clear(&sec[i]);
}
secp256k1_scalar_clear(&stmp);
return 1;
}
SECP256K1_INLINE static int secp256k1_rangeproof_getheader_impl(int *offset, int *exp, int *mantissa, uint64_t *scale,
uint64_t *min_value, uint64_t *max_value, const unsigned char *proof, int plen) {
int i;
int has_nz_range;
int has_min;
if (plen < 65 || ((proof[*offset] & 128) != 0)) {
return 0;
}
has_nz_range = proof[*offset] & 64;
has_min = proof[*offset] & 32;
*exp = -1;
*mantissa = 0;
if (has_nz_range) {
*exp = proof[*offset] & 31;
*offset += 1;
if (*exp > 18) {
return 0;
}
*mantissa = proof[*offset] + 1;
if (*mantissa > 64) {
return 0;
}
*max_value = UINT64_MAX>>(64-*mantissa);
} else {
*max_value = 0;
}
*offset += 1;
*scale = 1;
for (i = 0; i < *exp; i++) {
if (*max_value > UINT64_MAX / 10) {
return 0;
}
*max_value *= 10;
*scale *= 10;
}
*min_value = 0;
if (has_min) {
if(plen - *offset < 8) {
return 0;
}
/*FIXME: Compact minvalue encoding?*/
for (i = 0; i < 8; i++) {
*min_value = (*min_value << 8) | proof[*offset + i];
}
*offset += 8;
}
if (*max_value > UINT64_MAX - *min_value) {
return 0;
}
*max_value += *min_value;
return 1;
}
/* Verifies range proof (len plen) for 33-byte commit, the min/max values proven are put in the min/max arguments; returns 0 on failure 1 on success.*/
SECP256K1_INLINE static int secp256k1_rangeproof_verify_impl(const secp256k1_ecmult_context* ecmult_ctx,
const secp256k1_ecmult_gen_context* ecmult_gen_ctx,
const secp256k1_pedersen_context* pedersen_ctx, const secp256k1_rangeproof_context* rangeproof_ctx,
unsigned char *blindout, uint64_t *value_out, unsigned char *message_out, int *outlen, const unsigned char *nonce,
uint64_t *min_value, uint64_t *max_value, const unsigned char *commit, const unsigned char *proof, int plen) {
secp256k1_gej accj;
secp256k1_gej pubs[128];
secp256k1_ge c;
secp256k1_scalar s[128];
secp256k1_scalar evalues[128]; /* Challenges, only used during proof rewind. */
secp256k1_sha256_t sha256_m;
int rsizes[32];
int ret;
int i;
size_t size;
int exp;
int mantissa;
int offset;
int rings;
int overflow;
int npub;
int offset_post_header;
uint64_t scale;
unsigned char signs[31];
unsigned char m[33];
const unsigned char *e0;
offset = 0;
if (!secp256k1_rangeproof_getheader_impl(&offset, &exp, &mantissa, &scale, min_value, max_value, proof, plen)) {
return 0;
}
offset_post_header = offset;
rings = 1;
rsizes[0] = 1;
npub = 1;
if (mantissa != 0) {
rings = (mantissa >> 1);
for (i = 0; i < rings; i++) {
rsizes[i] = 4;
}
npub = (mantissa >> 1) << 2;
if (mantissa & 1) {
rsizes[rings] = 2;
npub += rsizes[rings];
rings++;
}
}
VERIFY_CHECK(rings <= 32);
if (plen - offset < 32 * (npub + rings - 1) + 32 + ((rings+6) >> 3)) {
return 0;
}
secp256k1_sha256_initialize(&sha256_m);
secp256k1_sha256_write(&sha256_m, commit, 33);
secp256k1_sha256_write(&sha256_m, proof, offset);
for(i = 0; i < rings - 1; i++) {
signs[i] = (proof[offset + ( i>> 3)] & (1 << (i & 7))) != 0;
}
offset += (rings + 6) >> 3;
if ((rings - 1) & 7) {
/* Number of coded blinded points is not a multiple of 8, force extra sign bits to 0 to reject mutation. */
if ((proof[offset - 1] >> ((rings - 1) & 7)) != 0) {
return 0;
}
}
npub = 0;
secp256k1_gej_set_infinity(&accj);
if (*min_value) {
secp256k1_pedersen_ecmult_small(pedersen_ctx, &accj, *min_value);
}
for(i = 0; i < rings - 1; i++) {
memcpy(&m[1], &proof[offset], 32);
m[0] = 2 + signs[i];
if (!secp256k1_eckey_pubkey_parse(&c, m, 33)) {
return 0;
}
secp256k1_sha256_write(&sha256_m, m, 33);
secp256k1_gej_set_ge(&pubs[npub], &c);
secp256k1_gej_add_ge_var(&accj, &accj, &c, NULL);
offset += 32;
npub += rsizes[i];
}
secp256k1_gej_neg(&accj, &accj);
if (!secp256k1_eckey_pubkey_parse(&c, commit, 33)) {
return 0;
}
secp256k1_gej_add_ge_var(&pubs[npub], &accj, &c, NULL);
if (secp256k1_gej_is_infinity(&pubs[npub])) {
return 0;
}
secp256k1_rangeproof_pub_expand(rangeproof_ctx, pubs, exp, rsizes, rings);
npub += rsizes[rings - 1];
e0 = &proof[offset];
offset += 32;
for (i = 0; i < npub; i++) {
secp256k1_scalar_set_b32(&s[i], &proof[offset], &overflow);
if (overflow) {
return 0;
}
offset += 32;
}
if (offset != plen) {
/*Extra data found, reject.*/
return 0;
}
secp256k1_sha256_finalize(&sha256_m, m);
ret = secp256k1_borromean_verify(ecmult_ctx, nonce ? evalues : NULL, e0, s, pubs, rsizes, rings, m, 32);
if (ret && nonce) {
/* Given the nonce, try rewinding the witness to recover its initial state. */
secp256k1_scalar blind;
unsigned char commitrec[33];
uint64_t vv;
if (!ecmult_gen_ctx) {
return 0;
}
if (!secp256k1_rangeproof_rewind_inner(&blind, &vv, message_out, outlen, evalues, s, rsizes, rings, nonce, commit, proof, offset_post_header)) {
return 0;
}
/* Unwind apparently successful, see if the commitment can be reconstructed. */
/* FIXME: should check vv is in the mantissa's range. */
vv = (vv * scale) + *min_value;
secp256k1_pedersen_ecmult(ecmult_gen_ctx, pedersen_ctx, &accj, &blind, vv);
if (secp256k1_gej_is_infinity(&accj)) {
return 0;
}
secp256k1_ge_set_gej(&c, &accj);
size = 33;
secp256k1_eckey_pubkey_serialize(&c, commitrec, &size, 1);
if (size != 33 || memcmp(commitrec, commit, 33) != 0) {
return 0;
}
if (blindout) {
secp256k1_scalar_get_b32(blindout, &blind);
}
if (value_out) {
*value_out = vv;
}
}
return ret;
}
#endif

View file

@ -1,19 +0,0 @@
/**********************************************************************
* Copyright (c) 2014, 2017 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_SWITCH_H_
#define _SECP256K1_SWITCH_H_
#include "group.h"
#include "scalar.h"
#include <stdint.h>
/* sec * G3. */
static void secp256k1_switch_ecmult(const secp256k1_pedersen_context *switch_ctx,
secp256k1_gej *rj,
const secp256k1_scalar *sec);
#endif

View file

@ -1,35 +0,0 @@
/***********************************************************************
* Copyright (c) 2017 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php. *
***********************************************************************/
#ifndef _SECP256K1_SWITCH_IMPL_H_
#define _SECP256K1_SWITCH_IMPL_H_
#include "switch.h"
/** Alternative-alternative generator for secp256k1.
* This is the sha256 of the sha256 of 'g' after DER encoding (without compression),
* which happens to be a point on the curve.
* sage: gen_h = hashlib.sha256('0479be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8'.decode('hex'))
* sage: gen_j_input = gen_h.hexdigest()
* sage: gen_j = hashlib.sha256(gen_j_input.decode('hex'))
* sage: G3 = EllipticCurve ([F (0), F (7)]).lift_x(int(gen_j.hexdigest(),16))
* sage: '%x %x'%G3.xy()
*/
static const secp256k1_ge secp256k1_ge_const_g3 = SECP256K1_GE_CONST(
0xb860f567UL, 0x95fc03f3UL, 0xc2168538UL, 0x3d1b5a2fUL,
0x2954f49bUL, 0x7e398b8dUL, 0x2a019393UL, 0x3621155fUL,
0x5bc0f62cUL, 0xd35570acUL, 0xbdc0bd8bUL, 0xfc5a95ceUL,
0x9a5a5965UL, 0x8b30a903UL, 0xa6fe5d22UL, 0x593a37f5UL
);
/* sec * G3 */
SECP256K1_INLINE static void secp256k1_switch_ecmult(const secp256k1_pedersen_context *switch_ctx,
secp256k1_gej *rj, const secp256k1_scalar *sec) {
secp256k1_pedersen_ecmult_small(switch_ctx, rj, sec);
}
#endif

View file

@ -1,281 +0,0 @@
/**********************************************************************
* Copyright (c) 2015 Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef SECP256K1_MODULE_RANGEPROOF_TESTS
#define SECP256K1_MODULE_RANGEPROOF_TESTS
#include "include/secp256k1_rangeproof.h"
void test_pedersen(void) {
unsigned char commits[33*19];
const unsigned char *cptr[19];
unsigned char blinds[32*19];
const unsigned char *bptr[19];
secp256k1_scalar s;
uint64_t values[19];
int64_t totalv;
int i;
int inputs;
int outputs;
int total;
inputs = (secp256k1_rand32() & 7) + 1;
outputs = (secp256k1_rand32() & 7) + 2;
total = inputs + outputs;
for (i = 0; i < 19; i++) {
cptr[i] = &commits[i * 33];
bptr[i] = &blinds[i * 32];
}
totalv = 0;
for (i = 0; i < inputs; i++) {
values[i] = secp256k1_rands64(0, INT64_MAX - totalv);
totalv += values[i];
}
if (secp256k1_rand32() & 1) {
for (i = 0; i < outputs; i++) {
int64_t max = INT64_MAX;
if (totalv < 0) {
max += totalv;
}
values[i + inputs] = secp256k1_rands64(0, max);
totalv -= values[i + inputs];
}
} else {
for (i = 0; i < outputs - 1; i++) {
values[i + inputs] = secp256k1_rands64(0, totalv);
totalv -= values[i + inputs];
}
values[total - 1] = totalv >> (secp256k1_rand32() & 1);
totalv -= values[total - 1];
}
for (i = 0; i < total - 1; i++) {
random_scalar_order(&s);
secp256k1_scalar_get_b32(&blinds[i * 32], &s);
}
CHECK(secp256k1_pedersen_blind_sum(ctx, &blinds[(total - 1) * 32], bptr, total - 1, inputs));
for (i = 0; i < total; i++) {
CHECK(secp256k1_pedersen_commit(ctx, &commits[i * 33], &blinds[i * 32], values[i]));
}
CHECK(secp256k1_pedersen_verify_tally(ctx, cptr, inputs, &cptr[inputs], outputs, totalv));
CHECK(!secp256k1_pedersen_verify_tally(ctx, cptr, inputs, &cptr[inputs], outputs, totalv + 1));
random_scalar_order(&s);
for (i = 0; i < 4; i++) {
secp256k1_scalar_get_b32(&blinds[i * 32], &s);
}
values[0] = INT64_MAX;
values[1] = 0;
values[2] = 1;
for (i = 0; i < 3; i++) {
CHECK(secp256k1_pedersen_commit(ctx, &commits[i * 33], &blinds[i * 32], values[i]));
}
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[1], 1, &cptr[2], 1, -1));
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[2], 1, &cptr[1], 1, 1));
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[0], 1, &cptr[0], 1, 0));
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[0], 1, &cptr[1], 1, INT64_MAX));
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[1], 1, &cptr[1], 1, 0));
CHECK(secp256k1_pedersen_verify_tally(ctx, &cptr[1], 1, &cptr[0], 1, -INT64_MAX));
}
void test_borromean(void) {
unsigned char e0[32];
secp256k1_scalar s[64];
secp256k1_gej pubs[64];
secp256k1_scalar k[8];
secp256k1_scalar sec[8];
secp256k1_ge ge;
secp256k1_scalar one;
unsigned char m[32];
int rsizes[8];
int secidx[8];
int nrings;
int i;
int j;
int c;
secp256k1_rand256_test(m);
nrings = 1 + (secp256k1_rand32()&7);
c = 0;
secp256k1_scalar_set_int(&one, 1);
if (secp256k1_rand32()&1) {
secp256k1_scalar_negate(&one, &one);
}
for (i = 0; i < nrings; i++) {
rsizes[i] = 1 + (secp256k1_rand32()&7);
secidx[i] = secp256k1_rand32() % rsizes[i];
random_scalar_order(&sec[i]);
random_scalar_order(&k[i]);
if(secp256k1_rand32()&7) {
sec[i] = one;
}
if(secp256k1_rand32()&7) {
k[i] = one;
}
for (j = 0; j < rsizes[i]; j++) {
random_scalar_order(&s[c + j]);
if(secp256k1_rand32()&7) {
s[i] = one;
}
if (j == secidx[i]) {
secp256k1_ecmult_gen(&ctx->ecmult_gen_ctx, &pubs[c + j], &sec[i]);
} else {
random_group_element_test(&ge);
random_group_element_jacobian_test(&pubs[c + j],&ge);
}
}
c += rsizes[i];
}
CHECK(secp256k1_borromean_sign(&ctx->ecmult_ctx, &ctx->ecmult_gen_ctx, e0, s, pubs, k, sec, rsizes, secidx, nrings, m, 32));
CHECK(secp256k1_borromean_verify(&ctx->ecmult_ctx, NULL, e0, s, pubs, rsizes, nrings, m, 32));
i = secp256k1_rand32() % c;
secp256k1_scalar_negate(&s[i],&s[i]);
CHECK(!secp256k1_borromean_verify(&ctx->ecmult_ctx, NULL, e0, s, pubs, rsizes, nrings, m, 32));
secp256k1_scalar_negate(&s[i],&s[i]);
secp256k1_scalar_set_int(&one, 1);
for(j = 0; j < 4; j++) {
i = secp256k1_rand32() % c;
if (secp256k1_rand32() & 1) {
secp256k1_gej_double_var(&pubs[i],&pubs[i], NULL);
} else {
secp256k1_scalar_add(&s[i],&s[i],&one);
}
CHECK(!secp256k1_borromean_verify(&ctx->ecmult_ctx, NULL, e0, s, pubs, rsizes, nrings, m, 32));
}
}
void test_rangeproof(void) {
const uint64_t testvs[11] = {0, 1, 5, 11, 65535, 65537, INT32_MAX, UINT32_MAX, INT64_MAX - 1, INT64_MAX, UINT64_MAX};
unsigned char commit[33];
unsigned char commit2[33];
unsigned char proof[5134];
unsigned char blind[32];
unsigned char blindout[32];
unsigned char message[4096];
int mlen;
uint64_t v;
uint64_t vout;
uint64_t vmin;
uint64_t minv;
uint64_t maxv;
int len;
int i;
int j;
int k;
secp256k1_rand256(blind);
for (i = 0; i < 11; i++) {
v = testvs[i];
CHECK(secp256k1_pedersen_commit(ctx, commit, blind, v));
for (vmin = 0; vmin < (i<9 && i > 0 ? 2 : 1); vmin++) {
len = 5134;
CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, vmin, commit, blind, commit, 0, 0, v));
CHECK(len <= 5134);
mlen = 4096;
CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, message, &mlen, commit, &minv, &maxv, commit, proof, len));
for (j = 0; j < mlen; j++) {
CHECK(message[j] == 0);
}
CHECK(mlen <= 4096);
CHECK(memcmp(blindout, blind, 32) == 0);
CHECK(vout == v);
CHECK(minv <= v);
CHECK(maxv >= v);
len = 5134;
CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, v, commit, blind, commit, -1, 64, v));
CHECK(len <= 73);
CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit, &minv, &maxv, commit, proof, len));
CHECK(memcmp(blindout, blind, 32) == 0);
CHECK(vout == v);
CHECK(minv == v);
CHECK(maxv == v);
}
}
secp256k1_rand256(blind);
v = INT64_MAX - 1;
CHECK(secp256k1_pedersen_commit(ctx, commit, blind, v));
for (i = 0; i < 19; i++) {
len = 5134;
CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, 0, commit, blind, commit, i, 0, v));
CHECK(secp256k1_rangeproof_verify(ctx, &minv, &maxv, commit, proof, len));
CHECK(len <= 5134);
CHECK(minv <= v);
CHECK(maxv >= v);
}
secp256k1_rand256(blind);
{
/*Malleability test.*/
v = secp256k1_rands64(0, 255);
CHECK(secp256k1_pedersen_commit(ctx, commit, blind, v));
len = 5134;
CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, 0, commit, blind, commit, 0, 3, v));
CHECK(len <= 5134);
for (i = 0; i < len*8; i++) {
proof[i >> 3] ^= 1 << (i & 7);
CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, commit, proof, len));
proof[i >> 3] ^= 1 << (i & 7);
}
CHECK(secp256k1_rangeproof_verify(ctx, &minv, &maxv, commit, proof, len));
CHECK(minv <= v);
CHECK(maxv >= v);
}
memcpy(commit2, commit, 33);
for (i = 0; i < 10 * count; i++) {
int exp;
int min_bits;
v = secp256k1_rands64(0, UINT64_MAX >> (secp256k1_rand32()&63));
vmin = 0;
if ((v < INT64_MAX) && (secp256k1_rand32()&1)) {
vmin = secp256k1_rands64(0, v);
}
secp256k1_rand256(blind);
CHECK(secp256k1_pedersen_commit(ctx, commit, blind, v));
len = 5134;
exp = (int)secp256k1_rands64(0,18)-(int)secp256k1_rands64(0,18);
if (exp < 0) {
exp = -exp;
}
min_bits = (int)secp256k1_rands64(0,64)-(int)secp256k1_rands64(0,64);
if (min_bits < 0) {
min_bits = -min_bits;
}
CHECK(secp256k1_rangeproof_sign(ctx, proof, &len, vmin, commit, blind, commit, exp, min_bits, v));
CHECK(len <= 5134);
mlen = 4096;
CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, message, &mlen, commit, &minv, &maxv, commit, proof, len));
for (j = 0; j < mlen; j++) {
CHECK(message[j] == 0);
}
CHECK(mlen <= 4096);
CHECK(memcmp(blindout, blind, 32) == 0);
CHECK(vout == v);
CHECK(minv <= v);
CHECK(maxv >= v);
CHECK(secp256k1_rangeproof_rewind(ctx, blindout, &vout, NULL, NULL, commit, &minv, &maxv, commit, proof, len));
memcpy(commit2, commit, 33);
}
for (j = 0; j < 10; j++) {
for (i = 0; i < 96; i++) {
secp256k1_rand256(&proof[i * 32]);
}
for (k = 0; k < 128; k++) {
len = k;
CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, commit2, proof, len));
}
len = secp256k1_rands64(0, 3072);
CHECK(!secp256k1_rangeproof_verify(ctx, &minv, &maxv, commit2, proof, len));
}
}
void run_rangeproof_tests(void) {
int i;
secp256k1_pedersen_context_initialize(ctx);
secp256k1_rangeproof_context_initialize(ctx);
for (i = 0; i < 10*count; i++) {
test_pedersen();
}
for (i = 0; i < 10*count; i++) {
test_borromean();
}
test_rangeproof();
}
#endif

View file

@ -1,8 +0,0 @@
include_HEADERS += include/secp256k1_recovery.h
noinst_HEADERS += src/modules/recovery/main_impl.h
noinst_HEADERS += src/modules/recovery/tests_impl.h
if USE_BENCHMARK
noinst_PROGRAMS += bench_recover
bench_recover_SOURCES = src/bench_recover.c
bench_recover_LDADD = libsecp256k1.la $(SECP_LIBS) $(COMMON_LIB)
endif

Some files were not shown because too many files have changed in this diff Show more