diff --git a/doc/dandelion/dandelion.md b/doc/dandelion/dandelion.md index 6f320fda8..4daf6aeed 100644 --- a/doc/dandelion/dandelion.md +++ b/doc/dandelion/dandelion.md @@ -1,13 +1,17 @@ -Dandelion in Grin: Privacy-Preserving Transaction Propagation +Dandelion in Grin: Privacy-Preserving Transaction Aggregation and Propagation ================== -This document describes the implementation of Dandelion in Grin. +This document describes the implementation of Dandelion in Grin and its modification to handle transactions aggregation in the P2P protocol. ## Introduction Dandelion is a new transaction broadcasting mechanism that reduces the risk of eavesdroppers linking transactions to the source IP. Moreover, it allows Grin transactions to be aggregated (removing input-output pairs) before being broadcasted to the entire network giving an additional privacy perk. -Dandelion was introduced in [1] by G. Fanti et al. and presented at ACM Sigmetrics 2017. On June 2017 a BIP was proposed introducing a more practical and robust variant of Dandelion called Dandelion++ [2]. This document is an adaptation of this BIP for Grin. +Dandelion was introduced in [1] by G. Fanti et al. and presented at ACM Sigmetrics 2017. On June 2017, a BIP [2] was proposed introducing a more practical and robust variant of Dandelion called Dandelion++ [3] published later in 2018. This document is an adaptation of this BIP for Grin. -## Mechanism +We first define the original Dandelion propagation then the Grin adaptation of the protocol with transaction aggregation. + +## Original Dandelion + +### Mechanism Dandelion transaction propagation proceeds in two phases: first the “stem” phase, and then “fluff” phase. During the stem phase, each node relays the transaction to a *single* peer. After a random number of hops along the stem, the transaction enters the fluff phase, which behaves just like ordinary flooding/diffusion. Even when an attacker can identify the location of the fluff phase, it is much more difficult to identify the source of the stem. @@ -22,9 +26,7 @@ Illustration: └-> I ... -This mechanism also allows Grin transactions to be aggregated during the stem phase and then broadcasted to all the nodes on the network. This result in transaction aggregation and possibly cut-through (thus removing spent outputs) giving a significant privacy gain similar to a non-interactive coinjoin with cut-through. - -## Specification +### Specifications The Dandelion protocol is based on three mechanisms: @@ -48,31 +50,7 @@ After receiving a stem transaction, the node flips a biased coin to determine wh Nodes that receives stem transactions are called stem relays. This relay is chosen from among the outgoing (or whitelisted) connections, which prevents an adversary from easily inserting itself into the stem graph. Each node periodically randomly choose its stem relay every 10 minutes. -## Aggregation - -Two aggregation scenarios have been proposed. - -### Scenario 1: aggregating transaction without lock_height - -In this scenario, transactions are aggregated during the stem phase and then broadcasted to the mempool only when the fluff phase happens. - -Each node maintains a ```patience``` timer along with a ```max_patience``` value. When a node receives a stem transaction, its ```patience``` timer starts, waiting for more stem transactions to aggregate. Once the ```patience``` timer reaches the ```max_patience``` value, the node flips a coin to decide whether to send as stem or fluff. -In the of a stem transactions, the node starts an embargo timer which is defined in the Considerations part. The node need to track every stem transactions it receives aggregated or not in order to guarantee its propagation and be able to revert to a previous stempool state. - -A simulation of this scenario is available [here](simulation.md). - -### Scenario 2: aggregating transaction with lock_height - -Similar to the previous scenario, except that we aggregate transactions that are locked with ```lock_height```. As of now (7f478d7), transactions with ```lock_height > chain_height``` are rejected by the mempool. In this scenario, such locked transaction would be accepted in the stempool and relayed to other stem relays with the following conditions: - -``` -if (lock_height <= chain_tip.height && coin_flip <= stem_probability) -``` - -In this scenario, a patience parameter would still exist to know for how long a peer keep the transaction to its stempool before broadcasting it. Also a ```max_lock_height``` parameter must be defined in order to limit the potential denial of service vector. - - -## Considerations +### Considerations The main implementation challenges are: (1) identifying a satisfactory tradeoff between Dandelion’s privacy guarantees and its latency/overhead, and (2) ensuring that privacy cannot be degraded through abuse of existing mechanisms. In particular, the implementation should prevent an attacker from identifying stem nodes without interfering too much with the various existing mechanisms for efficient and DoS-resistant propagation. @@ -83,7 +61,23 @@ The main implementation challenges are: (1) identifying a satisfactory tradeoff * If a node receives a child transaction that depends on one or more currently-embargoed Dandelion transactions, then the transaction is also relayed in stem mode, and the embargo timer is set to the maximum of the embargo times of its parents. This helps ensure that parent transactions enter fluff mode before child transactions. Later on, this two transaction will be aggregated in one unique transaction removing the need for the timer. * Transaction propagation latency should be minimally affected by opting-in to this privacy feature; in particular, a transaction should never be prevented from propagating at all because of Dandelion. The random timer guarantees that the embargo mechanism is temporary, and every transaction is relayed according to the ordinary diffusion mechanism after some maximum (random) delay on the order of 30-60 seconds. +## Dandelion in Grin + +Dandelion also allows Grin transactions to be aggregated during the stem phase and then broadcasted to all the nodes on the network. This result in transaction aggregation and possibly cut-through (thus removing spent outputs) giving a significant privacy gain similar to a non-interactive coinjoin with cut-through. This section details this mechanism. + +### Aggregation Mechanism + +In order to aggregate transactions, Grin implements a modified version of the Dandelion protocol [4]. + +By default, when a node sends a transaction on the network it will be broadcasted with the Dandelion protocol as a stem transaction to its Dandelion relay. The Dandelion relay will then wait a period of time (the patience timer), in order to get more stem transactions to aggregate. At the end of the timer, the relay does a coin flip for each new stem transaction and determines if it will stem it (send to the next Dandelion relay) or fluff it (broadcast normally). Then the relay will take all the transactions to stem, aggregate them, and broadcast them to the next Dandelion relay. It will do the same for the transactions to fluff, except that it will broadcast the aggregated transactions “normally” (to a random subset of the peers). + +This gives us a P2P protocol that can handle transaction merging. + +A simulation of this scenario is available [here](simulation.md). + ## References -1. (Sigmetrics 2017) Dandelion: Redesigning the Bitcoin Network for Anonymity https://arxiv.org/abs/1701.04439 -2. Dandelion++: TBA -3. Dandelion BIP https://github.com/gfanti/bips/blob/master/bip-dandelion.mediawiki + +- [1] (Sigmetrics 2017) Dandelion: Redesigning the Bitcoin Network for Anonymity https://arxiv.org/abs/1701.04439 +- [2] Dandelion BIP https://github.com/dandelion-org/bips/blob/master/bip-dandelion.mediawiki +- [3] (Sigmetrics 2018) Dandelion++: Lightweight Cryptocurrency Networking with Formal Anonymity Guarantees https://arxiv.org/abs/1805.11060 +- [4] Dandelion Grin Pull Request #1067: https://github.com/mimblewimble/grin/pull/1067 diff --git a/doc/dandelion/images/Dandelion.xml b/doc/dandelion/images/Dandelion.xml index ddafdbea5..41c285982 100644 --- a/doc/dandelion/images/Dandelion.xml +++ b/doc/dandelion/images/Dandelion.xml @@ -1,2 +1,2 @@ -7Z1dc6M4FoZ/TS6dQnwIuExnOjMX3VNdk63Z7aspbGSbGgxZTDrJ/PqVsGQDAiKIZdHrk+mqMTKIj/Pq1dEj2b5x7nevvxbR0/ZrHpP0xrbi1xvnlxvbRii06P9YyduhxMfoULApkpjvdCp4TP4hvJAft3lOYrJv7FjmeVomT83CVZ5lZFU2yqKiyF+au63ztHnWp2hDpILHVZTKpf9O4nIr7guHpzd+I8lmy08d2P7hjV0kduZ3st9Gcf5SK3I+3zj3RZ6Xh1e713uSsocnnsvhuIeed48XVpCsVDkgXlq2tbTR0ok9FK4XzqGCH1H6zO/1jl9o+Sbufv+S7NIoo1uftuUupYWIvlznWfnId7Lo9mqbpPGX6C1/ZheyL6PV32Lr0zYvkn/o/pE4mL5dlDzONma1JWl6n6d5UZ3SIRb7r3HkI6uRn6sge3rsN3HX6Fj0JdqX4nryNI2e9smyukK2yy4qNkn2KS/LfMd3Erf20Dz9uvqj70dpsslo2YqeiBTsNPlzFpNY3IaI5uGEu2TFX6fRkqSf6AVvqgNE1VlePcV9WeR/k9r5rOrv+I7QmHjMD9EuSVnT+ZMUcZRF4ukfnh+y+XZXhTy8pCjJa69k0FGItAWTfEfK4o3uwg8IuHR527Vdvv1SawlC3ttaI7AtXhjx1rc5Vn0SKH3BNaqmV1fSq2NJgqX3WjbF2nziPAx1zYnIPEWrJNt8IWt2E+6p5A9+X6zoZZuU5JGWs9O9UMejZTl9xOu00sI2iWOSVVopozJaHlvIU55kZfUsvE/0H73ue+vWu/HoJd/TbXTapv/Y7gUNaUYvPUqqSBEq7hfCBK4W1s62LodZxBUrhhWfP6qeFFUI6lmC6tnmgoqloEoxJVl8x7rnU6x6w1s3tZr52Z5sfg8PDv2j5fShFW//4dVVG9/rG99IkdC7ZL5ehZJeDa8VH6NBYikzeCcWNDWh/Qzp2cXrDlctPl5HeERZQdKoTH40r6grZvwM35g4T2rwg+YR+/y5WBG+Uz1pEMd19wDtag73K1VT6eV4j5Mk5He4PTjDWZxBBNGEMwTmneE1KZkxWLeWhfn2d2ED9LVsDdxJrNswdOtuYvW5yXT/ODTL7l3C9y0mNGkxyHKmeQxymiYjVaTPZcIOOeJox9p5ttw/VbHEKWuHy4K+2pxaJJjQx0wIWa45FxJwAeJ++bg7qmNIHXFHEHdTcfcMDjKRbT7t6ByQ9KYQxyxFIUPRk26ItjKUb6AefKQ54eCaXIStvMHzRiYgfQfqSziQTLFkgwHqetXUFVnWnLgrkhEdgFdVoz2091mSVyRTOgjrecJqkr0imZzNI9fRB19FpzqYqmAjqcrPil+RDOqAv57LHkwCWNSFvIDAnkxkaEwkgjRkNLW1HQBhlSRpA40zZkVGMawNOM5c4E1yWNHnQOANBN4kiLXlRYcXzz5mBWKVsg5bIeuwjWQdPzGJtWUSey9pEUjsVZPY1vAbW4p9JgpsDd4JHHZ6p2jPl8PawGF1hdUkh7Wvj8PaChzWBg47SkXAYfXZg0kOawOHHTaRoRGRo8BhHeCwIyXpAIc1ZkVGOawDHNZc4E1yWAc4rLnAm+SwDnDYCVmHAod1gMOOlaLMYX+TtAgc9qo5rLQiVpnEalkR6wCJ/cDHROZLYh0gsbrCapLEOtdHYh0FEusAiR2lIiCx+uzBJIl1gMQOm8jQmMhVILEukNixX3UFJNaYFRklsS6QWHOBN0liXSCx5gJvksS6QGInZB0KJNYFEjtWijKJ/UXSIpDYqyax7fG3q8zrtHwlLIDY6b2iO18Q6wKI1RVWkyDWvT4Q6yqAWBdA7CgVAYjVZw8mQawLIHbYRIaGRJ4CiPUAxI79dnoAscasyCiI9QDEmgu8SRAr8mMIvIHAmwSxHoDYCVmHAoj1AMSOlaIMYh8kLQKIvWoQG1hzArEegNjpvaI3XxDrAYjVFVaTINa7PhDrKYBYD0DsKBUBiNVnDyZBrAcgdthEhoZEWAHEYgCxY39REkCsMSsyCmIxgFhzgTcJYjGAWHOBNwliMYDYCVmHAojFAGLHSlEGsZ8lLQKIvWoQ69lNXZv9agIMIHZ6r4jnC2IxgFhdYTUJYvH1gVisAGIxgNhRKgIQq88eTIJYDCB22ESGhkS+Aoj1AcSOlKQPINaYFRkFsT6AWHOBNwlifQCx5gJvEsT6AGInZB0KINYHEDtWijKI/VXSIoBYALE1XduuSRDrA4id3iv68wWxPoBYXWE1CWL96wOxvgKI9QHEjlIRgFh99mASxPoAYodNZGhIFCiA2ABA7EhJBgBijVmRURAbAIg1F3iTIFb8qDQE3kDgTYLYAEDshKxDAcQGAGJHSjGUQawkRcYSn3ob4SrPMrISTf/miE9GfPRdMBiBg6SWaYddLVMH5gtkHCQ9jxOLtXoMst5U66h2k0b7PX89FsYOtGqHHovupjpl2OOU7z1/FOh4/l3c5tAHxsmPRhzwf59zVs46wAUH5nd0j5T1Z8d3T/3muFo4ef9wPcNXQzvcrLMaFuHFvgo5q4VG8FWuJSUb2k2IuuijPlTXPAUtrq51SunVCz/o0L2jQ/bjeMSKPU426XOWpKD1FEf13ArPUGOPi1odLpo67LfeqUhjB9w57E+FB6iYA7K7zOGxJDv65h/0Cb/V2vehUuWxRDW92ZvWs8xdmqpkrTBZRekdf2NHhwjs+L7Jyfq854fbu0o20t34etMT69bxBat8a5zso/miOITXukAtsJ2v13vyUcHZiEQhDm3sRbGFcLCQM5zf85jQkt+jHZEkAZPw/+eT8KqOLmpoe24HQMFd2SI+Q7cpaVnOFr/RFkmyFdPzn1Up8JLOsHfbwqgp+q4wnwOXSJcmz8LVovyvZMfydIjyGaLcNWOvK8oI28SP8RqHy3gVRNFiBlNymmfs+7riOtLqFj/M2KuqSM5uPu+W9HQ5dAhntYqu2XtdVtFOUbomzC7sFLOYvO/zkzpGlxpIIHtO9z4weT/CduQUhY2/n/I8hSk8TQ7UOWl/sZxUzla+inhDdM8R3a6Z+Ut1MLb5Dsbo/KxKx9LXIgaT2R7SBvOzQonLyFm7dkCI7dKHhhdo3FIBTRMDQl7o1kL+uHTHsoJzpTtIFqEEr2QNzmRlIteg08pRHNcaqUFekeu3K3IvpkmFNQMX0OTRIW+tk2V+P4jOCWqqXVhjZKtHmGKR3+DvBppJu8XHrVpg1/MmKtPDrYra6zQ0KlP+kNbP5JZMqFXNl7JLYUYz/EoN8fvEboskWS2bU1YleqcijapUWFN0UVUeEYZaH97prfpEqfLLh9ioVbqtRPL4SdWPduK4nQ1oFOW4D8jpF+XB+KaJUq8gcQcym8k3wHMd+W1zm5pV+q2+G4eXE6SM0AwKUmUgXc9Am6OcxQVs0p193+2HZ1Jl4JpT5SwW5jUyxENOqY6EbsPQPg8WUvFKBVU6RjvvsDUC99rrOdUXDba+oMJtL4jWJ0tx5pmY5W2970aNfvpWGs+cR2gCQgwKzfDi1HaaOHVEjVDLADUOqQPiRfQvjqxwuVp3z7WeYwU8u73qMKv8K1Fcfz59JkV9kWrXdEpz3XvvwvazLlYf/siM21w5KuygJmy/Q9jtYYrCVAndLHIWuJOc6DPZfs1jwvb4Hw==7Z1fd6M2E4c/TS6Tg/hrXybppr3Y7dnTvKftXmJbsTnF4GKySfrpXwlLNqDBxgQPTjzp9hwjQIDmNzPSI2FfOffL11+zcLX4ls54fGVb60U4S1+unF+ubNsS/4uipzSebQrYpmAZ5ovKEatwzh+nYcwrh03C6T/zLH1O1Nm7Y/+KZroGxvzxbsdvPJov8s2ekR3IHc6XK+c+S9N882n5es9jeaPRrHwLDw17ma4740ne5gR1lz/D+Fk9ze2mZJ2/6edbv0TLOEzE1t0iX8aikImPT2mSP6qDLLE9XUTx7Gv4lj7LC69z0Rp6626RZtF/4vhQnyx2Z/lj9J882fZlbVEc36dxmhWXdLgl/6uc+ShrVNfK+Fqc+10/JdsWfQ3Xub6fNI7D1TqaFHcoD1mG2TxK7tI8T5fqIP1oD9XLPxV/Yn8YR/NElE3FhXgmLyPty2f6MbR6NhdcRlP1OQ4nPL7bCkJXnaRFK67zLP2Hl65nFX/bPVovupkfwmUUv4mCP3k2C5NQt/6m/ZittqEKlXl5lvPXRomwrfCEd/B0yfPsTRyiThgp1b8pxbhq+6Wkau0Zi5KgbUsVhutNwXxb9U6Q4oPSJKxPx9CnYxkCFc+WV8VZbWHV7GWNaUuswmmUzL/yJ3nT7q7kD/UcsuhlEeX8UZTLy72I6CHKUtGkT3Fh+0U0m/Gk0EYe5uFk6xGrNEry4tm9O/FP3Pe9deNdeeKW78U2222Lf/LwTJgwEbceRoVluBDzC5eCbmdGGzajtpvf0mz++63mGlbzyGhdjObZeEbzDKMZNuPJ7DbLigZUtmg0XzkIlYKVuIoRrB4eHPEnykWjZG9/q+qKjR/lje88i8RTyThcmErcjarV37Y2n835/ra2LZF75jwvKdVs/lJ7e0Bz67KMx2Ee/axeEbKBusJ3Ka6ddYNR9Yx1+pxNuTqonLT1eXBErlezeT6jmsL+22dsJQkfiL4Ufjt5sjYShicHw3vya5RLR7ZuLMtX2z+024rPpisrz7duxmO37P1Wk/e39/eNWynXMUPAaMgQwCynWwxgTjUIGBX1FwVGgJz8cCn9MJmsV4Ut/Fj6ySQTn+Y7j6EgcVyQYJaLFyXGZFYsszpth0w9mJVZZFcsu3qIYyrGhs/qYP+8MUNvOwEtOgDdsrnWejmdb8rQ87nS0PW4lpY978j83nRif/mcmdBPXrj41Gv33qBn0tuiaRjfqh1L4efyMmA82KE2q47a5nG4XqvPB8TrCJmz235ImFsjYWZU90EO1oPzmxzMjNnEaS+a0zLLqukTldQyE/oRqm20pLO3Y4HJapnJ/chs3cyGSWuZyebOozvYH67VSa/Su/MG6d19FGDLTPRHxLarO2MiWwZBtktkttrpK8O8MRAIxkMGgo+AbRkBPrRQgQpudb1kWATDYqJbG0J8ZNjTGBaT3epkfnaddSx2C2V1fVw5qzchDoK3WymZJPDe0BKRwIsmgbXhpm+1zGFsZPcQ64gDHjG/eD4cEFj/x2jVZje7YYJAYJHeefQtely3CYBAm0DgXlUQCOzPnTFBILja7hJBoA0NGQAQaBMIPCQpAoFooQIVBDoEAvEMiwkCHQKBeIbFBIHOpYNAKKs7AAh0CAQekpIJAn8ztEQg8KJBoLEksDUK7OflbUKB7dOUcz4o0DFRIJHAbmbDJIHO5yeBDkACHSKBe1VBJLA/d8YkgQ6RwKrTV8YMAAl0iAQekhSRQLRQgUoCXSKBeIbFJIEukUA8w2KSQPfSSSCU1V2ABLpEAg9JySSBvxhaIhJ40SSwPt50W/OkPkCgSyCwfZZyzwcEusCaQLJbN7thkkD385NAFyCBLpHAvaogEtifO2OSQJdIYNXpK2MGgAS6RAIPSYpIIFqoQCWBHpFAPMNikkCPSCCeYTFJoB4YnF1nHYsEQlndA0igRyTwkJRMEvhgaIlI4EWTwJE1JAn0iAS2z1Le+ZBAzySBtCawo91Qf9Tl85NADyCBHpHAvaogEtifO2OSQI9IYNXpK2MGgAR6RAIPSYpIIFqoQCWBPpFAPMNikkCfSCCeYTFJoH/pJBDK6j5AAn0igYekZJLAL4aWiAReNAn07KqOcV8O9okEts9S/vmQQB8ggWS3bnbDJIH+5yeBPkACfSKBe1VBJLA/d8YkgT6RwKrTV8YMAAn0iQQekhSRQLRQgUoCAyKBeIbFJIEBkUA8w2KSwODSSSCU1QOABAZEAg9JySSBvxpaIhJIJLCkY9xfDg6IBLbPUsH5kMCAfjGkN7thksDg85PAACCBAZHAvaogEtifO2OSwIBIYNXpK2MGgAQGRAIPSYpIIFqoQCWBIyKBeIbFJIEjIoF4hsUkgfonOc+us45FAqGsPgJI4IhI4AEpMQuK/s1amsbhei15Vy9ycsSR7LakD3ZjseC4zqJljfrqLDJAVWfTVVSicmo9Pse1jhSVqsgN6hW5pxMZlInwRbaNWTfWLoj92KjIGZVkeG0do8OelGaZUtt8O9dQUvNYVSGe11Fqnl+rqE6I+5Tacbnx3OKZVF5R86kCGvRzmQMtg9FfQ+pW1RFYtUDUWmbsQEV9ysycQRtWZlvm0i5tgtGvP5VBX8DmDxrM3FpnbDu99d686dcTcJ8qM2fBhlXZJjR1U1m/CtOLVM/gxV4ljKAefrr2zIJauvTHJ1SYOV83oMLaDA/Lvbhq1//6BIEM+k2ZYdNlMO5JZiMXUWbHTS+eegCw69+3Jxc347HdD70AZAZ9TYEzaL4c18aZntNRZqJHXvtyqdEJdWZOWA4Zzm7K6ZJVUuON0cnvphwG/fpdA6vEUQ6z6l2truNGxmoh6oQDR388YVPmWxNv6gZ86l630pJc57VSh5n8eJomCZ9qan21fSfuiC9m0+sy9FKezVbJkPYYsGQ/L2OaLdJiVnm3Us5qoPtlVysvpJtLZ1Sfj10q18YrG81UWWPaIIO9zgTagNXDXE82AKdhi0mcWfSzYgv/3+dUlssZnGu1pPFWHBHLCZnt3t3Ez3G1qLWR765n/92sV2ECViOtfL0uzC5rEVZ8NWuJ+VxEe12XaOxNddVLiOLiXruUkvi33LKs/XpfoR/p6/HVsMm9RZru1I4nzciVJMJY19Um1oGKTpmOGTibHetY0CZIMBsKEo85X4qdf4g2fiv5+abS1pPixUL0xvlpOQVtLCqX3hhNw/hW7VhGs5k8v2kZeXmF+rv9vk3fpMkFG7sr1o0T6KVnb5XLvXcqVZ+iar1mtTWP6dPTmp9AdLYhut/TGRclv4dLbsiCXpn45K9MtI/s2yFMfYGe0YNnPtR79E+TQs1pi+/CL3kylZr+syg9HOsucgFQU3BoXBIEvXYBmbqXN//NmzOnDkqW/l+0lH13snQvloZe1EC09HEI/yO+utGcmKtcHnYC9G73R3m9A2gwk9N/WU7EBVNKDz0HDeh1EMSgcRwo/7wviDSHluqXxxhHASsDm44aKgB9hNdKmlu2JE05RF+laUzL1U8WjsBXThDjkYm1v2mbk4X7sTD07gmehe3j6O3ne2mhc6YBl6DARw1FmM/wVQexmaUS9O4OF868+JbOuDzi/w==7Z3fc6M2EMf/mjwmI/HTfkzSpn2469w0nbb3SIxiM8WQYnJJ+tdXAgkDWgx2QHbiTa8zIECA9ru74uPFvrBv16+/ZMHT6msasvjCIptVEKYvF/ZPF5ZF+P+86TGNw7KBlg3rIF819ngKlux+EcSssZto/SsK1b6UevPthl9ZtFzl5ZaZ5YsN9s8X9m2Wpnm5tH69ZbG4pCisn+yuY2t10owl+ZADrPKAH0H8LK/7umzZ5G/qTjYv0ToOEr52s8rXMW+kfPExTfJ7uRPh64tVFIdfgrf0WZx4kweLf9TazSrNov/4/oE6mG/O8vvoP3Gw5Yneoji+TeM0K05pMyL+axx5L3qU58rYhh/7Td0lrZq+BJtcXU8ax8HTJnoorlDssg6yZZTcpHmeruVO6tbumqd/LP749iCOlglvW/ATsUycJn1OQhaq21A6KU+4jhZyOQ4eWHzDL3hZHKC6TtJiFDd5lv7DaucjxV+1RelFDfNdsI7iN97wJ8vCIAnU6JfjRy25DnUozcuynL12SoRWwuN+wNI1y7M3vos8YCb1/SYV48j1l5qqlQ+saoK2iGwMNmXDsup6K0i+IDUJ69PW9GkTTaD83vKmOJsjLIe9rjFliadgESXLL+xRXLSzbfld3odoellFObvn7eJ0LzxO8LaUD+ljXNh+FYUhSwpt5EEePFQe8ZRGSV7cu3vD//HrviVX7oXLL/mWr9PtOv8nds+4CRN+6UFUWIZxMb8wIehhZrRgMyq7eQPN5r3fao5mtQvLi/NyeBO+vBTLlKhW3l99g2p+yLYtaPL9Te5a5kzuAiZv2Ywl4XWWFQMobdFpvnoIq4U6fhYt1N3d2fyPt/NByd7+lt0VK9/rK99YFvG7ElG8MBW/GtmrV402C5ft7N0aa4vwzLVkeU3n+vDXxtsFhlu1ZSwO8uhH84yQDeQZvglxba3rz5pHbNLnbMHkTvWUr46D43m7m/L+tG4K+1f3OEgSHhC7MXgf5MnKSCY82T++J79GuXBkckWIJ9e/K7fly7orS88nV/O5U/d+0uX9w/29dCvpOnoImB0zBFBiHxYDqN0MAlpH40WBGTQXCNbCD5OHzROm+9GCBCWOuSgxR7OaMqs99IFrBLNSgnY1ZVfX4BMZpcfP6uD8vDNDV5OAAROAw7K50no9nZdtxvO51NDlvJWWXXfP/N514Hj5nOrIUJy4WCLuiKFAY2/C26JFEF/LDWvu5+I0YDzYgrqCq9VB3TIONhu53CNem8ucXo/D0ZwWR9OjugdStBGcX6doesxGynvWlJcS0tKnUc5LdWSIoLfTkvbOiYVJ0ksh7qejXhdJ77Q2N4l6qQ72TmMuOR7rVRmzMTV0jzI1/Ci0l+rcEHHvoe5skvdSiNCdI/BVTt94RpwDgWB+zEDwEZgvBeige3MtvKh0pcKxMPWPEiuMYl8L+aA5w5oEvxYECNGw0xjWJPlV2fzkZuumyC+U1tV+9bTeBUgQ/VZS0jniraYl5IhnzRFbz5seGZjD6MwaIdYhRdzj08nToYhg9aBOES0sGJ3Y6CYxIlAfeBoTkxFLRgGMaCFG3KkKxIjjubNJjAgW+p0jRrSg5w0AI1qIEfskhUWGxkKFUYpoI0U0Z1iTFNFGimjOsCYpon3uFBHK6jZAEW2kiH1S0inir5qWkCKeNUXUqhEHc8Rx3jpHjjg8TdmnwxHtYRwRXzyf2ugmOaL9+TmiDXBEGzniTlUgRxzPnU1yRBs5YtPpG08cAEe0kSP2SQo5orFQYZQjOsgRzRnWJEd0kCOaM6xJjuicO0eEsroDcEQHOWKflHSO+JOmJeSIZ80R28+bzmAaNQZGdBAjDs9SzulgRGcgRsS3mic2ukmM6Hx+jOgAGNFBjLhTFYgRx3NnkxjRQYzYdPrGAweAER3EiH2SQoxoLFQYxYguYkRzhjWJEV3EiOYMaxIjqgeDk5usm8KIUFZ3AYzoIkbsk5KOEe80LSFGPGuMOCPHxIguYsThWco9HYzoDsOIWIw4sc2N/gzO56eILkARXaSIO1WBFHE8dzZJEV2kiE2nbzxvABTRRYrYJymkiMZChVGK6CFFNGdYkxTRQ4pozrAmKaJ37hQRyuoeQBE9pIh9UtIp4s+alpAinjVFdK2mjs2+0+whRRyepbzToYjewO9GxGLEiY1uEiN6nx8jegBG9BAj7lQFYsTx3NkkRvQQIzadvvHAAWBEDzFin6QQIxoLFUYxoo8Y0ZxhTWJEHzGiOcOaxIj+uWNEKKv7AEb0ESP2SUnHiL9oWkKMiBixpmOzP9TsI0YcnqX808GIPv7EymkY3SRG9D8/RvQBjOgjRtypCsSI47mzSYzoI0ZsOn3jgQPAiD5ixD5JIUY0FiqMYsQZYkRzhjWJEWeIEc0Z1iRGVD+AenKTdVMYEcrqMwAjzhAj9klJx4i7pLSIg81GsLJR1GTzPel1TR70ilB/v7kiIbOx5ooUENXJzBSlpuzWhM92yJ6akh05frsjZzKN6SDwGBqrItYV2Yaw76WI7FlNhZdkHxmOJDSiK638RrFjKc2lTYG47oFKc71WR224PKLSIHT5caKZEF7R81ThDPpx0SMV0KivXXVaLIu0wtBgldGejkZU2X6sdHqVVbxlWM4EY994IoO+Ms47aihzWhOx6nOx9yZNr519RxSZjl6PK7IyMB0msnEFpopbT+BtYqkLvx18Dp2V+a1c6c2nE9h+iHhigQ15MKzP4Jqz/ssJwhj0AzrHzZX+fCSVzRxzKoOo8fHm/tup/XBkcTWfW+NgC0Bl0Dcj2EdNlvPWE6ZrH6gySlrlJ85sMpkpAZ9IMLuq50rayItX2vz+MOFQ6If+OhilGeFQ0p5mHfrESGkrQE34yDiHIHlLOaIU7EnuplPiRZokbKHYNG8jHQbsrNOaqeoLVe1TrtXMVgl89CqtudV//9vSOdJB7OtuVK+sWwpHk8v71s4N8bhOo9QHf95PgcHxpe14ddD4QoC1/NAljH40xtn79zkV7eITl0tZv3jN94jFByjV1naZ1dBeZCHku/vZfTVlIRjQjbDg5aYwqeiFW+hV7yVmSx6le+rKeHNxrYe0np2wZ4Cu2wn9IFmfBNMdkDoHjNGkObER2Ck9tM6D9HQ0YkLsLv8UZhji3NSCnPs+Z2u+8Xc+om81/yw7Hfzhc1Et3vk5sPioV6v8Fl4ULYL4Wm5YR2Eoju+q9a6Xkb/bX4fMDkpn6pwekCvbVwVdb43O3/sBpTpE9npJW5WE6ePjhr1bUDou/S0NGW/5LVgzzeT4zsInf2ehKyJXk/92SZs2G6YeNFvzxkhrOnX9xj2MJQuh1z+L1v4YdZYFMqWbdxbIQG8wQGYcoz5mrqPNmhX/iNZiHoxWPMCK0CsJk1lxP3T4EV9JUKmxDnFK8RqfsH6UVxKqmXD9+9PWD7z/FCP0u3wbej9hKt+mZAB2O4sXFFQIaLBdYulxQTYeKzB8hFcUqnGrqUo8dT6laYyVziOFCfDdhOnihI5PvyqDovkOMR/0BsJ05tsPE36+SnU4vAOf3cnGY4HKE6xV56tZKgjidnfudauvacjEHv8D7Z1fd+I2E4c/TS7DkfwXLpN0017s9uxp3tN2Lx1QwKcGU+Nskn76V7ItsK0xGCIGEibdnoNlW7Y1v5mRHslw5d7NX3/NouXsWzoRyZXDVrNokr5cub9cOQ6T/8uipzSZlAW8LJhH+axxxDKaiodxlIjGYar0r3iij+U8GG12/Cbi6Swv9wydUO1wv1y5d1ma5uWn+eudSNQtxZP6xe479q4vmolF3ucEpzzhZ5Q8V/d9U5as8jf9JKuXeJ5EC7l1O8vniSzk8uNTusgfqoOY3B7P4mTyNXpLn9WFV3k0/kdv3c7SLP5PHh/pk+XuLH+I/1MnO4GqLU6SuzRJs+KSrmDqv8aZD6rG6lqZWMlzv+un5Ouir9Eq1/eTJkm0XMWPxR2qQ+ZRNo0Xt2mep/PqIP1o983LPxV/cn+UxNOFLBvLC4lMXSZ9XkzERD+G1kl5wXk8rj4n0aNIbuUNT4sTdNWLtGjFVZ6l/4ja9Vjxt96j9aKb+T6ax8mbLPhTZJNoEenWL9uPO9U2VGFlXpHl4rVTInwtPOkHIp2LPHuTh1QnDCt9v1WK8artl5qqtQ/MaoJ2WFUYrcqC6brqjSDlh0qTsD5dQ58uMwQqny1virPZwlWz1zWmLbGMxvFi+lU8qZv2NiV/VM+hil5mcS4eZLm63IuME7IslU36lBS2n8WTiVgU2sijPHpce8QyjRd58ez+rfwn7/uODfwrX97yndzmm235Tx2eSRMu5K1HcWEZIcX8IpSg+5nRgc2o7Rb0NFvwfqt5htW4T1Y7xGq+g2c137CaYTOxmNxkWdGAlS06zVePQrVoJa9iRKv7e1f+yXLZKNnb31V1xcaP+sZ3kcXyqVQgLkwl76aqNVi3tphM2wm41dYOk8lnKvKaVM3mr7W3DzS3LstEEuXxz+YVIRtUV/iuxLWxbjhsnrFKn7OxqA6qZ219HhyS29WUz2dUU9h//Yy9JBEA4Zfi70GerI2E4cnh6T35Nc6VI7MBY0G1/UO7rfxsunLl+WwwGnl172dd3t/f30u3qlzHDAHDU4YAztzDYgB3m0HAqMheFBgCcgqiufLDxeNqWdgiSJSfPGby03TjMRQk9gsSnHl4UWJEZsUyq9t3zGTBrJyRXbHs6iMOqjg/fVYH++edGXrdCejRATgsm2ut19N5WYaezysNXY9aadn398zvXSfay+fcpH7qwsUnxm327w1+ptwtHkfJTbVjLh1dXQYMCBvYxtqwbZpEq1X1eYd6XalzfmOHhXktFmaG9RAkYRa83yRhZtAmUnvRpJYz1tInKqvlJvYjWNtpSXdrzwKT1nIT/FlNApdkN0xey006dx4dQnvAVme9Rv/OP0n/7qMgW27CP2K2h7ozJrTlEGa7RGqrnb4x0BsBgWB0ykDwEcAtBxCff3ujvKhwpdKxiAVZiRWo7FbXS5APwbCY9NaBKB8Z9jiGxcS3OpufXW8dC99CaV0fV0/rXZCD+O1aSiYLvDO0RCzwollga7wZsJ45jA8dC7GOSOAeU4znQwKBJYCqiLobViyJyQaBlXvn0duwuJgTYIMOscGtqiA2aM+dMdkguATvEtmgAw0iADboEBvcJSla/ocWKlDRoEtoEM+wmGjQJTSIZ1hMNOheOhqEsroLoEGX0OAuKZlo8DdDS4QGLxoNGssEe8NBO690Exzsn6bc84GDLrBMkOCgLUtiwkH388NBF4CDLsHBraogOGjPnTHhoEtwsOn0jWEEAAddgoO7JEVwEC1UoMJBj+AgnmEx4aBHcBDPsJhw0Lt0OAhldQ+Agx7BwV1SMuHgL4aWCA5eNBxsjze93ojJBhv0iA32z1Le+bBBD1g4yKi/YcmSmGzQ+/xs0APYoEdscKsqiA3ac2dMNugRG2w6fWMUAbBBj9jgLkkRG0QLFahs0Cc2iGdYTDboExvEMywmG9QDg7PrrGOxQSir+wAb9IkN7pKSyQbvDS0RG7xoNjhkp2SDPrHB/lnKPx826JtskJYN2jIk6u/DfH406ANo0Cc0uFUVhAbtuTMmGvQJDTadvjGIANCgT2hwl6QIDaKFClQ0GBAaxDMsJhoMCA3iGRYTDQaXjgahrB4AaDAgNLhLSiYa/GJoidDgRaNB32nqGPeV4oDQYP8sFZwPGgxMNEirBm0ZEhMNBp8fDQYAGgwIDW5VBaFBe+6MiQYDQoNNp28MIgA0GBAa3CUpQoNooQIVDYaEBvEMi4kGQ0KDeIbFRIPhpaNBKKuHABoMCQ3ukpKJBn81tERokNBgTce4P0ocEhrsn6XC80GDIf0UyREtickGw8/PBkOADYbEBreqgtigPXfGZIMhscGm0zdGEQAbDIkN7pIUsUG0UIHKBofEBvEMi8kGh8QG8QyLyQb1r3+eXWcdiw1CWX0IsMEhscEdUuIMiv7dWhon0WqlCJgVObnySH5T0wcfMB7u11lkbGirs8gBVZ1NV7ESldvq8bke21NUVUVe2K7IO57IoEyEL7J1zBqwTRD7UarIHdZkeM320aElpTFTauU3ep1Kaj5vKsT3D5SaH7QqajNjm1LbLzeeWzxTyitqPlZAg36H80QLY/SXmXpNdYSsFYh6y4zvqMimzMw5tdPKbM1c+qVNMPrZUxn0pW3BSYOZ1+qMrSe83ps3g3YCtqkyc17stCorQ9NhKrOrML1s9Qze/a2EEbbDz6E9s7CVLoPRERVmzuCdUGF9hof1Xlyz6399hEAG/TLNadNlOLIks6GHKLP9phePPQDY9O/7k4vBaOTYoReAzKBvMnBPmi9HrXGm7x4oM9kjb30h1fCIOjMnLE8Zzgb1dMkbqXFgdPIPUw6HfkOvg1XiKIezdlfr0HEj560QdcSBYzB65GMesEd/7IVi7F330pJa+bWsDjP58ThdLMRYU+srRzvCHl/mptdl6MU95VbNkM4IsKSd9zXNFukxq7xZO8c66H7d1epL66bKGavP+y6e6+OVnWZqrDrtkMFWZwJtwNthzpINwGnYYhJnEv9s2CL49zlV5WoG57pa5Hgjj0jUhMx672biZ79aqtWS765n+92sltECrEZZ+XpVmF3VIq34ataSiKmM9rou2dhldc1LyOLiXg8pJfGvuWVd++2+gh3p6/HVaZN7jzR9UDseNSM3kgjnh642YTsqOmY65uBsdqJjQZ8gwR0oSDzkYi53/iHb+K3m52WlvSfFi6XpnfPTagraWGauvDEeR8lNtWMeTybq/K6F5fU16+/2+z59ky4X7OyusIEb6qVnb43LvXcqVZ9S1XrNW2se06enlTiC6BxDdL+nEyFLfo/mwpAFvUTxyV+i6B/Z10OY9gI9owfPA6j3GBwnhZrTFt+lX4rFWGn6z6J0d6y7yAVAXcGhc0kQ9CIGZGor3wVg3pw5dVCz9P/iueq7k6WtWBp6UQPR0vsh/I/46kZ3Ym5yedgJ0LvdH+X1DqDBTE7/Zf4oL5hSerAcNKDXQRCDxn6g/PO+INIdWppfJ2McBawM7DrqVAHoI7xW0t2yNWmqIfoyTRNarn60cAS+coIYj0ys/U3bnCxsx8LQuyd4Fnb2o7ef76WFgzMNuAQFPupUhPkMX3WQm1mqQO/mcOnMs2/pRKgj/g8=7Z1dc6O4EoZ/TS6Tkvi0L5PMZPdiZmtqs7XnzCUx2KYWGx8gk2R//ZEA2YAaGzty24k7O1tlBAhQv90tPRL2lX2/eP0tC1bz72kYJVcWy+dBmL5c2V+uLIuJ/0XRNE3CqoBXBYugmLeOWAWz6HESJFHrMFn6nzhUx3LujTc7fo/i2byo9owsX+6wv17Z91maFtWnxet9lMhbisPmxR569q4vmkXLYsgJVnXCryB5ru/7tirJizf1JPlLvEiCpdi6mxeLRBRy8XGaLovH+iAmtifzOAm/BW/ps7xwXgSTf9TW3TzN4n/F8YE6WezOisf4X3my5cna4iS5T5M0Ky9pR0z+1zrzUdZYXyuLcnHuD/WUfF30LcgLdT9pkgSrPH4q71AesgiyWby8S4siXdQHqUd7aF9+Wv6J/UESz5aibCIuFGXyMunzMoxC9RhKJ9UFF/Gk/pwET1FyJ254Vp6gql6mZSvmRZb+EzWux8q/9R6lF9XMD8EiTt5Ewd9RFgbLQLV+1X7cqrehCmvzRlkRvfZKhK+FJ/wgShdRkb2JQ+oTRrW+32rFOPX2S0PVygfmDUFbrC4M8qpgtq56I0jxodYkrE9b06fNNIGKZyva4my3cN3sTY0pS6yCSbycfYum8qadTcmf9XPIopd5XESPolxe7kXECVGWiiadJqXt53EYRstSG0VQBE9rj1il8bIon929E//Efd+zG/fKFbd8L7b5Zlv8k4dnwoRLcetBXFomEmJ+iaSgh5nRgs2o7OYNNJv3fqs5mtVcMtohRnMtPKO5mtE0m0XL8DbLygasbdFrvmYQagQrcRUtWD082OJPlItGyd7+W1dXbvxsbvyIslg8lYzDpanE3dS1euvWjsJZN/922tpiIvfMoqKhVL35G+3tAs2tyrIoCYr4V/uKkA3qK/yQ4tpY1x+1z8jT52wS1Qc1k7Y6D47I3Wqq59OqKe2/fsZBkvCA6Evh9yBPVkbC8GT/9J78GhfSkdkNY169/VO5rfisu3Lt+exmPHaa3s/6vH+4v1duVbuOHgJGpwwBnNmHxQBut4OAVpG5KDAC5OQFC+mHy6d8VdrCS6SfPGXi02zjMRQk9gsSnDl4UWJMZsUyqz10yGTArJyRXbHs6iKOqTg/fVYH++e9GXrdCRjQATgsmyutN9N5VYaez2sNXY87adl198zvfSeay+dch37ywuUnZhSvaPhMuls8CZLbesdCOLq8DBgQNqyNdVnbLAnyvP68Q7220Dm/NYPCnA4K08O6D4IwA96vgzA9aBOovWhQyxnr6BMV1XKd+hGr7bWkvbVngQlruQ7+yGyHmQ0T13Idzp1Hf9Acr1VJr9W9c0/SvfsoxJbr7I+Q7aHujMlsOUTZLhHaKqdvjfPGQCAYnzIQfARuywHC597dSi8qXcmqPItYkJFggcpuVb0E+RAMi0lvLYjykWGPY1hMfKvS+dl117HwLZTX1XHNvN4HOYjfrqWks8B7TUvEAi+aBXYGnB4bmMP4yDIQ64gE7jHFeD4kEFgCKHELdTeMWBITDgIr986jt2FwMScABy2Cg1tVQXDQnDtjwkFwCd4lwkELGkQAcNAiOLhLUrT8Dy1UoKJBm9AgnmEx0aBNaBDPsJho0L50NAhldRtAgzahwV1S0tHg75qWCA1eNBrUlgkOhoNm3ugmODg8TdnnAwdtHQ4SGzRlSEw2aH9+NmgDbNAmNrhVFcQGzbkzJhu0iQ22nb41igDYoE1scJekdiwcZLRu0FysQIWDDsFBPMNiwkGH4CCeYTHhoHPpcBBK6w4ABx2Cg7ukpMPBL5qWCA5eNBzsDjidwYjJBBt0iA0Oz1LO+bBBB1g4yKi/YciSmHDQ+fxw0AHgoENwcKsqCA6ac2dMOOgQHGw7fWsUAcBBh+DgLknRwkG0UIHKBl1ig3iGxWSDLrFBPMNiskE1MDi7zjoWG4SyuguwQZfY4C4p6WzwQdMSscGLZoMjdko26BIbHJ6l3PNhg67OBmnhoDFLov5AzOdngy7ABl1ig1tVQWzQnDtjskGX2GDb6VujCIANusQGd0mK2CBaqEBlgx6xQTzDYrJBj9ggnmEx2aB36WwQyuoewAY9YoO7pKSzwa+alogNXjQbdK22jnHfKfaIDQ7PUt75sEEPYIO0btCUJTHZoPf52aAHsEGP2OBWVRAbNOfOmGzQIzbYdvrWKAJggx6xwV2SIjaIFipQ2aBPbBDPsJhs0Cc2iGdYTDboXzobhLK6D7BBn9jgLinpbPA3TUvEBokNNnSM+7PEPrHB4VnKPx826NOPkRzRkphs0P/8bNAH2KBPbHCrKogNmnNnTDboExtsO31rFAGwQZ/Y4C5JERtECxWobHBEbBDPsJhscERsEM+wmGxQ/f7n2XXWsdgglNVHABscERvcISXOoOjfr6VJEuS5JGBG5GSLI/ltQx/8hnF/v84iYyNTnUUOqOpsuoq1qOxOj8922J6iqity/G5FzvFEBmUifJGtY9YN2wSxn5WK7FFDhtdsHx0aUhrTpVZ9p9eppObytkJc90CpuV6noi4zNim1/XLjucUzqbyy5mMFNOiXOE+0MEZ9nanTVofPOoFosMz4jopMykyfUzutzNbMZVjaBKOfOZVBX9vmnTSYOZ3O2HrC67150+smYJMq0+fFTquyKjQdpjKzClPLVs/g5d9aGH43/BzaM/M76dIbH1Fh+gzeCRU2ZHjY7MW1u/7XRwhk0I/TnDZd+mNDMhs5iDLbb3rx2AOATf9+OLm4GY8tM/QCkBn0VQb2SfPluDPOdO0DZSZ65J2vpBodUWf6hOX7dfbwcGg4u2mmS95KjTdaJ/8w5XDoZ/R6WCWOcjjrdrUOHTdy3glRRxw4euMnPuEee3Injh9NnOtBWpIrv1b1YTo/nqTLZTRR1PrKUo6wx9e5qXUZanFPtdUwpDUGLGnmhU29RQbMKm/WzrEeut90tebSupl0xvrzvovnhnhlr5laq057ZLDVmUAb8G6YM2QDcBq2nMQJ418tW3j/e05luZzBua4XOd6KIxI5IbPeu5n42a+WerXku+vZfjf5KliC1UgrX+el2WUtwoqvei1JNBPRXtUlGruqrn0JUVze6yGlJP41t2xqv9tXMCN9Nb46bSdyQJo+qB2PmpFbSYTzQ1ebsB0VHTMdc3A2O1GxYEiQ4BYUJB6LaCF2/ina+K3h51WlgyfFy6XpvfPTcgpaW2YuvTGeBMltvWMRh6E8v29heXPN+rv9fkjfpM8Fe7sr7Mb21dKzt9bl3juVqk6pa73mnTWP6XSaR0cQnaWJ7o80jETJH8Ei0mRBL1F88pcohkf29RCmu0BP68FzD+o9esdJofq0xQ/hl9FyIjX9d1m6O9Zd5AKgvuDQuyQIehEDMrWR7wLQb06fOmhY+q94IfvuZGkjloZe1EC09H4I/yO+utGfmNtcHnYC9G73R3m9A2gwndN/XTyJC6aUHgwHDeh1EMSgsR8o/7wviPSHlvbXyWhHASsD+446VQD6CK+V9LdsQ5pyiL5K04SWqx8tHIGvnCDGIx1rf1c2JwubsTD07gmeha396O3ne2nh4EwDLkGBjzoVYf4IrzpYjm/xwLWY6OX6YRT0zPC+DymzyVp3m0J7Oi2Vqs9yuXe3MjCI6CDjxBHZ83OR5jUEa8C6cu5NB9FFutrExr/kxpdrZ7ef7TfZtH3iW9imO/Vva9ELEnR3NdSA4CU2s1TaZSMsEfbn39Mwkkf8Hw==7Z1fd+I2E4c/TS6TY/kvXCbppr3Y7dnTvKftXhpQwKcGU+Nskn76V7IlsK0xGCIGEibdnoNlW7Y1v5mRH0lw5d3PX3/N4+XsWzbh6ZXrrGbxJHu58n65cl1H/C+KnrJ0UhWwqmAeF7PGEct4yh/Hccobh43i8T/TPHteqLOvXO+p/Nuc9Fcy0VUxFg43O37jyXRWVHsGbiR3eF+uvPs8y4rq0/z1nqfyjpNJ/V4eOvYyXXfOF0WfE9zqhJ9x+qwe67YqWRVv+kFXL8k8jRdi625WzFNRyMTHp2xRPKqDHLE9niXp5Gv8lj3LC68K0Sx6626W5cl/4vhYnyx258Vj8p882Q1lbUma3mdplpeX9Lgj/2uc+ShrVNfK+Uqc+10/JVsXfY1Xhb6fLE3j5SoZlXcoD5nH+TRZ3GVFkc3VQfrRHpqXVwb07uI0mS5E2VhciOfyMtLQfKIfQ8uouuA8GavPaTzi6d1aGbrqRVa24qrIs3947XpO+bfeo/Wim/khnifpmyj4k+eTeBHr1q/aj7lqG6pQmZfnBX/tlAhbC0+4Cc/mvMjfxCHqhIGS/5tSjK+2X2qq1i4yqwnadVRhvKoKpuuqN4IUH5QmYX16hj49xxCoeLaiKc5mC6tmr2tMW2IZj5PF9Ct/kjftb0r+UM8hi15mScEfRbm83IsII6IsE036lJa2nyWTCV+U2ijiIh6tPWKZJYuifPbgTvwT933v3ARXgbjle7HNNtvinzw8FyZciFuPk9IyXIj5hUtB9zOjC5tR2y3sabbw/VbzDasxstpBVgtcPKsFhtUMm/HF5DbPywZUtug0Xz0K1aKVuIoRrR4ePPEnykWj5G9/q+rKjR/1je88T8RTyUBcmkrcjao1XLc2n0z59rZ2HZF8pryoSdVs/lp7B0Bz67Kcp3GR/GxeEbKBusJ3Ka6NdaNB84xV9pyPuTqonrX1eXBIbldTPZ9RTWn/9TP2kkQIhF/y5IM8WRsJw5Oj03vya1JIR3ZuHCdU2z+024rPpisrz3duhkO/7v1Ol/f39/fKrZTrmCFgcMoQwBzvsBjAvGYQMCqyFwUGgJzCeC79cDFaLUtbhKn0k1EuPk03HkNBYr8gwRwfL0oMyaxYZvX6vjNZMKvuapNdj2/XAPGlirHTZ3Wwf96ZodedgB4dgMOyudZ6PZ1XZej5XGnoethKy0GwZ37vOtFePmcm9ZMXLj85XmAxFhj8TLpbMo7TW7VjLhxdXgYMCBvY5rRh2zSNVyv1eYd6PaFzdmuHhfktFmaG9QgkYRa83yRhZtAmUnvRpJY5TkufqKyWmdiPYG2nJb2tPQtMWstM8BdQD9GSITEBLjNx3Xn0EO0RXJ0GGx2+4CQdvo/CcJlJAwniHurOmBSXQdztEjGudvrGm98QCATDUwaCj0ByGcD8grtb6UWlK4k7kZ5Fud9KsECluS5hPzzDYvJcF+J+ZNjjGBYT6Op0fnbddSygC+V1fVw9r3dhDyK6aymZdPDe0BLRwYumg60XztDpmcPYwLUQ64gN7jHoeD5sEJgUKC9F3Q0rlsSEg8BcvvPobVic3gnAQZfg4FZVEBy0586YcBCclHeJcNCFXiIAOOgSHNwlKZoQiBYqUNGgR2gQz7CYaNAjNIhnWEw06F06GoSyugegQY/Q4C4pmWjwN0NLhAYvGg0aEwd7w0E7i7wJDvZPU975wEHPhIO0zvtAu2GiQO/zo0APQIEeocCtqiAUaM+dMVGgRyiw6fSNlwYABXqEAndJasc8wYCmCdqLFags0CcWiGdYTBboEwvEMywmC/QvnQVCad0HWKBPLHCXlEwW+IuhJWKBF80C2y+cfm+iZAMF+oQC+2cp/3xQoA+gQFpEbMuSmHDQ//xw0AfgoE9wcKsqCA7ac2dMOOgTHGw6feMtAoCDPsHBXZKieYJooQKVDQbEBvEMi8kGA2KDeIbFZIP6xeDsOutYbBDK6gHABgNig7ukZLLBB0NLxAYvmg0OnFOywYDYYP8sFZwPGwxMNkhLiG0ZEvUHYj4/GgwANBgQGtyqCkKD9twZEw0GhAabTt94iQDQYEBocJekCA2ihQpUNBgSGsQzLCYaDAkN4hkWEw2Gl44GoaweAmgwJDS4S0omGvxiaInQ4EWjwcBt6hh3BXFIaLB/lgrPBw2GwNcL0rRBW5bEZIPh52eDIcAGQ2KDW1VBbNCeO2OywZDYYNPpG28RABsMiQ3ukhSxQbRQgcoGI2KDeIbFZIMRsUE8w2KywejS2SCU1SOADUbEBndJyWSDvxpaIjZIbLCmY9yfJY6IDfbPUtH5sMGIfnrkiJbEZIPR52eDEcAGI2KDW1VBbNCeO2OywYjYYNPpG28RABuMiA3ukhSxQbRQgcoGB8QG8QyLyQYHxAbxDIvJBvWvfZ5dZx2LDUJZfQCwwQGxwR1SYg4U/bu1NE7j1UoSMCty8sSR7LamD3bjsGi/zqLjDGx1FhmgqrPpKipRea0en+c7e4pKVeRH7Yr844kMykT4IlvHrBtnE8R+VCryBjUZXjv76NCS0hxTatVXep1KagFrKiQIDpRaELYqajNjm1LbLzeeWzyTyitrPlZAg35380QTY/S3mfpNdUROKxD1lhnbUZFNmZljaqeV2Zq59EubYPSzpzLoW9vCkwYzv9UZWw94vTdvhu0EbFNl5rjYaVVWhabDVGZXYXra6hks/lXCiNrh59CeWdRKl+HwiAozR/BOqLA+r4f1Xlyz6399hEAG/TbNadNlNLQks4GPKLP9hheP/QKw6d/3Jxc3w6Frh14AMoO+ysA7ab4ctt4zA+9AmYkeeesbqQZH1Jk5YHnKcHZTT5eskRpvjE7+Ycph0K/odbBKHOUwp93VOvS9kbFWiDrii2M4HLExC51RMPYjPvave2lJzvxaqsNMfjzOFgs+1tT6ytWOsMe3uel5GXpyT7VVM6Q7BCxpZ8Gm2SI9RpU3c+ecDrpfd7X61LqpdEb1ed/Jc328stNMjVmnHTLY6kygDVg7zFmyATgMWw7iTJKfDVuE/z5nslyO4FyrSY634ohUDsis924GfvarRc2WfHc92+9mtYwXYDXSyter0uyyFmHFV7OWlE9FtNd1icauqmteQhSX93pIKYl/zS3r2m/3FexIX79fnTa590jTB7XjUTNyI4kwduhsE2dHRcdMxwwczU51LOgTJJgLBYnHgs/Fzj9EG7/V/LyqtPegeDk1vXN8Wg5BG9PMpTcm4zi9VTvmyWQiz++aWF6fs/5uv+/TN+lywc7uinPjRXrq2Vvjcu8dStWnqFqvWWvOY/b0tOJHEJ1riO73bMJFye/xnBuyoEUUn3wRRf/Ivn6FaU/QM3rwLIR6j+FxUqg5bPFd+CVfjKWm/yxLd8e6i5wA1BUcOqcEQQsxIFNb+S4A8+bMoYOapf+XzGXfnSxtxdLQQg1ES++H8D/i0o3uxNzk8rAToHe7P8ryDqDBTE7/ZT4SF8woPVgOGtByEMSgsR8o/7wLRLpDS/PrZIyjgJmBXUedKgB9hGUl3S1bk6Z8RV9mWUrT1Y8WjsAlJ4jxyMTa37TNycJ2LAytPcGzsLsfvf18ixYOzjTgFBT4qFMR5jNc6iA280yC3s3hwpln37IJl0f8Hw==7Z3fc6M2EMf/mjwmI/HTfkzSy/XhrnPTdNreI7YVmykGF5NL0r++Ekg2IGGwI6998abXGSNAgPa7u+Ijyb5y75evn/NotfiazVhy5ZD1IpplL1fuL1eOQ/j/vOgpS2ZVAa0KllGxaByxiubscRolrHHYJJr+M8+z51SefeW4T+Xf9qS/4pmqitJgvN3xK4vni6LaM3JCscP9dOXe51lWVJ+Wr/csEXccz+r38tCxl6q6c5YWQ05wqhN+RMmzfKzbqmRdvKkHXb/EyyRK+dbdolgmvJDyj09ZWjzKgwjfni7iZPYlesuexYXXBW8WtXW3yPL4P358pE7mu/PiMf5PnOwEorY4Se6zJMvLS7qMiP8aZz6KGuW1crbm535TT0k3RV+idaHuJ0uSaLWOJ+UdikOWUT6P07usKLKlPEg92kPz8tKA7l2UxPOUl035hVguLiMMzWbqMZSMqgsu46n8nEQTltxtlKGqTrOyFddFnv3Datcj5d9mj9KLauaHaBknb7zgT5bPojRSrV+1H3XktqlCaV6WF+y1UyJ0IzzuJixbsiJ/44fIE0ZS/m9SMZ7cfqmpWrnIoiZoh8jCaF0VzDdVbwXJP0hNmvXpavp0iSZQ/mxFU5zNFpbNXteYssQqmsbp/At7EjftbUt+l88hil4WccEeebm43AsPI7ws4036lJS2X8SzGUtLbRRREU02HrHK4rQon92/4//4fd+TG//K57d8z7fpdpv/E4fn3IQpv/UoLi3DuJhfmBD0MDM6ZjMquwUDzRa832qeZjXqo9UOsZrvwFnN16ym2Yyls9s8LxtQ2qLTfPUoVItW/CpatHp4cPkfL+eNkr/9LasrN77XN76xPOZPJQJxaSp+N7LWYNPabDZnu9vaITz5zFlRk6re/LX29g3NrcpylkRF/KN5RZMN5BW+CXFtrRuOmmess+d8yuRB9aytzjOH5HY11fNp1ZT23zzjIEkEhvCL8fcgT1ZGgvDk8PSe/BoXwpHJDSGB3P6u3JZ/1l1Zej65GY+9uveTLu8f7u+VW0nX0UPA6JQhgBL3sBhA3WYQ0CqyFwVGBjkF0VL4YTpZr0pbBInwk0nOP823HoNBYr8gQYkHFyXGaFYos7pD35ksmJUStCuUXX3AlypKT5/Vjf3zzgy96QQM6AAcls2V1uvpvCoDz+dSQ9fjVlr2/T3ze9eJ9vI51amfuHD5iXg2+/caPxPuFk+j5FbuWHJHF5cxBoQtbCNt2DZPovVafu5Rr8t1Tm/tsDCvxcL0sB4aSZgF79dJmB60kdReNKmlhLT0CcpqqY79ENZ2WtLd2bOApLVUB38ih2IX0YolIQku1XndeXQR7SFclQcbPT7/JD2+nwXiUh0HIsU91J0hMS41gbdL5LjK6RuvfmNDIBifMhD8DCiXGqCff3crvKh0JbfyLMz9VoIFKM5V9SL3AzAsJNB1TOAPDXscw0ISXZXOz667DkV0TXldHVfP613cA5HuRko6HrzXtIR48KLxYOuFMyADcxgdORZiHcLBPUYdzwcOGmYFiiLsblixJCQcNEzmO4/ehsX5nQY46CAc3KkKhIP23BkSDhpn5V0iHHRMLxEGOOggHOyTFM4IBAsVoGjQRTQIZ1hINOgiGoQzLCQadC8dDZqyumtAgy6iwT4p6WjwV01LiAYvGg1qMwcHw0E7q7wRDg5PU+75wEHXMHMQF3ofZjdIFOh+fBToGlCgiyhwpyoQBdpzZ0gU6CIKbDp946XBgAJdRIF9kuqZJ0gJzhO0FyxAYaCHMBDOsJAw0EMYCGdYSBjoXToMNOV1zwADPYSBfVLSYeAvmpYQBl40DGy/cXqDkZINFughCxyepbzzYYGeYaIgriK2ZUlIOuh9fDroGeigh3RwpyqQDtpzZ0g66CEdbDp94y3CQAc9pIN9ksKJgmChApQN+sgG4QwLyQZ9ZINwhoVkg+rF4Ow661Bs0JTVfQMb9JEN9klJZ4MPmpaQDV40GxyRU7JBH9ng8Czlnw8b9HU2iGuIbRkS9CdiPj4a9A1o0Ec0uFMViAbtuTMkGvQRDTadvvESYUCDPqLBPkkhGgQLFaBoMEA0CGdYSDQYIBqEMywkGgwuHQ2asnpgQIMBosE+Kelo8JOmJUSDF40GfaepY9glxAGiweFZKjgfNBjoaBBnDdoyJCQaDD4+GgwMaDBANLhTFYgG7bkzJBoMEA02nb7xEmFAgwGiwT5JGdcUfxZe9Kl0JVxSbC9WgLLBENkgnGEh2WCIbBDOsJBsMLx0NmhK66GBDYbIBvukpLPBz5qWkA0iG6zpGPaHiUNkg8OzVHg+bDDE3x45oiUh4WD48eFgaICDIcLBnapAOGjPnSHhYIhwsOn0jbcIAxwMEQ72SQrnDYKFClA2OEI2CGdYSDY4QjYIZ1hINqh+7vPsOutQbNCU1UcGNjhCNtgjJUpM0b9bS9MkWq8FAbMiJ5cfSW9r+qA3hIb7dRYJGdnqLFKDqs6mqyhF5bZ6fK5H9hSVrMgL2xV5xxOZKRPBi2wTs27INoh9r1TkjmoyvCb76NCS0oguteorvU4lNZ82FeL7B0rND1oVtZmxTantlxvPLZ4J5ZU1HyugmX5480QzY9S3mXpNdYSkFYgGy4z2VGRTZvqY2mlltmEuw9KmMfrZU5npW9uCkwYzr9UZ2wx4vTdvBu0EbFNl+rjYaVVWhabDVGZXYWre6hks/pXCCNvh59CeWdhKl8H4iArTR/BOqLAhr4f1Xlyz6399hEBm+nGa06bLcGxJZiMPUGb7DS8e+wVg278fTi5uxmPHDr0wyMz0VQbuSfPluPWe6bsHyoz3yFvfSDU6os70ActThrOberqkjdR4o3XyD1MONf2MXgerhFEOJe2u1qHvjZS2QtQRXxyD8YROaUAm/tQL2dS7pmTAGKqY+bWSh+n8eJqlKZsqan3lKEfY49vc1LwMNbmn2qoZ0hkbLGlnwabeIqYhwFaLbOfOkQ66X3e1+tS6uXBG+XnfyXNDvLLTTI1Zpx0y2OlMRhvQdpizYwPVyWwO6pSDOLP4R8MWwb/PmSgXIzjXcpLjLT8iEQMym73bgZ/9apGzJd9dz+67Wa+i1FiNsPL1ujS7qIVb8VWvJWFzHu1VXbyxq+qal+DF5b0eUori33DLuvbbfQVL0j8LijwgTR/UjkfNyI0kQumhs01IT0XHTMfU6Qx8wlRDggR1TEHisWBLvvN33sZvNT+vKh08KF5OTe8cnxZD0No0c+GN8TRKbuWOZTybifO7JpbX56y/2++H9E26XLCzu0Ju3FBNPXtrXO69Q6nqFFnrNW3NecyentbsCKLTMe9v2Yzxkt+iJdNkgYsoPvgiiuGRffMK056gp/XgaWDqPQbHSaE6UP7G/ZKlU6HpP8vS/lh3kROAuoJD55Qg00IMk6mtfBmAfnM62K1Z+o94KfruaGkrljYt1AC09MdfutGdmJtc3uwE4N3un2V5h6HBdH76aTnhF8wwPVgOGqblIIBBAxeI9IWW5vfJaEcZBwbNR50qAP0My0q6W7YmTfGKvsqyBKerHy0cGZecwMUjR8faX5XN0cJ2LGxaewJo4f3o7cdbtHBoplGusTvTVEedijCf4VIHvplnAvRuD+fOvPiazZg44n8=7Z1dc+K4EoZ/TS6TsvwJl0l2MnsxszW1ObXnzKUBBVxrMGucSbK//ki2BLbVBkNEQ0LPzmxh2ZZt9dvd0mMJrrz7+evXPF7OvmcTnl65zmoWT7KXK++3K9d1xD9R9JSlk6qAVQXzuJg1jljGU/44jlPeOGwUj/+e5tnzQp195XpP5Z/NSf9NJroqxsLhZsfvPJnOimrPwI3kDu/LlXefZ1lRfZq/3vNU3nEyqd/LQ8depuvO+aLoc4JbnfArTp/VY91WJaviTT/o6iWZp/FCbN3NinkqCpn4+JQtikd1kCO2x7MknXyL37JneeFVIZpFb93Nsjz5Vxwf65PF7rx4TP6VJ7uhrC1J0/sszfLykh535H+NMx9ljepaOV+Jc3/op2Trom/xqtD3k6VpvFwlo/IO5SHzOJ8mi7usKLK5Okg/2kPz8sqA3l2cJtOFKBuLC/FcXkYamk/0Y2gZVRecJ2P1OY1HPL1bK0NXvcjKVlwVefY3r13PKf+s92i96GZ+iOdJ+iYK/uL5JF7EuvWr9mOu2oYqVOblecFfOyXC1sITbsKzOS/yN3GIOmGg5P+mFOOr7ZeaqrWLzGqCdh1VGK+qgum66o0gxQelSVifnqFPzzEEKp6taIqz2cKq2esa05ZYxuNkMf3Gn+RN+5uSP9VzyKKXWVLwR1EuL/ciwogoy0STPqWl7WfJZMIXpTaKuIhHa49YZsmiKJ89uBN/xX3fOzfBVSBu+V5ss822+CsPz4UJF+LW46S0DBdifuFS0P3M6MJm1HYLe5otfL/VfMNqbkBWO8RqgYtntcCwmmEzvpjc5nnZgMoWnearR6FatBJXMaLVw4Mn/ohy0Sj52/9UdeXGz/rGD54n4qlkIC5NJe5G1RquW5tPpnx7W7uOSD5TXtSkajZ/rb0DoLl1Wc7TuEh+Na8I2UBd4YcU18a60aB5xip7zsdcHVTP2vo8OCS3q6mez6imtP/6GXtJIgTCL8XfgzxZGwnDk6PTe/JrUkhHdm4cJ1TbP7Xbis+mKyvPd26GQ7/u/U6X9/f398qtlOuYIWBwyhDAHO+wGMC8ZhAwKrIXBQaAnMJ4Lv1wMVotS1uEqfSTUS4+TTceQ0FivyDBHB8vSgzJrFhm9fqOmSyYlTlkVyy7BoiDKsZOn9XB/nlnhl53Anp0AA7L5lrr9XRelaHnc6Wh62ErLQfBnvm960R7+ZyZ1E9euPzkBDb79wY/k+6WjOP0Vu2YC0eXlwEDwga2OW3YNk3j1Up93qFeT+ic3dphYX6LhZlhPQJJmAXvN0mYGbSJ1F40qWWO09InKqtlJvYjWNtpSW9rzwKT1jIT/MlLURfRiiUxCS4zed15dBHtIVydBxs9vuAkPb6PAnGZiQOJ4h7qzpgYl0Hg7RI5rnb6xtBvCASC4SkDwUdAuQyAfsHdrfSi0pX8yrMo91sJFqg4V9dL3A/BsJhA14XAHxn2OIbFJLo6nZ9ddx2L6EJ5XR9Xz+td3IOQ7lpKJh68N7REePCi8WBrwBk6PXMYG7gWYh3BwT3eOp4PHARmBQbU27BkSEw2CMzlO4/OhsXpnQAbdIkNblUFsUF77ozJBsFJeZfIBl1oDAGwQZfY4C5J0YRAtFCBSgY9IoN4hsUkgx6RQTzDYpJB79LJIJTVPYAMekQGd0nJJIO/G1oiMnjRZNCYONibDdpZ5E1ssH+a8s6HDXrAxEFa532Y3TBRoPf5UaAHoECPUOBWVRAKtOfOmCjQIxTYdPrGoAFAgR6hwF2S2jFNUEiZpglaCxaoMNAnGIhnWEwY6BMMxDMsJgz0Lx0GQnndB2CgTzBwl5RMGPiboSWCgRcNA9sjTr83UrLBAn1igf2zlH8+LNA3WSCtIbZlSEw46H9+OOgDcNAnOLhVFQQH7bkzJhz0CQ42nb4xiADgoE9wcJekaJ4gWqhARYMBoUE8w2KiwYDQIJ5hMdGgHhicXWcdCw1CWT0A0GBAaHCXlEw0+GBoidDgRaPBgXNKNBgQGuyfpYLzQYOBiQYZrSG2ZUnUX4j5/GwwANhgQGxwqyqIDdpzZ0w2GBAbbDp9YxQBsMGA2OAuSREbRAsVqGwwJDaIZ1hMNhgSG8QzLCYbDC+dDUJZPQTYYEhscJeUTDb4xdASscGLZoOB29Qx7hLikNhg/ywVng8bDAE2SPMGbVkSkw2Gn58NhgAbDIkNblUFsUF77ozJBkNig02nb4wiADYYEhvcJSlwUfFX6UVf5P8YLSq2GCxQ6WBEdBDPsJh0MCI6iGdYTDoYXTodhPJ6BNDBiOjgLimZdPCroSWig0QHazrG/WXiiOhg/ywVnQ8djOjHR45nSEw4GH1+OBgBcDAiOLhVFQQH7bkzJhyMCA42nb4xiADgYERwcJekaOIgWqhARYMDQoN4hsVEgwNCg3iGxUSD+uc+z66zjoUGoaw+ANDggNDgDikxB4r+3Voap/FqJQGYFTl54kh2W9MHu3FYtF9n0XEGtjqLDFDV2XQVlai8Vo/P8509RaUq8qN2Rf7xRAZlInyRrWPWjbMJYj8rFXmDmgyvnX10aElpjim16ku9TiW1gDUVEgQHSi0IWxW1kbFNqe2XG88tnknllTUfK6BBv7x5opkx+utM/aY6IqcViHrLjO2oyKbMzFdqp5XZmrn0S5tg9LOnMuh728KTBjO/1Rlbv+96b94M2wnYpsrM12KnVVkVmg5TmV2F6XmrZ7D6VwkjaoefQ3tmUStdhsMjKsx8gXdChfUZHtZ7cc2u//URAhn06zSnTZfR0JLMBj6izPZ7vXjsAcCmf9+fXNwMh64degHIDPouA++k+XLYGmcG3oEyEz3y1ndSDY6oM/OF5SnD2U09XbJGarwxOvmHKYdBv6PXwSpxlMOcdlfr0HEjY60QdcSBYzgcsTELnVEw9iM+9q97aUlO/Fqqw0x+PM4WCz7W1PrK1Y6wx/e56XkZem5PtVUzpDsELGlnxabZIj3eKm+mzjkddL/uavWZdVPpjOrzvnPn+nhlp5kak047ZLDVmUAbsHaYs2QD8DVs+RJnkvxq2CL85zmT5fINzrWa43grjkjlC5n13s2Ln/1qUZMl313P9rtZLeMFWI208vWqNLusRVjx1awl5VMR7XVdorGr6pqXEMXlvR5SSuJfc8u69tt9BTvS1+Or0yb3Hmn6oHY8akZuJBHGDp1t4uyo6JjpmIFvs1MdC/oECeZCQeKx4HOx80/Rxm81P68q7f1SvJyZ3vl+Wr6CNmaZS29MxnF6q3bMk8lEnt81r7w+Zf3dft+nb9Llgp3dFefGi/TUs7fG5d77KlWfomq9Zq05j9nT04ofQXSuIbo/sgkXJX/Ec27IgtZQfPI1FP0j+3oI056gZ/TgWQj1HsPjpFDztcUP4Zd8MZaa/qss3R3rLnICUFdw6JwSBK3DgExt5csAzJszXx3ULP2fZC777mRpK5aGFmogWno/hP8Rl250J+Yml4edAL3b/VGWdwANZnL6L/ORuGBG6cFy0ICWgyAGjf1A+eddINIdWprfJ2McBcwM7DrqVAHoIywr6W7ZmjTlEH2ZZSlNVz9aOAKXnCDGIxNrf9c2JwvbsTC09gTPwu5+9PbzLVo4ONOAU1Dgo05FmM9wqYPYzDMJejeHC2eefc8mXB7xfw==7Z1fd5s4E4c/TS6TI/HXvkzSpnvR7unZ7NndXhIs25zFxi+QptlP/0pYsgENNiay7MTTbfcYAQJrfjMjHkn4yr1f/PqSR6v5t2zC0iuHFPNokr1cuZ+uHIfwf7xomqWTdQFdFyyict44YhXN2GMcpaxx2FMU/zvLs+elPPvKcafVn+1JfycTVRWlwXi74zeWzObles/ICcUO9/OVe59nWbn+tPh1z1Jxx8mkfi8PHXupqjtny7LPCc76hJ9R+iy/1u26pChf1RctXpJFGi351t28XKS8kPKP02xZPsqDCN+O50k6+Rq9Zs/iwkXJm0Vt3c2zPPmPHx+pk/nuvHxM/hMnO4GoLUnT+yzN8uqSLiPiv8aZj6JGea2cFfzc7+pb0k3R16go1f1kaRqtiuSpukNxyCLKZ8nyLivLbCEPUl/toXl5aUD3LkqT2ZKXxfxCLBeXEYZmE/U1lIzWF1wksfycRk8svdsoQ1W9zKpWLMo8+5fVrkeqP5s9Si+qmR+iRZK+8oK/WD6JlpFq/XX7UUduQxVK87K8ZL86JUI3wuNuwrIFK/NXfog8YSTl/yoV48ntl5qqlYvMa4J2iCyMinXBbFP1VpD8g9QkrE9X06dLNIHy71Y2xdlsYdnsdY0pS6yiOFnOvrKpuGlvW/KH/B6i6GWelOyRl4vLvfAwwssy3qTTtLL9PJlM2LLSRhmV0dPGI1ZZsiyr7+7f8b/8vu/JjX/l81u+59t0u83/isNzbsIlv/UoqSzDuJhfmBB0PzM6sBmV3YKeZgvebjVPsxoabZDRfMee0XzNaJrN2HJym+dVA0pbdJqvHoRqwYpfRQtWDw8u/8PLeaPkr//I6qqNH/WN7yxP+LcScbgyFb8bWWuwaW02mbHdbe0QnntmrKwpVW/+Wnv7QHOrspylUZn8bF4RsoG8wnchrq11w1HzjCJ7zmMmD6onbXUeHJHb1ay/n1ZNZf/Nd+wliQCIvujJgzxZGcmGJ4en9+RfSSkcmdwQEsjtH8pt+WfdlaXnk5vx2Kt7P+ny/v7+vnYr6Tp6CBidMgRQ4g6LAdRtBgGtInNRYATIKYgWwg+XT8WqskWQCj95yvmn2dZjMEgcFiQo8exFiTGa1ZZZ3b6PTAbMSgna1ZZdfYvPVJSePquD/fPODL3pBPToAAzL5krr9XS+LrOez6WGrsettOz7B+b3rhPN5XOqQz9x4eoTUZc1Egs0fCbcLYmj9FbuWHBHF5cBA8KWtZE2a5ulUVHIz3vU63Kd01szKMxroTA9rIcgCDPg/ToI04M2gtqLBrWUkJY+raJaqlM/ZLWdlnR39ixswlqqgz/BArGLaMSSNgku1XndeXQRzSFclQcbPT7/JD2+9wJxqY4DkeIOdWebGJdC4O0SOa5y+saj3xgIBONTBoL3gHIpAP38u1vhRZUr8aYQnoW530iwsIpzHeR+9gxrE+g6EPhDwx7HsDaJrkrnZ9ddt0V0obyujqvn9S7ugUh3IyUdD95rWkI8eNF4sPXAGZCeOYyOHAOxDuHgAaOO5wMHgVmBYoANuxtGLGkTDgKT+c6jt2FwficABx2EgztVgXDQnDvbhIPgrLxLhIMO9BABwEEH4eA+SeGMQGuhwioadBEN2jOsTTToIhq0Z1ibaNC9dDQIZXUXQIMuosF9UtLR4G+alhANXjQa1GYO9oaDZhZ5Ixzsn6bc84GDrg4H0WzDzGaTBLofnwS6AAl0kQTuVAWSQHPubJMEukgCm07feGYASKCLJHCfpPZME3R8nCZoLlhYZYEeskB7hrXJAj1kgfYMa5MFepfOAqG87gEs0EMWuE9KOgv8pGkJWeBFs8D2E6fXmyiZQIEeosD+Wco7HxTo6SgQ1xCbMqRNOOh9fDjoAXDQQzi4UxUIB825s0046CEcbDp94yECgIMewsF9kgLhYOVFnypXqhwLI8OAyGCVBPpIAu0Z1iYJ9JEE2jOsTRKongPOrm9uiwRCSdwHSKCPJHCflHQS+KBpCUngRZPAETklCfSRBPbPUv75kEAfeJ0grhg2ZUmrPwjz8VGgD6BAH1HgTlUgCjTnzjZRoI8osOn0jacIAAX6iAL3SQpXDFsLFVbZYIBs0J5hbbLBANmgPcPaZIPBpbNBKKsHABsMkA3uk5LOBj9rWkI2eNFs0HeaOra7YDhANtg/SwXnwwYD4G2COE3QlCVtssHg47PBAGCDAbLBnapANmjOnW2ywQDZYNPpG08RABsMkA3ukxQ4TfCL8KLP4n9UeRbXdH1tMf4CicEY0hsaugaCSIjQ0J5he/+0ownDIjS0Z9jA4vNYeOnQEEr3IQANQ4SG+6SkQ8MvmpYQGiI0rOnY7u8ThwgN+2ep8HygYYg/QXJES9qEhuHHh4YhAA1DhIY7VYHQ0Jw724SGIULDptM3niIAaBgiNNwnKZxQaC1UWJ1QOEI2aM+wNicUjpAN2jOszQmF6lc/z66zbosNQll9BLDBEbLBPVKiBIr+3VqK06goBAEzIieXH0lva/qgN4SGh3UWCRmZ6ixSQFVn01WUonJbPT7XIweKSlbkhe2KvOOJDMpE9kW2iVk3ZBvEfqxV5I5qMrwmh+jQkNKILrX1u71OJTWfNhXi+wOl5getitrM2KTUDsuN5xbPhPKqmo8V0KDf3zzRjBn1VlOvqY6QtAJRb5nRPRWZlJk+pnZamW2YS7+0CUY/cyqDXt8WnDSYea3O2GbA6615M2gnYJMq08fFTquydWgapjKzClPzWc9gVbAURtgOP0N7ZmErXQbjIypMH8F7u8IeHgYqrM/jYb0X1+z6X+8MZK3JB9NRzOJ4sPygH685bRoNx4bkN/Isyu+wYcdjPxhs+/39icbNeOyYoRqAzKB3H7gnzaPj1vOn7w6UGe+pt95hNTqizvSBzBMmUgEmt4qhdQXKXXX5DVMOhX5mr4Nh2lEOJe0u2NDnSUpbIeqID5TB+InGNCBPfuyFLPaue2lJzAhbycN0rhxnyyWLFc2+2vw05wHvf1PzNdSkn/VWzZDOGLCkmRWeeov0GG3ezqkjHdS/7mr1KXcz4Yzy86GT6vp4ZaeZGrNRO2Sw05lAG9B2mDNkA3B4thrcmSQ/G7YI/veciXIxsnMtJz/e8iNSMVCz2bsdEDqsFjmL8s317L6bYhUtwWqEla+LyuyiFm7FX3otKZvxaK/q4o29rq55CV5c3euQUhT/hmc2lrIcRfrqueu0yb1Hmh7UjkfNyI0kQunQWShkT0XHTMcUHOVOVSzoEySoAwWJx5It+M4/eBu/1vx8XWnvwfJqynrnuLUYmtamnwtvTOIovZU7FslkIs7vmnBen8v+Zr/v0zfpcsHO7gq5cUM1Je21cbm3DrGqU2St17Q1FzKbTgt2BNE5muh+zyaMl/weLZgmC1xc8cEXV/SP7JtHmPbEPa0HTwOo9xgcJ4XqwxnfuV+yZSw0/VdVuj/WXeTEoK7g0DlVCFqgAZnayMsD9JvThxRqlv4zWYi+O1raiKWhBRwWLX0Y2n+PSzq6E3OTy8NOYL3b/V6WfQANpnP6z4snfsEM04PhoAEtE7EYNA4D5R934Uh3aGm+f0Y7Cpgx2HXUqQLQe1hu0t2yNWmKR/RVlqU4jf1o4QhcimIxHulY+5uyOVrYjIWhNSn2LOwcRm8/3mKGwZkGnIICH3UqwvwelkA4XujQyHcI7+WGExZ1jPC+DSmTeKO7baE7nVZK1Ue5tm9d275x7Sjs+bnMCgnBarCuGnvTQXSZrbax8U+x8ena2+9nhw027R74DlsPQUGgBy9Iz+3JUD1iF9/MM2GWra541J9/yyZMHPF/7Z3fc9o4EMf/mjyGkfwTHpO06T20N53Lzd310YACnhqbM06T3F9/ki2Bba3BECFI2F57g2VbtrXf3ZU+luDKvVu8fMmj5fxbNmXJlUNW82iaPV+5n64ch/B/vOgxS6ZVAa0KFlExbxyxjGbsYRIlrHHYOJr8nOXZUyrPvnLcx/LP5qS/46mqitJgtNnxG4tn86LaM3RCscP9fOXe5VlWVJ8WL3csEXccT+v3ct+xl6q6c5YWfU5wqhN+RcmTfKybqmRVvKoHXT3HiyRK+dbtvFgkvJDyj49ZWjzIgwjfnszjZPo1es2exIVXBW8WtXU7z/L4P358pE7mu/PiIf5PnOwEorY4Se6yJMvLS7qMiP8aZz6IGuW1crbi535XT0nXRV+jVaHuJ0uSaLmKx+UdikMWUT6L09usKLKFPEg92n3z8tKA7m2UxLOUl034hVguLiMMzabqMZSMqgsu4on8nERjltyulaGqTrOyFVdFnv1kteuR8s96j9KLaub7aBEnr7zgL5ZPozRSrV+1H3XkNlShNC/LC/bSKRG6Fh53E5YtWJG/8kPkCUMp/1epGE9uP9dUrVxkXhO0Q2RhtKoKZuuqN4LkH6QmYX26mj5dogmUP1vRFGezhWWz1zWmLLGMJnE6+8oexU17m5I/5HOIoud5XLAHXi4u98zDCC/LeJM+JqXt5/F0ytJSG0VUROO1RyyzOC3KZ/dv+V9+33dk4F/5/Jbv+DbdbPO/4vCcmzDltx7FpWUYF/MzE4LuZ0YHNqOyW9DTbMHbreZpVvPRaIcYzXfsGc3XjKbZjKXTmzwvG1DaotN89SBUC1b8Klqwur93+R9ezhslf/1HVldu/KhvfGd5zJ9KxOHSVPxuZK3BurXZdMa2t7VDeO6ZsaKmVL35a+3tA82tynKWREX8q3lFyAbyCt+FuDbWDYfNM1bZUz5h8qB60lbnwRG5XU31fFo1pf3Xz9hLEgEQfTH8HuTJykg2PDk8vSe/xIVwZDIgJJDbP5Tb8s+6K0vPJ4PRyKt7P+ny/v7+XrmVdB09BAxPGQIocQ+LAdRtBgGtInNRYAjIKYgWwg/T8WpZ2iJIhJ+Mc/5ptvEYDBL7BQlKPHtRYoRmtWVWt++QyYBZKUG72rKrb3FMRenpszrYP+/M0OtOQI8OwGHZXGm9ns6rMuv5XGroetRKy76/Z37vOtFcPqc69BMXLj+RwGT/XsNnwt3iSZTcyB0L7ujiMmBA2LA20mZtsyRareTnHep1uc7pjRkU5rVQmB7WQxCEGfB+HYTpQRtB7UWDWkpIS59WUS3VqR+y2k5Lult7FjZhLdXBH8EeoiFD2gS4VMd159FDNEdwVRpsdPj8k3T43gvDpToNRIh7qDvbpLgU4m6XiHGV0zdGfiMgEIxOGQjeA8mlAPPzb2+EF5Wu5FeehbnfSLCwSnNVvYj9LBjWJs91IO6Hhj2OYW0CXZXOz667bgvoQnldHVfP613YA4nuWko6HbzTtIR08KLpYGvAGZCeOYwOHQOxDtngHi8dz4cNApMCBW7B7oYRS9qEg8BcvvPobRic3gnAQQfh4FZVIBw058424SA4Ke8S4aADDSIAOOggHNwlKZwQaC1UWEWDLqJBe4a1iQZdRIP2DGsTDbqXjgahrO4CaNBFNLhLSjoa/E3TEqLBi0aD2sTB3nDQzBpvhIP905R7PnDQ1eEgLvM+zGw2SaD78UmgC5BAF0ngVlUgCTTnzjZJoIsksOn0jTEDQAJdJIG7JLVjmiC/E5wmaCxYWGWBHrJAe4a1yQI9ZIH2DGuTBXqXzgKhvO4BLNBDFrhLSjoL/KRpCVngRbPA9ojT602UTKBAD1Fg/yzlnQ8K9IB5griI2JQlbdJB7+PTQQ+ggx7Swa2qQDpozp1t0kEP6WDT6RujCIAOekgHd0kKpIOlF30qFxGXjoWR4YDIYBUF+ogC7RnWJgr0EQXaM6xNFKjGAWfXN7eFAqEk7gMo0EcUuEtKOgq817SEKPCiUeCQnBIF+ogC+2cp/3xQoK+jQAeXDJuypNUfhPn4KNAHUKCPKHCrKhAFmnNnmyjQRxTYdPrGKAJAgT6iwF2SwiXD1kKFVTYYIBu0Z1ibbDBANmjPsDbZYHDpbBDK6gHABgNkg7ukpLPBz5qWkA1eNBv0naaO7a4YDpAN9s9SwfmwwQBggzhN0JQlbbLB4OOzwQBggwGywa2qQDZozp1tssEA2WDT6RujCIANBsgGd0kKnCb4RXjRZ/E/h0jPEh/qv0GCa4vNxZDe0NA1EERChIb2DNv3px1dA8OtEKGhPcOGfQfSJjz20qEhlO5DABqGCA13SUmHhl80LSE0RGhY07Hd3ycOERr2z1Lh+UDDEH+D5IiWtAkNw48PDUMAGoYIDbeqAqGhOXe2CQ1DhIZNp2+MIgBoGCI03CUpnFBoLVRYnVA4RDZoz7A2JxQOkQ3aM6zNCYXqZz/PrrNuiw1CWX0IsMEhssEdUqIEiv7dWpok0WolCJgRObn8SHpT0wcdEBru11kkZGiqs0gBVZ1NV1GKym31+FyP7CkqWZEXtivyjicyKBPZF9k6Zg3IJoj9qFTkDmsyvCb76NCQ0oguteq7vU4lNZ82FeL7B0rND1oVtZmxSantlxvPLZ4J5ZU1HyugQT/AeaIZM+prTb2mOkLSCkS9ZUZ3VGRSZvo7tdPKbM1c+qVNMPqZUxn09W3BSYOZ1+qMrV94vTVvBu0EbFJl+nux06qsCk2HqcyswtR81jNYFSyFEbbDz6E9s7CVLoPRERWmv8E7ocL6DA/rvbhm1//6CIEM+pWa06bLcGRIZkPPosz2e7147AHApn/fn1wMRiPHDL0AZAZ9x4F70nw5ao0z/fZsxd6vKEhraok3PKLO9BeWpwxng3q6pI3UONA6+Ycph0K/p9fBKu0oh5J2V+vQcSOlrRB1xIFjMBrTCQ3I2J94IZt41720JGZ+LeVhOj+eZGnKJopaXznKEfb4njc1L0NN7qm2aoZ0RoAlzazk1Fukx1vlzdw50kH3665Wn1o3E84oP+87ea6PV3aaqTHrtEMGW50JtAFthzlDNgBfw5Yvcabxr4Ytgn+fMlEu3uBcy0mON/yIRLyQWe/dvPjZrxY5W/LN9Wy/m9UySsFqhJWvV6XZRS3cii96LQmb8Wiv6uKNXVXXvAQvLu/1kFIU/5pbml7ZoN+MGl+dNrn3SNMHteNRM3IjiVB66GwTsqOiY6ZjCr7NTlQs6BMkqAMFiYeCLfjOP3gbv9b8vKq090vxcmp65/tp8Qpam2YuvDGeRMmN3LGIp1NxftfE8vqc9Tf7fZ++SZcLdnZXyMAN1dSz18bl3voqVZ0ia72mrTmP2ePjih1BdI4mut+zKeMlv0cLpskCF1F88EUU/SP7egjTnqCn9eBpAPUeg+OkUP21xXfulyydCE3/VZbujnUXOQGoKzh0TgmCFmJApjbyJQH6zemvDmqW/jNeiL47WtqIpaGFGhYtvR/Cf49LN7oTc5PLw05gvdv9XpZ3AA2mc/rPizG/YIbpwXDQgJaDWAwa+4Hyj7tApDu0NL9nRjsKmBnYddSpAtB7WFbS3bI1aYoh+jLLEpyufrRwBC45sRiPdKz9TdkcLWzGwtDaE3sWdvajtx9v0cLBmQacggIfdSrCfIZLHfhmngnQuzmcO/P8WzZl4oj/AQ==7Z3fc9o4EMf/mjyGkfwTHpO06T20N53Lzd310YACnhqbM06T3F9/ki2Bba3BECFI2F6vg2VbtrXf3ZU/kuDKvVu8fMmj5fxbNmXJlUNW82iaPV+5n64ch/D/edFjlkyrAloVLKJi3jhiGc3YwyRKWOOwcTT5Ocuzp1SefeW4j+WfzUl/x1NVFaXBaLPjNxbP5kW1Z+iEYof7+cq9y7OsqD4tXu5YIu44ntbv5b5jL1V15ywt+pzgVCf8ipIn+Vg3VcmqeFUPunqOF0mU8q3bebFIeCHlHx+ztHiQBxG+PZnHyfRr9Jo9iQuvCt4saut2nuXxf/z4SJ3Md+fFQ/yfONkJRG1xktxlSZaXl3QZEf81znwQNcpr5WzFz/2unpKui75Gq0LdT5Yk0XIVj8s7FIcsonwWp7dZUWQLeZB6tPvm5aUB3dsoiWcpL5vwC7FcXEYYmk3VYygZVRdcxBP5OYnGLLldK0NVnWZlK66KPPvJatcj5Z/1HqUX1cz30SJOXnnBXyyfRmmkWr9qP+rIbahCaV6WF+ylUyJ0LTzuJixbsCJ/5YfIE4ZS/q9SMZ7cfq6pWrnIvCZoh8jCaFUVzNZVbwTJP0hNwvp0NX26RBMof7aiKc5mC8tmr2tMWWIZTeJ09pU9ipv2NiV/yOcQRc/zuGAPvFxc7pmHEV6W8SZ9TErbz+PplKWlNoqoiMZrj1hmcVqUz+7f8r/8vu/IwL/y+S3f8W262eZ/xeE5N2HKbz2KS8swLuZnJgTdz4wObEZlt6Cn2YK3W83TrEbRagdZzXfsWc3XrKbZjKXTmzwvG1DaotN89ShUi1b8Klq0ur93+R9ezhslf/1HVldu/KhvfGd5zJ9KBOLSVPxuZK3BurXZdMa2t7VDePKZsaImVb35a+3tA82tynKWREX8q3lFyAbyCt+FuDbWDYfNM1bZUz5h8qB61lbnwSG5XU31fFo1pf3Xz9hLEgEQftGTD/JkZSQbnhye3pNf4kI4MhkQEsjtH8pt+WfdlaXnk8Fo5NW9n3R5f39/r9xKuo4eAoanDAGUuIfFAOo2g4BWkbkoMATkFEQL4YfpeLUsbREkwk/GOf8023gMBon9ggQlnr0oMUKz2jKr2/edyYBZVVcb7Xp8u/oWX6ooPX1WB/vnnRl63Qno0QE4LJsrrdfTeVVmPZ9LDV2PWmnZ9/fM710nmsvnVKd+4sLlJxL4BmOBxs+Eu8WTKLmROxbc0cVlwICwgW2kDdtmSbRayc871OtyndMbMyzMa7EwPayHIAkz4P06CdODNpLaiya1lJCWPq2yWqpjP4S1nZZ0t/YsbNJaqoM/H3uIhgxpE+BSHdedRw/RHMFVabDR4fNP0uF7LwyX6jQQIe6h7myT4lKIu10ixlVO33jzGwGBYHTKQPAeSC4FmJ9/eyO8qHSlgJSehbnfSLCwSnMdxH72DGuT5zoQ90PDHsewNoGuSudn1123BXShvK6Oq+f1LuyBRHctJZ0O3mlaQjp40XSw9cIZkJ45jA4dA7EO2eAeg47nwwaBSYHiUtjdMGJJm3AQmMt3Hr0Ng9M7ATjoIBzcqgqEg+bc2SYcBCflXSIcdKCXCAAOOggHd0kKJwRaCxVW0aCLaNCeYW2iQRfRoD3D2kSD7qWjQSiruwAadBEN7pKSjgZ/07SEaPCi0aA2cbA3HDSzyBvhYP805Z4PHHR1OEgRDpqypE046H58OOgCcNBFOLhVFQgHzbmzTTjoIhxsOn3jNQKAgy7CwV2S2jFz0PVx5qC5YGEVD3qIB+0Z1iYe9BAP2jOsTTzoXToehPK6B+BBD/HgLinpePCTpiXEgxeNB9tvnF5vyGSCDnpIB/tnKe986KAH0EFcV2zKkjbpoPfx6aAH0EEP6eBWVSAdNOfONumgh3Sw6fSNtwiADnpIB3dJCqSDpRd9Ev/Qal0xhoYDQoNVFugjC7RnWJss0EcWaM+wNlmgehE4u865LRYIZXEfYIE+ssBdUtJZ4L2mJWSBF80Ch+SULNBHFtg/S/nnwwJ9nQXiREFThrT6GzEfHwX6AAr0EQVuVQWiQHPubBMF+ogCm07feIkAUKCPKHCXpHAVsbVQYRUNBogG7RnWJhoMEA3aM6xNNBhcOhqEsnoAoMEA0eAuKelo8LOmJUSDF40Gfaep4z0WEZsIdogG+2ep4HzQYAB8wyBOEzRlSZtsMPj4bDAA2GCAbHCrKpANmnNnm2wwQDbYdPrGWwTABgNkg7skBU4T/CK86LP4x1GexTVdX1xM8WdJDAaR3tTQNRBFQqSG9gzb9+celce/ybBIDe0ZNrSIg8NLp4ZQvg8BahgiNdwlJZ0aftG0hNQQqWFNx3Z/szhEatg/S4XnQw1D/F2SI1rSJjUMPz41DAFqGCI13KoKpIbm3NkmNQyRGjadvvEWAVDDEKnhLknhjEJrocLqjMIhskF7hrU5o3CIbNCeYW3OKFQ/BXp2nXVbbBDK6kOADQ6RDe6QEiVQ9O/W0iSJVitBwIzIyeVH0puaPuiA0HC/ziIhQ1OdRQqo6my6ilJUbqvH53pkT1HJirywXZF3PJFBmci+yNYxa0A2QexHpSJ3WJPhNdlHh4aURnSpVV/udSqp+bSpEN8/UGp+0KqozYxNSm2/3Hhu8Uwor6z5WAEN+lHOE02ZUd9r6jXVEZJWIOotM7qjIpMy08fUTiuzNXPplzbB6GdOZdD3twUnDWZeqzO2HvB6a94M2gnYpMr0cbHTqqwKTYepzKzC1ITWM1gWLIURtsPPoT2zsJUug9ERFaaP4J1QYX1eD+u9uGbX//oIgQz6mZrTpstwZEhmQ8+izPYbXjz2C8Cmf9+fXAxGI8cMvQBkBn3JgXvSfDlqvWf67dmKvYcoSGtqiTc8os70ActThrNBPV3SRmocaJ38w5RDoR/U62CVdpRDSburdeh7I6WtEHXEF8dgNKYTGpCxP/FCNvGue2lJzPxaysN0fjzJ0pRNFLW+cpQj7PE9b2pehprcU23VDOmMAEsamZQFtEiPUeXN3DnSQffrrlafWjcTzig/7zt5ro9XdpqpMeu0QwZbnQm0AW2HOUM2AIdhy0GcafyrYYvg36dMlIsRnGs5yfGGH5GIAZn13s3Az361yNmSb65n+92sllEKViOsfL0qzS5q4VZ80WtJ2IxHe1UXb+yquuYleHF5r4eUovjX3NL0ygb9ZtT71WmTe480fVA7HjUjN5IIpYfONiE7KjpmOqbgaHaiYkGfIEEdKEg8FGzBd/7B2/i15udVpb0Hxcup6Z3j02IIWptmLrwxnkTJjdyxiKdTcX7XxPL6nPU3+32fvkmXC3Z2V8jADdXUs9fG5d46lKpOkbVe09acx+zxccWOIDpHE93v2ZTxkt+jBdNkgYsoPvgiiv6Rff0K056gp/XgaQD1HoPjpFB92OI790uWToSm/ypLd8e6i5wA1BUcOqcEQQsxIFMb+ZYA/eb0oYOapf+MF6LvjpY2YmlooYZFS++H8N/j0o3uxNzk8rATWO92v5flHUCD6Zz+82LML5hhejAcNKDlIBaDxn6g/OMuEOkOLc0vmtGOAmYGdh11qgD0HpaVdLdsTZriFX2ZZQlOVz9aOAKXnFiMRzrW/qZsjhY2Y2Fo7Yk9Czv70duPt2jh4EwDTkGBjzoVYT7DpQ58M88E6N0czp15/i2bMnHE/w==7Z3fc5s4EMf/mjwmIyF+2I9J2vQe2pvO5ebu+khsxWaKjQ9Ik9xffxIgG9BisCPLTry99sYIEKD97q74SLIv2O3i5UsarubfkimPLxySzcNp8nzBPl04DhH/RNFjEk/LAloWLMJ83jhiFc74/SSMeeOwh3Dyc5YmT8vq7AuHPRZ/Nif9HU1VVZT6482O33g0m+flnpETyB3s8wW7TZMkLz8tXm55LO84mtbv5a5jL1V1p3yZDznBKU/4FcZP1WNdlyVZ/qoeNHuOFnG4FFs383wRi0IqPj4my/y+OoiI7ck8iqdfw9fkSV44y0WzqK2beZJG/4njQ3Wy2J3m99F/8mTHl7VFcXybxElaXJJxIv9rnHkva6yulfJMnPtdPSVdF30Ns1zdTxLH4SqLHoo7lIcswnQWLW+SPE8W1UHq0e6al68MyG7COJotRdlEXIin8jLS0HyqHkPJqLzgIppUn+Pwgcc3a2WoqpdJ0YpZniY/ee16pPiz3qP0opr5LlxE8aso+Iun03AZqtYv24861TZUYWVenub8pVMidC084SY8WfA8fRWHVCeMKvm/Vopxq+3nmqqVi8xrgnZIVRhmZcFsXfVGkOJDpUlYn0zTJyOaQMWz5U1xNlu4ava6xpQlVuEkWs6+8kd50+6m5I/qOWTR8zzK+b0ol5d7FmFElCWiSR/jwvbzaDrly0IbeZiHD2uPWCXRMi+e3bsRf8V935Ir78ITt3wrtulmW/yVh6fChEtx62FUWIYLMT9zKehhZnRgMyq7+QPN5r/daq5mNeqh1faxmufYs5qnWU2zGV9Or9O0aMDKFp3mq0ehWrQSV9Gi1d0dE39EuWiU9PWfqrpi40d94ztPI/FUMhAXphJ3U9Xqr1ubT2d8e1s7RCSfGc9rUtWbv9beHtDcqizlcZhHv5pXhGxQXeG7FNfGusGoeUaWPKUTXh1Uz9rqPDgkt6spn0+rprD/+hkHScIHwi/G3708WRnJhicHx/fklyiXjkyuCPGr7R/KbcVn3ZUrzydX47Fb937S5f3D/b10q8p19BAwOmYIoITtFwMoawYBrSJzUWAEyMkPF9IPlw/ZqrCFH0s/eUjFp9nGYzBI7BYkKHHtRYkxmtWWWdnQdyYDZqUE7WrLrp7FlypKj5/Vwf55Z4ZedwIGdAD2y+ZK6/V0XpZZz+eVhi7HrbTseTvm964TzeVzqlM/eeHiEwlM9u81fibdLZqE8XW1YyEcXV4GDAgb2EbasG0Wh1lWfe5RLxM6p9dmWJjbYmF6WA9AEmbA+3USpgdtJLVnTWopIS19WmW1VMd+CGs7Lcm29ixs0lqqgz+ZQ7GLaMSSNgku1XndaXQRzSFclQcbPT7vKD2+9wJxqY4DkeLu6842MS6FwNs5clzl9I1XvzEQCMbHDATvAeVSAPp5N9fSiwpX8kvPwtxvJFhYxbmqXuR+FgxrE+g6EPhDwx7GsDaJrkrnJ9ddt0V0obyujqvn9S7ugUh3LSUdD95qWkI8eNZ4sPXC6ZOBOYyOHAOxDuHgDqOOpwMHgVmBsgi7G0YsaRMOApP5TqO3YXB+JwAHHYSDW1WBcNCcO9uEg+CsvHOEgw70EgHAQQfhYJ+kcEagtVBhFQ0yRIP2DGsTDTJEg/YMaxMNsnNHg1BWZwAaZIgG+6Sko8HfNC0hGjxrNKjNHBwMB82s8kY4ODxNsdOBgwyYOYhw0JQlbcJB9vHhIAPgIEM4uFUVCAfNubNNOMgQDjadvvEaAcBBhnCwT1I9MwddgjMHzQULq3jQRTxoz7A28aCLeNCeYW3iQffc8SCU110AD7qIB/ukpOPBT5qWEA+eNR5sv3G6gyGTCTroIh0cnqXc06GDLjB1ENcVm7KkTTrofnw66AJ00EU6uFUVSAfNubNNOugiHWw6feMtAqCDLtLBPkmBdLDwok/yf7T0LAwNe4QGqyzQQxZoz7A2WaCHLNCeYW2yQPUicHKdc1ssEMriHsACPWSBfVLSWeCdpiVkgWfNAkfkmCzQQxY4PEt5p8MCPZ0F4kRBU4a0+iMxHx8FegAK9BAFblUFokBz7mwTBXqIAptO33iJAFCghyiwT1IgChR/v0hH+kzXfqXmDhbbOHvQYASxSgx9JIb2DDuUGLoG3rV8JIb2DBtYRMH+uRNDKNn7ADH0kRj2SUknhp81LSExPGti6DlNHe+wtthEsENiODxL+adDDH2dGOLkQVOGtEkM/Y9PDH2AGPpIDLeqAomhOXe2SQx9JIZNp2+8RADE0Edi2CcpkBgqXOjcOsqzhKbrS44pQkODQWQwNGQGokiA0NCeYYf+CqQJaBggNLRn2JFFaBicOzSE8n0AQMMAoWGflHRo+EXTEkJDhIY1Hdv9KeMAoeHwLBWcDjQM8NdKDmhJm9Qw+PjUMACoYYDUcKsqkBqac2eb1DBAath0+sZbBEANA6SGfZLCXyuxFiqsTigcIRu0Z1ibS5BHyAbtGdbmEmT1A6En11m3xQahrD4C2OAI2WCPlCiBon+3liZxmGWSgBmRExNH0uuaPugVocFunUVCRqY6ixRQ1cl0FStRsVaPj7VHkYZ2Hd2gXZF7OJFBmci+yNYx64psgtiPUkVsVJPhJdlFh4aURnSplV/5dSypebSpEM/bU2qe36qozYxNSm233Hhq8Uwqr6j5UAEN+qnOI02ZUd926jbVEZBWIBosM9pTkUmZ6WNqx5XZmrkMS5tg9DOnMuhb3fyjBjO31RlbD3i9NW/67QRsUmX6uNjbVXZ3t7/KytC0n8rMKkxNaD2BxcKVMIJ2+Nm3Zxa00qU/PqDC9BG8I8axIa+H9V5cs+t/eYBABv14zXHTZTA2JLORa1Fmuw0vHvoFYNO/H04ursZjxwy9AGQGffUBO2q+HLfeMz22p8xEj7xZkzs6oM70ActjhrOrerqkjdR4pXXy91MOhX5mr4NV2lEOJe2u1r7vjZS2QtQBXxz98QOdUJ88eBM34BP3cpCW5MyvVXWYzo8nyXLJJ4paXzjKEXb49jc1L0NN7im3aoZ0xoAljUzKAlpkwKjyZu4c6aD7dVerT62bSWesPu86eW6IV3aaqTHrtEMGW50JtAFthzlDNgCHYYtBnGn0q2EL/9+nRJbLEZzLapLjtTgilgMy672bgZ/daqlmS765nu13k63CJViNtPJlVphd1iKs+KLXEvOZiPaqLtHYZXXNS4ji4l73KUXxr7llY8nKQaSv3q+Om9wHpOm92vGgGbmRRCjdd7YJ6anokOmYgqPZsYoFQ4IEdaAgcZ/zhdj5h2jj15qfl5UOHhQvpqZ3jk/LIWhtmrn0xmgSxtfVjkU0ncrzuyaW1+esv9nvh/RNulyws7tCrligpp69Ni731qFUdUpV6yVtzXlMHh8zfgDROZrofk+mXJT8Hi64JgtcRPHBF1EMj+zrV5j2BD2tB099qPfoHyaF6sMW34Vf8uVEavqvorQ/1p3lBKCu4NA5JQhaiAGZ2si3BOg3pw8d1Cz9Z7SQfXe0tBFLQws1LFp6N4T/HpdudCfmJpeHncB6t/u9LO8AGkzn9J8XD+KCCaYHw0EDWg5iMWjsBso/7gKR7tDS/KIZ7ShgZmDXUccKQO9hWUl3y9akKV/RV0kS43T1g4UjcMmJxXikY+1vyuZoYTMWhtae2LOwsxu9/XiLFvbONOAUFPioYxHm97DUwXEDh4aeQ0QvN5jysGOE921ImUzWutsUssfHQqn6KFffDzVsvm/tIET6KU+yCo3VEF4xIqfj6TxZbSLmn3Lj06Xb7327DUFtHw73vabMPAYwFgrIfI+v2hKbaSKttZGbSAbzb8mUyyP+Bw==7Z3fc5s4EMf/mjzGI/HTfkzSpvfQ3nQuN3fXR2wrNlMMPiBNcn/9SYBsQIuNHVk48fbaGyNAgPa7u9IHyb6y71YvX9JgvfyWzFl0ZZFsGcyT5yv705VlEf6PFz0m0bwsoGXBKsiXjSPWwYI9zIKINQ6bBrOfizR5iquzryz7sfizPenvcC6rotSbbHf8xsLFMi/3jC1f7LA/X9l3aZLk5afVyx2LxB2H8/q93HfspbLulMV5nxOs8oRfQfRUPdZNWZLlr/JBs+dwFQUx37pd5quIF1L+8TGJ84fqIMK3Z8swmn8NXpMnceEs580it26XSRr+x48P5Ml8d5o/hP+Jky1P1BZG0V0SJWlxSZsR8V/jzAdRY3WtlGX83O/yKemm6GuQ5fJ+kigK1lk4Le5QHLIK0kUY3yZ5nqyqg+Sj3TcvXxnQvg2icBHzshm/EEvFZYSh2Vw+hpRRecFVOKs+R8GURbcbZciq46RoxSxPk5+sdj1S/NnskXqRzXwfrMLolRf8xdJ5EAey9cv2o1a1DVVYmZelOXvplAjdCI+7CUtWLE9f+SHVCeNK/q+VYpxq+7mmaukiy5qgLVIVBllZsNhUvRUk/1BpEtanrejTJopA+bPlTXE2W7hq9rrGpCXWwSyMF1/Zo7hpZ1vyR/Ucouh5GebsgZeLyz3zMMLLEt6kj1Fh+2U4n7O40EYe5MF04xHrJIzz4tndW/6X3/cdGblXLr/lO75Nt9v8rzg85SaM+a0HYWEZxsX8zISg+5nRgs0o7eb1NJv3dqs5itUstNpRVnMtc1ZzFaspNmPx/CZNiwasbNFpvnoUqkUrfhUlWt3f2/wPL+eNkr7+U1VXbPyob3xnacifSgTiwlT8bqpavU1rs/mC7W5ri/Dks2B5Tapq89fa2wWaW5alLAry8FfzipANqit8F+LaWtcfN8/Ikqd0xqqD6llbngeH5HY15fMp1RT23zxjL0l4QPhFTz7Kk6WRTHiyP7wnv4S5cGQyIsSrtn9It+WfVVeuPJ+MJhOn7v2ky/v7+3vpVpXrqCFgPGQIoMQ+LgZQuxkElIr0RYExICcvWAk/jKfZurCFFwk/mab802LrMRgkDgsSlDjmosQEzWrKrHbfMZMGs1KCdjVlV9fgoIrS4bM62D/vzNCbTkCPDsBx2VxqvZ7OyzLj+bzS0PWklZZd98D83nWivnxOVeonLlx8Ir6rMRYo/Ey4WzgLoptqx4o7urgMGBC2sI20YdsiCrKs+rxHvTbXOb3Rw8KcFgtTw7oPkjAN3q+SMDVoI6m9aFJLCWnp0yirpSr2Q1jbaUl7Z8/CJK2lKvgTRdhF1GJJkwSXqrzuPLqI+hCuzIONHp87SI/vvUBcquJApLjHurNJjEsh8HaJHFc6fWPoNwECwWTIQPAeUC4FoJ97eyO8qHAlPnwRnoW5X0uwMIpzLeR+5gxrEuhaEPhDw57GsCaJrkznZ9ddN0V0obwuj6vn9S7ugUh3IyUVD94pWkI8eNF4sDXg9EjPHEbHloZYh3DwgLeO5wMHgVmBBHsbmgxpkg0Cc/nOo7OhcXonwAYtZIM7VYFsUJ87m2SD4KS8S2SDFjSGANighWxwn6RwQqCxUGGUDNpIBs0Z1iQZtJEMmjOsSTJoXzoZhLK6DZBBG8ngPimpZPA3RUtIBi+aDCoTB3uzQT2LvJEN9k9T9vmwQVtlgwgHtVnSJBy0Pz4ctAE4aCMc3KkKhIP63NkkHLQRDjadvjGMAOCgjXBwn6T2TBx0XJw4qC9YGMWDDuJBc4Y1iQcdxIPmDGsSDzqXjgehvO4AeNBBPLhPSioe/KRoCfHgRePB9ojT6Q2ZdNBBB+lg/yzlnA8ddAA6iMuKdVnSJB10Pj4ddAA66CAd3KkKpIP63NkkHXSQDjadvjGKAOigg3Rwn6RAOlh40SfxP6tcVoyh4YjQYJQFusgCzRnWJAt0kQWaM6xJFigHAmfXOTfFAqEs7gIs0EUWuE9KKgu8V7SELPCiWeCYDMkCXWSB/bOUez4s0AW+YhBnCuqypNEfifn4LNAFWKCLLHCnKpAF6nNnkyzQRRbYdPrGKAJggS6ywH2SAlkg//tFONJnuvErOXmw2MbpgxojiFFk6CEyNGfYvsjQ0TDY8hAZmjOs39OwWjz20pEhlOw9ABl6iAz3SUlFhp8VLSEyvGhk6FpNHR+wuFhHsENk2D9LeeeDDD0VGeLsQV2GNEkMvY9PDD2AGHpIDHeqAomhPnc2SQw9JIZNp28MIgBi6CEx3CcpkBhKXGjdWdKzxDTC2ppjij9WojGI9IaGtoYo4iM0NGfYvr8CqQMa+ggNzRl2bBAa+pcODaF87wPQ0EdouE9KKjT8omgJoSFCw5qOzf6UsY/QsH+W8s8HGvr4ayWnM6RJaOh/fGjoA9DQR2i4UxUIDfW5s0lo6CM0bDp9YxABQEMfoeE+SeGvlRgLFUbnE44RDZozrMklyGNEg+YMa3IJsvx90LPrrJtCg1BWHwNocIxocI+UKIGif7eWZlGQZQKAaZGTzY+kNzV90BGh/mGdRULGujqLFFDV2XQVK1HZrR6f3X6J1Lfr6PjtipzTiQzKROZFtolZI7INYj9KFdnjmgyvySE61KQ0okqt/MqvoaTm0qZCXPdIqbleq6I2MtYptcNy47nFM6G8ouZTBTTopzoHmjEjv+3UaarDJ61A1FtmdE9FOmWmvlIbVmYb5tIvbYLRT5/KoG918wYNZk6rM7Z53/XWvOm1E7BOlamvxYZVWRmajlOZXoXJ+axnsFa4EobfDj/H9sz8Vrr0JidUmPoCb0CF9Rke1ntxza7/9QkCGfTjNcOmS3+iSWZjx6DMDnu9eOoBwLZ/359cjCYTSw+9AGQGffOBPWi+nLTGma59pMx4j7xZkzM+oc7UF5ZDhrNRPV3SRmocKZ3845RDoZ/Z62CVZpRDSburdey4kdJWiDrhwNGbTOmMemTqzhyfzZzrXloSE7/W1WEqP54lccxmklpfWdIRDvj2NzkvQ87tKbdqhrQmgCW1zMkCWqTHW+Xt1DnSQffrrlafWbcQzlh9PnTuXB+v7DRTY9Jphwx2OhNoA9oOc5psAL6GLV7izMNfDVt4/z4loly8wbmu5jje8CMi8UJms3f74uewWqrJkm+uZ/fdZOsgBqsRVr7OCrOLWrgVX9RaIrbg0V7WxRu7rK55CV5c3OsxpSj+DbdsrFg5ifTl+GrY5N4jTR/VjifNyI0kQumxs03InopOmY4p+DY7krGgT5CgFhQkHnK24jv/4G38WvPzstLeL8WLmemd76fFK2hllrnwxnAWRDfVjlU4n4vzu+aV16esv9nv+/RNulyws7tCRrYvp569Ni731lep8pSq1mvamvOYPD5m7ASisxTR/Z7MGS/5PVgxRRa4huKDr6HoH9k3Q5j2BD2lB089qPfonSaFqq8tvnO/ZPFMaPqvonR/rLvICUBdwaFzShC0DgMytZYvCVBvTn11ULP0n+FK9N3R0losDS3UMGjpwxD+e1y60Z2Ym1wedgLj3e73srwDaDCV039eTfkFE0wPmoMGtBzEYNA4DJR/3AUi3aGl+T0zylHAzMCuo4YKQO9hWUl3y9akKYbo6ySJcLr6ycIRuOTEYDxSsfY3aXO0sB4LQ2tPzFnYOozefrxFC0dnGnAKCnzUUIT5DJc68M00EaB3ezh35uW3ZM7EEf8D7Z1dd9q4FoZ/TS6TJfkTLpO06Vy0s7oms+acXjogwGsM5hinaebXH8mWjG0ZIwNik2F32llYGNl4v3q19VgyN+7j8teXLFovvqVTltw4ZLOIpunbjfvpxnEI/8eLZmkyLQtoWbCM8kVjj3U0Z8+TKGGN3V6iyd/zLH1dyU/fOO6s+LP90H/iqaqK0mC8feM3Fs8XefnOyAnFG+7nG/cxS9O8fLX89cgSccaxrN5zo1k0mwaMMka80fi2PLkn092pOnrGVvlpqnTKKn9Gyau8NPdlySZ/Vxdr8xYvk2jFtx4W+TLhhZS/nKWr/FnuRPj2ZBEn06/Re/oqTm2T80urth4WaRb/w/eP1If521n+HP8jPuwEorY4SR7TJM2KQ7qMiP8an3wWNcpjZWzDP/tdXQdaFX2NNrk6nzRJovUmfinOUOyyjLJ5vHpI8zxdyp3UV3tqHl6KwH2Ikni+4mUTfiCWicMIsbCp+hpKiuUBl/FEvk6iF5Y8VOpSVa/S4ipu8iz9m9WOR4o/1TtKc+oyP0XLOHnnBX+xbBqtInX1y+tHHbndVaEML8ty9qsh/V4R0UrNvO2xdMny7J1/RtYwkm3qvdx0PLn9Vmsqqt0taq3EIbIw2pQF86rqrWT5C6laQwW7moJdokmYf/u8Kd9mDGRg6ipUsVpHk3g1/8pm4lt425I/5BcTRW+LOGfPvFwc7o2bFS9L+UWfJYU6FvF0ylaFevIoj16qNrNO41VeXAz/gf/l5/1I7vwbn5/yI9+m223+V+ye8SCv+KlHcRE7xuX+xoTkDwy00x1oFdnAMLCBhbh6WlwdH+N6krj6DmBcfS2uWlTZanqfZcUlltHaGeC619U8kUtF88SnJ5f/4eX8smXv/5XVFRs/6hvfWRbzrynsvggmPxtZa1DFg03nbGA0HML7vDnbtY/XHbFaiPyOCKmyjCVRHv9snlNX2OQRvguBbgURjpqf2KSv2YTJnerphPpcd0/Qrqb8wlo1hWSq73iYioIO10fbP409qDCC2EMIbw+/4ly4A7kjJJDbP5QX8Ne6P0g7IXfjsVe3FLLLUo4wkbJp7thnZGA0I0ijocQ9zGmo27QarSKLXjPqkGQQLUVrX71s1kU8g0S0xpeMv5pv2yVa0ZFWRIkH6EVjDDxY4F3TQaWNwFOCkQeLvA856qQUPv/oHJ7szCWqdMUgVbGVd6j20pt4lDudPfOQwrwdtxII3x+Yiez6oMXMg+p4VpxJ8YqIwZdFD9LQp2jm8SRK7uUbS24w4jCdRrTlpKTNSedJtNnI13vahMtbD723hDG9FsbUO5ywE2LacB0dYuqhRAyPGL6uX0pIS8GwIJ7qxBZJvHms3d6sCBTFU53ZOnY7n6uONSiepzpZvYwE2CKfV91vf/rqg6SvH5bQU53kIqI/mUeAMnraRUQR0tecpH+0PDaxmzGk3XxITk87eK3/cC/aatFgw7L9Ytpix5JgWb06ECJbiNCD0nqni9li6M8UelBcrxKPixutgOF6owxE1dSbgTg78BPy+t1y1Dnuo6ZH5LjIcXumUwfEsC+lI8eGoyLFPebW9gVTXEenuD7mRbZCDQpxnSuEuI4JxHUQ4g4TEkJcix4BCnEdhLh7nKR/CGUCcR2EuINliZNu4QwJFuG6iHABQw+KcF1EuIChB0W4LiLcQ/IP1wThuohwB8tRR7i/aXpEhIsIt3cqrjHEtfRMDIS4R3SX7gVDXLdjKi5SXGuxBqW47hVSXNeE4rpIcYcJCSmuRY8ApbguUtw9TtI/ijKhuC5S3MGy3DMVl18bnIprz5JgOa6HHBcw9KAc10OOCxh6UI7rIcc9JAPxTDiuhxx3sBx1jvtJ0yNyXOS4dY7bHqN7xqzPCsb1EOMe0Vt6F4xxPR3j4gMVrIUalOJ6V0hxPROK6yHFHSYkpLgWPQKU4npIcfc4Sf8YyoTiekhxB8uyk+IWbfWT+J9Ttl80oFMYECyz9ZHZAoYelNn6yGwBQw/KbNXA6OLGJmDM1ijf8E2YrY/MdrAcdWb7pOkRmS0y2+bjEy6K2frIbI/oLf0LZra+zmwpTr21FmvYH6m7Qmjrm0BbH6HtMCEhtLXoEaDQ1kdou8dJ+gdRJtDWR2g7WJad0Jb//SKa62datV41G7fYpjgh16ZRwcLdAOEuYOhN4a5nYzgaINwFDH0IyfUDhLuH5CWBCdwNEO4OlqMOdz9rekS4i3C3Dnd9p6n0Ac9VsGKpCHeP6C2DC4a7QQfcxRm51mINCneDK4S7gQncDRDuDhMSwl2LHgEKdwOEu3ucpH8QZQJ3A4S7g2XZCXcV2a1m5PKKSeN5CxLvyvLtDF6kvjYdzJj6+jYsLET0Bxj6ABL9hYj+Dum1QhP0FyL6GyxHHf190fSI6A/RXx/6q+6PwczrDBH9HdFbhheM/kL8XawzhhqU/IVXSP5CE/IXIvkbJiQkfxY9ApT8hUj+9jhJ/xjKhPyFSP4GyxJ/FwvOkGCnb6puDkMPEXrQtfkjZLiAoQddm69+3fvixipgDNco/xiZMNwRMtzBctQZbp8cJ0m02QhQeRJFunxPel+TGL0jNByWGRMyspYZUxNhXm5eLHXpttJbt70iwTRP9sJ2Rd75dKpzWgidVs55R7ZW+qMUojuqKfmWDJHy2cRKDNRaPpAQSq0+bYrM9w9Uqx+0KmrfP7CpVp09fyRXFeItaoazVaPf4QaaaaSeKu21OCVp2aGxUumeimwqdRg6N1NqlWkeoNSKlJn1/50efE6hGj2kMgC1VK+VmFa3YI9NAIJ2JmFTqDqah7XU0iAPE+q5RapmNF/ionyprbBtgodmqWGr3w/GZxTpsJsMlkVqMmCvZ7TNkdQtiJ0a/XIbbL8fjk+k1JEHqNSu+w5w46ntcMkcR92Nx44lJGWiVKMHnbigHf+4NfL33QOVSklr1pY3Op9UVau4EFO9q/f7tNHH32ljJlvio0a/p7uDg59HfJS0085DR/KUtozynEP5cdetmpb6xDzNtdxNv1cxSVcrNlF3SG4c1ZSOeTimmvGkJtqVW7XAOuOOyNqZQjl29l+h7cxXsuPOUr2x1ifGzkVzlq+HTn01adc7w9YbnvH+Ow2dEaBt3zxNBLogfnn7cBr/bEQi+N9rKsrFvcNbOUH5nu+RiFuB1bvbW47DapEznY+up/9sNuto1VmNiPHtpgi6qIXH8JdeS8LmvLdQdfFrXVbXPAQvLs71kFKU/qhD+e3U4zTCv4i7Aod08gZX0Wrf3Og+KD105hTZU5HNjrmLsZctUgTKxCCo02UQzzlb8jf/4Jf4vdbGy0qNp2IUS0p2zooQEx+05SGiJcaTKLmXbyzj6VR8fteCkPpak6Pb/EFZStn+dqYp5M4N1bzL98bRjr3Vrj4ia72lrTnC6Wy2YaeXnA7Lf0+njJf8Hi2ZJgpc+nRtS592uXo1kGlPNNXy9mqBaSNrDKx0njpR/84bJVtNhKL/Kkr3+xxOOds6w84pZ10LoboCbWXG2ViH0rU4/xkvRcaOcT5FnLtWQZ0vzsOQ7r9iFZTqkXs5WNkAzp5rf9hVUFVWX3+m4/KFHzDFjuG0htG1JOpshkGJAdu8zjVRylf6ITxxDNxH7gVlPx9yVVR1ZWvKFMPydZomuDDClhl1Loc6oxvpFPubCjkG+CQB7lr0dMYAD6O1V7D0xbCbMbnZK/eCIsofYfGL44UOjXyHUBqEUxbddi7APIogk0klum2hO5sVMtVvaG2f2bd9Xp8V1PyapxtJvWp0rrjNpnPnPF1vffFPsfHp1tvfyI68r9SPzjy/qS/f1ZFKl5Md8OsbfDNLRZy2MuNdwOJbOmVij/8D7Z3fc5s4EMf/mjzGI/HTfkzSpvfQ3nQuN3fXR2wrNlMMPiBNcn/9SYAwoMXGjiw78fbaGyNAgPa7u+Ijyb6y71YvX9JgvfyWzFl0ZZFsGcyT5yv705VlEf6PFz0m0bwsoGXBKsiXrSPWwYI9zIKItQ6bBrOfizR5iquzryz7sfizOenvcC6rotSbbHb8xsLFMi/3jC1f7LA/X9l3aZLk5afVyx2LxB2H8+a93PfspbLulMX5kBOs8oRfQfRUPdZNWZLlr/JBs+dwFQUx37pd5quIF1L+8TGJ84fqIMK3Z8swmn8NXpMnceEs580it26XSRr+x48P5Ml8d5o/hP+Jky1P1BZG0V0SJWlxSZsR8V/rzAdRY3WtlGX83O/yKWld9DXIcnk/SRQF6yycFncoDlkF6SKMb5M8T1bVQfLR7tuXrwxo3wZRuIh52YxfiKXiMsLQbC4fQ8qovOAqnFWfo2DKottaGbLqOClaMcvT5CdrXI8Uf+o9Ui+yme+DVRi98oK/WDoP4kC2ftl+1Kq2oQor87I0Zy+9EqG18LibsGTF8vSVH1KdMK7k/1opxqm2nxuqli6ybAjaIlVhkJUFi7rqjSD5h0qTsD5tRZ82UQTKny1vi7PdwlWzNzUmLbEOZmG8+MoexU07m5I/qucQRc/LMGcPvFxc7pmHEV6W8CZ9jArbL8P5nMWFNvIgD6a1R6yTMM6LZ3dv+V9+33dk5F65/Jbv+DbdbPO/4vCUmzDmtx6EhWUYF/MzE4IeZkYLNqO0mzfQbN7breYoVkOjHWQ01zJnNFcxmmIzFs9v0rRowMoWveZrBqFGsOJXUYLV/b3N//By3ijp6z9VdcXGj+bGd5aG/KlEHC5Mxe+mqtWrW5vNF2x7W1uE554FyxtKVZu/0d4u0NyyLGVRkIe/2leEbFBd4bsQ18a6/rh9RpY8pTNWHdRM2vI8OCJ3qymfT6mmsH/9jIMk4QHRFz35IE+WRjLhyf7pPfklzIUjkxEhXrX9Q7ot/6y6cuX5ZDSZOE3vJ33eP9zfS7eqXEcNAeNThgBK7MNiALXbQUCpSF8UGANy8oKV8MN4mq0LW3iR8JNpyj8tNh6DQWK/IEGJYy5KTNCspsxqD31l0mBWStCupuzqGnynovT0WR3sn/dm6LoTMKADcFg2l1pvpvOyzHg+rzR0PemkZdfdM7/3nagvn1MV+okLF5/I2NUYCxR8JtwtnAXRTbVjxR1dXAYMCBvWRrqsbREFWVZ93qFem+uc3uhBYU4Hhalh3QdBmAbvV0GYGrQR1F40qKWEdPRpFNVSlfohq+21pL21Z2ES1lIV/AkWiF1ELZY0SXCpyuvOo4uoD+HKPNjq8bkn6fG9F4hLVRyIFPdQdzaJcSkE3i6R40qnb736TYBAMDllIHgPKJcC0M+9vRFeVLgSD0rCszD3awkWRnGuhdzPnGFNAl0LAn9o2OMY1iTRlen87LrrpogulNflcc283sc9EOnWUlLx4J2iJcSDF40HOy+cHhmYw+jY0hDrEA7uMep4PnAQmBUoBtiwu6HFkibhIDCZ7zx6GxrndwJw0EI4uFUVCAf1ubNJOAjOyrtEOGhBLxEAHLQQDu6SFM4INBYqjKJBG9GgOcOaRIM2okFzhjWJBu1LR4NQVrcBNGgjGtwlJRUN/qZoCdHgRaNBZebgYDioZ5E3wsHhaco+Hzhoq3AQ2aAuQ5pkg/bHZ4M2wAZtZINbVYFsUJ87m2SDNrLBttO33iIANmgjG9wlqR0TB10XJw7qCxZG6aCDdNCcYU3SQQfpoDnDmqSDzqXTQSivOwAddJAO7pKSSgc/KVpCOnjRdLD7xukMZkw64KCDcHB4lnLOBw46KhzEVcW6DGkSDjofHw46ABx0EA5uVQXCQX3ubBIOOggH207feokA4KCDcHCXpEA4WHjRJ/E/u1xVjKHhgNBgFAW6iALNGdYkCnQRBZozrEkUKF8Ezq5zbgoFQlncBVCgiyhwl5RUFHivaAlR4EWjwDE5JQp0EQUOz1Lu+aBAF/iGQZwoqMuSRn8j5uOzQBdggS6ywK2qQBaoz51NskAXWWDb6VtvEQALdJEF7pIUyAL53y/CkT7T2q/k3MFim+L0QY0hxCgz9JAZmjPsUGboaHjb8pAZmjOsP9CwWjz20pkhlO09gBl6yAx3SUllhp8VLSEzvGhm6FptHe+xtlhHsENmODxLeefDDD3giwdx/qAuS5pkht7HZ4YewAw9ZIZbVYHMUJ87m2SGHjLDttO33iIAZughM9wlKZAZSmBYzx/k9ZDWomPqNss38w0RJmqMLYNhoqshuPjInMwZ1jPInPxLZ05QtvAB5uQjc9olJZU5fVG0hMwJmVNDx2Z/CddH5jQ8S/nnw5x8/LGLI1rSJHPyPz5z8gHm5CNz2qoKZE763Nkkc/KRObWdvvUWATAnH5nTLknhj10YCxVG56PJbIKGNWBYk2tYx8gGzRnW5BpW+fuSZ9dZN8UGoaw+BtjgGNngrt+3J1D079fSLAqyTBAwLXKy+ZH0pqEPOiLU36+zSMhYV2eRAqo6m65iJSq70+OzuzOXh3YdHb9bkXM8kUGZyLzI6pg1Ipsg9qNUkT1uyPCa7KNDTUojqtTK74w6ldRc2laI6x4oNdfrVNRlxjqltl9uPLd4JpRX1HysgAb90uOJJlzIb8t02urwSScQDZYZ3VGRTpmpY2qnlVnNXIalTTD66VMZ9LVg3kmDmdPpjNUDXm/Nm143AetUmToudlqVlaHpMJXpVZicDnkGi00rYfjd8HNoz8zvpEtvckSFqSN4J1TYkNfDZi+u3fW/PkIgg3785LTp0p9oktnYMSiz/YYXj/0CsOnfDycXo8nE0kMvAJlBS+ftk+bLSec907UPlBnvkXe+Aml8RJ2pA5anDGejZrqkrdQ4Ujr5hymHQj/T1sMqzSiHkm5X69D3Rko7IeqIL47eZEpn1CNTd+b4bOZcD9KSmPm1rg5T+fEsiWM2k9T6ypKOsMfXh8l5GXJyT7nVMKQ1ASypZVIW0CIDRpU3c+dID91vulpzat1COGP1ed/Jc0O8stdMrVmnPTLY6kygDWg3zGmyATgMWwzizMNfLVt4/z4lolyM4FxXkxxv+BGRGJCp924GfvarpZot+eZ6tt9Ntg5isBph5eusMLuohVvxRa0lYgse7WVdvLHL6tqX4MXFvR5SiuKvuWVT+92+gh7py/er0yb3AWn6oHY8akZuJRFKD51tQnZUdMx0TMHR7EjGgiFBglpQkHjI2Yrv/IO38WvDz8tKBw+KF1PTe8enxRC0Ms1ceGM4C6KbascqnM/F+X0Ty5tz1t/s90P6Jn0u2NtdISPbl1PPXluXe+tQqjylqvWaduY8Jo+PGTuC6CxFdL8nc8ZLfg9WTJEFLqL44Isohkf2+hWmO0FP6cHXy8pavUfvOClUHbb4zv2SxTOh6b+K0t2x7iInAPUFh94pQdBCDMjUWtaYqzenDh00LP1nuBJ9d7S0FktDCzUMWno/hP8el270J+Y2l4edwHi3+70s7wAaTOX0n1dTfsEE04PmoAEtBzEYNPYD5R93gUh/aGl/TYlyFDAzsO+oUwWg97CspL9lG9IUr+jrJIlwuvrRwhG45MRgPFKx9jdpc7SwHgtDa0/MWdjaj95+vEULB2cacAoKfNSpCPMZLnXgm2kiQO/mcO7My2/JnIkj/gc=7Z3fc5s4EMf/mjwmI/HTfkzSpvfQ3nQuN3fXR2IrNlNsfJg0yf31J4GEAa0NJrLsxNtrb4wMArTf3RUfFnzh3i5evmTRav4tnbLkwiHreTRNny/cTxeOQ/g/3vSYJtOygZYNiyifN9ZYRTN2P4kS1ljtIZr8nGXp01JufeG4j8WfzUZ/x1PVFaXBePPFbyyezfPym5ETii/czxfubZameflp8XLLEnHE8bR+LHdbvqWq74wt8z4bOOUGv6LkSZ7Wddmyzl/Via6f40USLfnSzTxfJLyR8o+P6TK/lysRvjyZx8n0a/SaPokdr3M+LGrpZp5m8X98/UhtzL/O8vv4P7GxE4je4iS5TZM0K3bpMiL+a2x5L3qU+8rYmm/7XZ0lrZq+RutcHU+aJNFqHT8URyhWWUTZLF7epHmeLuRK6tTumruXBnRvoiSeLXnbhO+IZWI3wtBsqk5Dyajc4SKeyM9J9MCSm0oZqutlWoziOs/Sn6y2P1L8qb5RelHDfBct4uSVN/zFsmm0jNTol+NHHbkMdSjNy7KcvWyVCK2Ex92EpQuWZ698FbnBSMr/VSrGk8vPNVUrF5nXBO0Q2Rity4ZZ1fVGkPyD1CSsT1fTp0s0gfJzy5vibI6wHPa6xpQlVtEkXs6+skdx0N6m5Q95HqLpeR7n7J63i9098zDC21I+pI9JYft5PJ2yZaGNPMqjh8ojVmm8zItz92/4X37ct+TKv/D5Id/yZbpZ5n/F6hk34ZIfehQXlmFczM9MCLqfGR3YjMpuQU+zBW+3mqdZjaLVBlnNd+xZzdesptmMLafXWVYMoLTFVvPVo1AtWvG9aNHq7s7lf3g7H5Ts9R/ZXbHwo77wnWUxPysRiAtT8aORvQbVaLPpjO0ea4fw5DNjeU2q+vDXxtsHhlu1ZSyJ8vhXc4+QDeQevgtxbawbjppbrNOnbMLkSvWsrbaDQ3K7m/L8tG4K+1fn2EsSARB+0ZMHebIykg1PDo/vyS9xLhyZXBESyOUfym35Z92VpeeTq/HYq3s/2eb9/f29dCvpOnoIGB0zBFDiDosB1G0GAa0jc1FgBMgpiBbCD5cP61VhiyARfvKQ8U+zjcdgkNgvSFDi2YsSYzSrLbO6fa+ZDJhVTbXRroe3q2/xoorS42d1cH6+NUNXk4AeE4Bh2VxpvZ7Oyzbr+Vxq6HLcSsu+v2d+37ahuXxOdeondlx8ImPfYCzQ+Jlwt3gSJdfyiwV3dLEbMCBsYBtpw7ZZEq3X8nOHel2uc3pthoV5LRamh/UQJGEGvF8nYXrQRlJ71qSWEtLSp1VWS3Xsh7B2qyXdnTMLm7SW6uDPxxmiIUPaBLhUx3WnMUM0R3BVGmxM+PyjTPjeC8OlOg1EiDvUnW1SXApxt3PEuMrpG1d+YyAQjI8ZCN4DyaUA8/NvroUXFa7EL16FZ2HuNxIsrNJcB7GfPcPa5LkOxP3QsIcxrE2gq9L5yU3XbQFdKK+r9ep5fRv2QKJbSUmng7ealpAOnjUdbF1wBqRnDqMjx0CsQza4x03H02GDQFGg2BVON4xY0iYcBGr5TmO2YbC8E4CDDsLBnapAOGjOnW3CQbAo7xzhoANdRABw0EE42CUpLAi0FiqsokEX0aA9w9pEgy6iQXuGtYkG3XNHg1BWdwE06CIa7JKSjgZ/07SEaPCs0aBWONgbDpp5yBvhYP805Z4OHHSxcPBwhrTJBt2PzwZdgA26yAZ3qgLZoDl3tskGXWSDTadvXEUAbNBFNtglqY7CwYBIz9LTv3/zRazxmZZrYIWhwajSGyO6Jt7qgxjRnmF7P7llwrCIEe0ZNrD5Hq5zx4jQBMADMKKHGLFLSjpG/KRpCTHiWWPE9qWp1xtGmaCIHlLE/lnKOx2K6OkUkSJGNGVJmxjR+/gY0QMwoocYcacqECOac2ebGNFDjNh0+sZVBIARPcSIXZICMWLhRZ/E/7ySDmJoGBAarJYU+sgC7RnWZkmhjyzQnmFtlhSqC4GTm5zbYoFQFvcBFugjC+ySks4C7zQtIQs8axY4IsdkgT6ywP5Zyj8dFujrLBCfNjZlSKu/JfPxUaAPoEAfUeBOVSAKNOfONlGgjyiw6fSNiwgABfqIArskBaLAdrVgrciwWHZ8LB80F0KsIsMAkaE9w/ZFhp6Bi60AkaE9w4Y9DWvEY88dGULZPgCQYYDIsEtKOjL8rGkJkeFZI0Pfaep4j4eQTQQ7RIb9s1RwOsgwAN5QiOWDpixpkxkGH58ZBgAzDJAZ7lQFMkNz7myTGQbIDJtO37iKAJhhgMywS1IgM1TAsCof5P2QxtPJjl9v35QbUqSJBoNLb5roG4guIUIne4YNLEKn8NyhE5QuQgA6hQiduqSkQ6cvmpYQOiF0qunY7k/mhgid+mep8HSgU4g/i3FAS9qETuHHh04hAJ1ChE47VYHQyZw724ROIUKnptM3riIA6BQidOqSFP4shrVQYbUgTWUTNKwFw9p8hnWEbNCeYW0+w6p+ifLkJuu22CCU1UcAGxwhG+ySks4Gd0lpkkTrtQBgRtTk8jXpdU0e9IrQcL+5IiEjU3NFCojqZGaKUlNua8LntiuX+84cvbDdkXcwjel07xgaqyLWFdmEsB+liNxRTYWXZB8ZGhIa0ZVWvjHqWErzaVMgvj9QaX7Q6qhNjA0qTeeR7ymaCeEVPR8qnEE/CHmkcgv1rkyvxbJIKwz1Vhnt6MigyvZjpYdXWcVb+uVMMPaZExn0SrDgqKHMa03Eqptdb02aQTv7GhSZjl6PK7IyMA0TmVmBqVLIE3jQVOoibAefobOysJUrg/HhBLYfIj6wwPpcGNZncM1Z/+UBwhj0AynHzZXh2JDKRp49lUHU+K0qu7sbOvffTO37I4ur8dgxgy0AlUEPzbtHTZbj1hWm7w5UGSWtmhJvdDCZKQGfSDC7qudK2siLV9r8fphwKPRDblsYpR3hUNKeZg29YqS0FaAOeMk4hiB5SzmivmslV9Mp8SRdLtlEsekLR6l+j5eEqeoLVcJTLtXMVgnceOnV2Ok+/009HNlC7OtuVC+XmwlHk5/3LYjr43FbjVIf/HE3BQbHl7bj1aDxhQBredNlGv9qjHPw71Mq2sUdl0tZlHjN10jEDZTq282Nmv16kdWNb+5n99GsV9ES7EZY8HJdmFT0wi30oveSsBmP0qovPrRld81d8ObiWIe0np2wR4Cu2wl9kKxPgun2SJ09xuigObER2CkdWudBOjoymBAhhlp6kzBDH+emDuTc9zlb8C//4CP6WvPPstPeN5+LEvCt94HFrV6tnFt4UTyJkmv5xSKeTsX22wq467Xhb/bXPrOD0pm2Tg/IlRuqgq7XRudvvUGpNpG9XtJWJWH6+LhmbxaUjkt/T6eMt/weLZhmcnwQ4YM/iLAtIleT/3ZJmzYbrh7EaszWAhNpTaeu37mHseVE6PWvorU7Rp1lgUzp5lsLZKDHEiAzmqiPGetos2bFP+OFmAejFQdYEXok4WBW3A8dvsdHElRqrEOcUrzWJ6zv5ZGEaiZcf4XW4oH3n2KEfpNvQ88nHMq3KemB3c7iAQUVAhpslzh6XJCNxwoM7+ERhWrcaqoSV52rNE2w0tlQmACfTThcnNDx6TdlUDTfEPNBTyAcznz7YcKPV6kOh3fg3p1sPBaofA+16o4XOjTyHUJpEE5ZdAnL622skkwqDW0a3cfHQnX6bY+uV7Vv3qt0ENT5lKdryWVq/Ki4RaNzzzxdbULbn2Lh06XX7Un73ZPYDXfG6leuq+ICAAtQQOYDXtDNF7NUWGsjNx6159/SKRNr/A8=7Z1dd5s4EIZ/TS7jg/g0l0natBdtT0+zZ3d7SWzF5hSDF0iT9NevBBIGJNuYCEHiST+OkUGA5p0Z8XjkXFg3m+dPabBdf02WOLowjWwdLJOnC+vDhWka5B9pekiiZdmAyoZNkK8be2yDFb5bBBFu7HYfLH6t0uQxZkdfmNZD8bM76J9wybtCyPV3b3zG4Wqdl+/MTY++YX28sG7SJMnLV5vnGxzRKw6X9Wu53fMu4n2nOM67HGCWB/wOokd2W1dlS5a/8BvNnsJNFMRk63qdbyLSiMjLhyTO79hOBtlerMNo+SV4SR7pibOcDAvful4nafiH7B/wg8nbaX4X/qEHmy7tLYyimyRK0uKUFjbon8aRd7RHdq4UZ+TY7/wuUdX0Jchyfj1JFAXbLLwvrpDusgnSVRhfJ3mebNhO/NZum6dnBrSugyhcxaRtQU6EU3oaami85LfBZVSecBMu2OsouMfRdaUM3nWcFKOY5WnyC9fOZxQ/1TtcL3yYb4NNGL2Qhr9xugzigI9+OX7IZNuyDpl5cZrj570SQZXwiJvgZIPz9IXswg6YM/m/MMXYbPuppmruIuuaoE2DNQZZ2bCqut4JkrxgmpTr0xL0aRmCQMm95U1xNkeYDXtdY9wS22ARxqsv+IFetL1r+cHugzY9rcMc35F2eronEkZIW0KG9CEqbL8Ol0scF9rIgzy4rzxim4RxXty7c03+kuu+MWbOhUMu+YZso902+Ut3T4kJY3LpQVhYBhMxP2Eq6G5mNOVm5HZzO5rNfb3VbMFqCKzWy2qOqc9qjmA1wWY4Xl6laTGAzBZ7zVePQrVoRc4iRKvbW4v8kHYyKOnLv6y7YuNnfeM7TkNyVzQQF6YiV8N6davRxssVPjzWpkGSzwrnNamKw18bb0cy3LwtxVGQh7+bZ5TZgJ3hOxXXzrrevHlEljymC8x2qmdtfpw8JLe7Ke9P6Kawf3WPnSThSsIveHIvT+ZG0uHJ3vie/Bzm1JGNmWG4bPsnd1vyWnRl5vnGzPftuvcb+7y/u7+XbsVcRwwB8zFDADKsfjEAWc0gIHSkLgrMJXJygw31w/g+2xa2cCPqJ/cpebXaeQwEidOCBDJsfVHCB7PqMqvV9ZlJgVn5VLtu12IQPtG7/oiqQbii29eIDQKYWo2pHY3PWQiNn+ilU/a9SbuaF3SYE/RL8Fz+9QxftmlP8UxDl34rUzvOiSl/34HqUjwSQSA9cfHK8B2FsUBAatTdwkUQXbE3NsTR6WmkAWHH34w2f1tFQZax10fUaxGdoys1eMxu4TEx0ntSOKbA+0U4JgZtgLdnDW+RYbT0qRXfIpEEAr/da0nr4MxCJ8BFIgt0YIaoyJA6mS4SCd40ZojqoC5Pg40JnzPKhO+tYF0kAkLgun3dWSfYRTIUd45klzt948nPlwQCf8xA8BbgLgIMqC1UaMW7poQDgmEHMqxOwGtKqB8AXn221kl4eX6f3PxdF+GVJXq+Xz3R7+MggHgrKYm48EbQEuDCs8aFrSdQ1+iY1tDcVBDrABae8CnkdGChpHCQngqmG0osqZMWSur9pjHbUFgCKqGFJtDCg6oAWqjOnXXSQmnh3jnSQlP2ECGhhSbQwmOSAlqoLVRopYUW0EJ9htVJCy2ghaPaWicttM6dFsoSvSWhhRbQwmNSEmnhZ0FLQAvPmhYKxYWdeaGateHAC7unKWs6vNCC4sLhDKkTF1rvHxdaElxoAS48qArAhercWScutAAXNp2+8RQhwYUW4MJjkgJcqC1UdMaFlopv+AFcqM+wnZdsqTAs4MJRbe3q/Jquc8eFskRvS3ChDbjwmJREXPhB0BLgwrPGhe1HULszdFJBC22ghd2zlD0dWmiLtBABLlRlSZ240H7/uNCW4EIbcOFBVQAuVOfOOnGhDbiw6fSNpwgJLrQBFx6TlAQXOteFF32g/9lG4VkQGnqEBq3VhA7gQX2G1VlN6AAeHNXWOqsJ+bPB5ObruvCgLLE7EjzoAB48JiURD94KWgI8eNZ4cG6MiQcdwIPds5QzHTzoiHgQ1h6rMqTW3z7z/umgI6GDDtDBg6oAOqjOnXXSQQfoYNPpGw8REjroAB08JikoJtQWKrTSQhdooT7DdqWFtoKHKhdo4ai29jraWokTnzstlCV6V0ILXaCFx6Qk0sKPgpaAFp41LXTMpo5PWHqsItgBLeyepdzp0EJX8lWFUEyoypI6caH7/nGhK8GFLuDCg6oAXKjOnXXiQhdwYdPpG08RElzoAi48JqkjxYTIAdagLlh0BoaOgmjhSYAhcCV9tnY1ciVPwhAnMdHTxZVkGYE7QD0jlG3AlQ5ISUSUnwQtAVcCrlTTsd7fl+uJ5BO40j5Dlu48Ca7kiTwQytCUWVInV/JEQjiN6YY6rsTTYGPyYI8yeXgrXMkTaSNwpb7urJMreSIQ1O7Ok+BK3OkbTxFzSSCYjxkI3gJX8mSoEqqVBgkVWsvQPKgv1GdYnYtW+TQBcOE4tta5aHV+7rhQlujnElw4B1x4TEoiLjwkpUUUZBllYkrUZJE90VVNHmhmIO+06aNhzFVNH5FEVJOZPDJNWa05oNUuYe46mbS9dkf2YBoTgd8YGqsi1szYhbCfpYiseU2Fl8YpMlQjND4va3yXjjem0hzUFIjj9FSa47Y6akNkhUoTEeVbimZUeEXPQ4Uz2e+DHKnIgn9fpt0Uh2e0wlBnlaEjHSlU2Wn4dHiVVQimW86Uxj51IpN9LZg7aiizWxOx6vOv1yZNt519FYrstNrP4UVWBqZ+IlMrMF4AOYGVpUwXXjv49J2Vea1c6frDCew0ajywwLo8GNZncM1Z/+UAYUz2y1DGzZWer0hlc1ufyk6reR167r+b2ndHFjPfN9VgC4nKZKvkrVGTpd96wnSsnipDRqvMxJ4PJzMZ1h4vmM3quRI18uJMmN/3Ew6S/dK2PSWNeoSDjPY0q+8TI0KtADXgIyO/5kPKoSVfW7abSIkXSRzjBWfTFyZX/QnfCsY/eudVPeVWzWzVZSqvxvI7sORdiZyxh9jX3aheQbeijsZen1oj18Xj9hqlPvj+cQosHV/Ujle9xteUjG/5ocsy/N0YZ/e/x4S2009cLlmd4hXZI6IfoFTv7j6oOa0XVvD46n4OX022DWJpN9SCl1lhUtoLsdCz2EuEVyRK877I0JbdNU9Bmotr7dN6dsKeS3TdTui9ZD0JptshdXYYo0FzYiOwI9S39MM40pHChChjqKU3UTN0cW5kypz7Lscb8uYPMqIvNf8sO+384XNRFb73c2D6Ua9Q4U29KFwE0RV7YxMul/T4fTXd9XLxV/trl9mBv2fexnoyZpbHC3JeGp2/9gNKfgjr9RK1iguTh4cMv1pQIi79liwxafkWbLBgclib8M7XJuyLyNXkv13lJsyGq7VZjdmaqyKtidT1O/EwHC+oXv8uWo/HqLMskPH3rNo/sFJBZkYV9TG+iDZrVvwr3NB5MFixhxVlqxQGs+IElssPvEqBp8Y6xPHHoX9vZZWCL5K+j5t70n0CAfpVri1bsTCUa1ePM2e/ZIFHgAbaNSTfqMcax4oLb2HRQjVuNVXRh85tkkRQ6KwoTEhXKwwXJ0R6+pUbFMzXx3yyNQnDme80Svj+CtXl4d2UhXdzlPA+3VJ1spkmFCDudidet/6aLDHd438= \ No newline at end of file +7Z1dc6M4FoZ/TS6dQnwIuExnOjMX3VNdk63Z7aspbGSbGgxZTDrJ/PqVsGQDAiKIZdHrk+mqMTKIj/Pq1dEj2b5x7nevvxbR0/ZrHpP0xrbi1xvnlxvbRq5j0f+xkrdDiR+iQ8GmSGK+06ngMfmH8EJ+3OY5icm+sWOZ52mZPDULV3mWkVXZKIuKIn9p7rbO0+ZZn6INkQoeV1Eql/47icstL0U4PL3xG0k2W37qwPYPb+wisTO/k/02ivOXWpHz+ca5L/K8PLzavd6TlD088VwOxz30vHu8sIJkpcoB8dKyraWNlk7soXC9cA4V/IjSZ36vd/xCyzdx9/uXZJdGGd36tC13KS1E9OU6z8pHvpNFt1fbJI2/RG/5M7uQfRmt/hZbn7Z5kfxD94/EwfTtouRxtjGrLUnT+zzNi+qUDrHYf40jH1mN/FwF2dNjv4m7RseiL9G+FNeTp2n0tE+W1RWyXXZRsUmyT3lZ5ju+k7i1h+bp19UffT9Kk01Gy1b0RKRgp8mfs5jE4jZENA8n3CUr/jqNliT9RC94Ux0gqs7y6inuyyL/m9TOZ1V/x3eExsRjfoh2Scqazp+kiKMsEk//8PyQzbe7KuThJUVJXnslg45CpC2Y5DtSFm90F35AwKXL267t8u2XWksQ8t7WGoFt8cKIt77NseqTQOkLrlE1vbqSXoW31ARL77VsirX5xHkY6poTkXmKVkm2+ULW7CbcU8kf/L5Y0cs2KckjLWene6GOR8ty+ojXaaWFbRLHJKu0UkZltDy2kKc8ycrqWXif6D963ffWrXfj0Uu+p9votE3/sd0LGtKMXnqUVJEiVNwvhAlcLaydbV0Os4grVgwrPn9UPSmqENSzBNWzzQUVS0GVYkqy+I51z6dY9Ya3bmo187M92fweHhz6R8vpQyve/sOrqza+1ze+kSKhd8l8vQolvRpeKz5Gg8RSZvBOLGhqQvsZ0rOL1x2uWny8jvCIsoKkUZn8aF5RV8z4Gb4xcZ7U4AfNI/b5c7EifKd60iCO6+4B2tUc7leqptLL8R4nScjvcHtwhrM4gwiiCWcIzDvDa1IyY7BuLQvz7e/CBuhr2Rq4k1i3YejW3cTqc5Pp/nFolt27hO9bTGjSYpDlTPMY5DRNRqpIn8uEHXLE0Y6182y5f6piiVPWDpcFfbU5tUgwoY+ZELJccy4k4ALE/fJxd1THkDrijiDupuLuGRxkItt82tE5IOlNIY5ZikKGoifdEG1lKN9APfhIc8LBNbkIW3mD541MQPoO1JdwIJliyQYD1PWqqSuyrDlxVyQjOgCvqkZ7aO+zJK9IpnQQ1vOE1SR7RTI5m0euow++ik51MFXBRlKVnxW/IhnUAX89lz2YBLCoC3kBgT2ZyNCYSARpyGhqazsAwipJ0gYaZ8yKjGJYG3CcucCb5LCiz4HAGwi8SRBry4sOL559zArEKmUdtkLWYRvJOn5iEmvLJPZe0iKQ2Ksmsa3hN7YU+0wU2Bq8Ezjs9E7Rni+HtYHD6gqrSQ5rXx+HtRU4rA0cdpSKgMPqsweTHNYGDjtsIkMjIkeBwzrAYUdK0gEOa8yKjHJYBzisucCb5LAOcFhzgTfJYR3gsBOyDgUO6wCHHStFmcP+JmkROOxVc1hpRawyidWyItYBEvuBj4nMl8Q6QGJ1hdUkiXWuj8Q6CiTWARI7SkVAYvXZg0kS6wCJHTaRoTGRq0BiXSCxY7/qCkisMSsySmJdILHmAm+SxLpAYs0F3iSJdYHETsg6FEisCyR2rBRlEvuLpEUgsVdNYtvjb1eZ12n5SlgAsdN7RXe+INYFEKsrrCZBrHt9INZVALEugNhRKgIQq88eTIJYF0DssIkMDYk8BRDrAYgd++30AGKNWZFREOsBiDUXeJMgVuTHEHgDgTcJYj0AsROyDgUQ6wGIHStFGcQ+SFoEEHvVIDaw5gRiPQCx03tFb74g1gMQqyusJkGsd30g1lMAsR6A2FEqAhCrzx5MglgPQOywiQwNibACiMUAYsf+oiSAWGNWZBTEYgCx5gJvEsRiALHmAm8SxGIAsROyDgUQiwHEjpWiDGI/S1oEEHvVINazm7o2+9UEGEDs9F4RzxfEYgCxusJqEsTi6wOxWAHEYgCxo1QEIFafPZgEsRhA7LCJDA2JfAUQ6wOIHSlJH0CsMSsyCmJ9ALHmAm8SxPoAYs0F3iSI9QHETsg6FECsDyB2rBRlEPurpEUAsQBia7q2XZMg1gcQO71X9OcLYn0AsbrCahLE+tcHYn0FEOsDiB2lIgCx+uzBJIj1AcQOm8jQkChQALEBgNiRkgwAxBqzIqMgNgAQay7wJkGs+FFpCLyBwJsEsQGA2AlZhwKIDQDEjpRiKINYSYqMJT71NsJVnmVkJZr+zRGfjPjou2AwAgdJLdMOu1qmDswXyDhIeh4nFmv1GGS9qdZR7SaN9nv+eiyMHWjVDj0W3U11yrDHKd97/ijQ8fy7uM2hD4yTH4044P8+56ycdYALDszv6B4p68+O7576zXG1cPL+4XqGr4Z2uFlnNSzCi30VclYLjeCrXEtKNrSbEHXRR32ornkKWlxd65TSqxd+0KF7R4fsx/GIFXucbNLnLElB6ymO6rkVnqHGHhe1Olw0ddhvvVORxg64c9ifCg9QMQdkd5nDY0l29M0/6BN+q7XvQ6XKY4lqerM3rWeZuzRVyVphsorSO/7Gjg4R2PF9k5P1ec8Pt3eVbKS78fWmJ9at4wtW+dY42UfzRXEIr3WBWmA7X6/35KOCsxGJQhza2ItiC+FgIWc4v+cxoSW/RzsiSQIm4f/PJ+FVHV3U0PbcDoCCu7JFfIZuU9KynC1+oy2SZCum5z+rUuAlnWHvtoVRU/RdYT4HLpEuTZ6Fq0X5X8mO5ekQ5TNEuWvGXleUEbaJH+M1DpfxKoiixQym5DTP2Pd1xXWk1S1+mLFXVZGc3XzeLenpcugQzmoVXbP3uqyinaJ0TZhd2ClmMXnf5yd1jC41kED2nO59YPJ+hO3IKQobfz/leQpTeJocqHPS/mI5qZytfBXxhuieI7pdM/OX6mBs8x2M0flZlY6lr0UMJrM9pA3mZ4USl5Gzdu2AENulDw0v0LilApomBoS80K2F/HHpjmUF50p3kCxCCV7JGpzJykSuQaeVoziuNVKDvCLXb1fkXkyTCmsGLqDJo0PeWifL/H4QnRPUVLuwxshWjzDFIr/B3w00k3aLj1u1wK7nTVSmh1sVtddpaFSm/CGtn8ktmVCrmi9ll8KMZviVGuL3id0WSbJaNqesSvRORRpVqbCm6KKqPCIMtT6801v1iVLllw+xUat0W4nk8ZOqH+3EcTsb0CjKcR+Q0y/Kg/FNE6VeQeIOZDaTb4DnOvLb5jY1q/RbfTcOLydIGaEZFKTKQLqegTZHOYsL2KQ7+77bD8+kysA1p8pZLMxrZIiHnFIdCd2GoX0eLKTilQqqdIx23mFrBO6113OqLxpsfUGF214QrU+W4swzMcvbet+NGv30rTSeOY/QBIQYFJrhxantNHHqiBqhlgFqHFIHxIvoXxxZ4XK17p5rPccKeHZ71WFW+VeiuP58+kyK+iLVrumU5rr33oXtZ12sPvyRGbe5clTYQU3Yfoew28MUhakSulnkLHAnOdFnsv2ax4Tt8T8=7Z1fc6M2F4c/TS7jQfy1L5N0017sdnaad9ruJQHFZorBxWST9NO/EpYwQsLGBB878Ul3pkaAAJ3fOUc8kuwr5275+msRrhbf8pimV7YVv145v1zZNnEdi/2Pl7xtSoIZ2RTMiyQWB20LHpL/qCgU582fk5iulQPLPE/LZKUWRnmW0ahUysKiyF/Uw57yVL3qKpxTreAhClO99K8kLheilPiz7Y7faDJfiEtP7WCzYxnKg8WTrBdhnL80ipwvV85dkefl5tPy9Y6mvPFku2zOu+/YW99YQbOyzwn25oSfYfosnu1G3Fj5Jp92/ZIs0zBjW7eLcpmyQsI+PuVZ+SAOsth2tEjS+Gv4lj/zC6/LMPpHbt0u8iL5jx0fypPZ7qIUdrV9XluSpnd5mhfVJR1q8f+UMx94jeJaBV2zc7/LpyR10ddwXcr7ydM0XK2Tx+oO+SHLsJgn2W1elvlSHCQf7V69/FP1x/aHaTLPWFnELkQLfpn8OYtpLB9DWm9zwWUSic9p+EjTW3bD8+oEWXWWV624Lov8H9q4nlX91XukpmQz34fLJOWu8ict4jALZetv2o/YYttUoTAvLUr62ikRUguPeSzNl7Qs3tgh4oSpkKrwVdsV2y8N5Us5Lxqity1RGApvm9dVbwXJPghNmvXpaPqUsaMhUPZspSpOtYVFszc1Ji2xCqMkm3+lT/ym3W3JH+I5eNHLIinpAyvnl3thEY2V5axJn9LK9oskjmlWaaMMy/Cx9ohVnmRl9ezeLfvH7vvOmnhXHrvlO7ZNttvsHz+8YCbM2K2HSWUZysT8Qrmg+5nRNptR2s3vaTb//VZzNauh0QYZzbPhjOZpRtNsRrP4hqfPrS06zdcMQo1gxa6iBav7e4f9sXLWKMXb36K6auNHc+M7LRL2VDwOV6ZidyNq9evWprGWuVttzboKLA/QsqFUvfkb7e0ZmluWFTQNy+SnekWTDcQVvnNxba0bTNUz1vlzEVFxUDNpy/PMEbldzeb5tGoq+9fP2EsSviH6oicP8mRpJAhPDk7vya9JyR3ZmliWL7Z/SLdln3VXFp5vTWYzt+n9Vpf39/f3jVsJ19FDwPSUIYBYzrAYQBw1CGgVjRcFpgY5+eGS+2H2uF5VtvBT7iePBfs033oMBonDggSxXLgoMUOzQpnV6fvKNIJZJSNBux7frh7gOxUhp8/qxv55Z4auOwE9OgDDsrnUejOdE8tssyPnc6Gh61krLXvegfm968Tx8jnRoR+/cPVp1O69Rs+4tyVRmN6IHUvm5/wyxniwRW1WG7XN03C9Fp/3iNdhMic345AwV7WtrUd138jBRnB+nYPpMRs57UVzWmJZLX2CklqiQz9EtZ2WdHZ2LCBZLdG5n4dmG2Q2SFpLdDZ3Ht3B8XCtTHpK7847Se/uowBboqM/JLZD3RkS2RITZLtEZiudXnnNmxkCweyUgeAjYFuCgA8sVICCW1kvGhbAsJDo1jYhPjTscQwLyW5lMj+7zjoUuzVl9XrmZiOrdyEOhLe1lHQSeKdpCUngRZPA1uumb/XMYWRqjxDrkAMeML54PhzQMP+PIAgcZjdIEGiYpHcefYsR520aQKCNIHCnKhAEjufOkCDQONvuEkGgbXplMIBAG0HgPkkhCAQLFaAg0EEQCGdYSBDoIAiEMywkCHQuHQSasrpjAIEOgsB9UtJB4G+alhAEXjQI1KYE9kaB4yzeRhTYP00554MCHR0FotmGmQ2SBDqfnwQ6BhLoIAncqQokgeO5MyQJdJAEqk6vvDMYSKCDJHCfpJAEgoUKUBLoIgmEMywkCXSRBMIZFpIEupdOAk1Z3TWQQBdJ4D4p6STwF01LSAIvmgS23zfd3jxpDBDoIgjsn6Xc8wGBLq4NHstskCDQ/fwg0DWAQBdB4E5VIAgcz50hQaCLIFB1euWVwQACXQSB+ySFIBAsVICCQA9BIJxhIUGghyAQzrCQIFC+GJxdZx0KBJqyumcAgR6CwH1S0kHgvaYlBIEXDQKn1ilBoIcgsH+W8s4HBHo6CEQSONBuoL/p8vlJoGcggR6SwJ2qQBI4njtDkkAPSaDq9Mo7g4EEekgC90kKSSBYqAAlgT6SQDjDQpJAH0kgnGEhSaB/6STQlNV9Awn0kQTuk5JOAr9oWkISeNEk0LNVHcOuDfaRBPbPUv75kEDfQALRbsPsBkkC/c9PAn0DCfSRBO5UBZLA8dwZkgT6SAJVp1feGQwk0EcSuE9SSALBQgUoCQyQBMIZFpIEBkgC4QwLSQKDSyeBpqweGEhggCRwn5R0EvirpiUkgUgCGzqG/eHgAElg/ywVnA8JDPAHQ0azGyQJDD4/CQwMJDBAErhTFUgCx3NnSBIYIAlUnV55ZzCQwABJ4D5JIQkECxWgJHCKJBDOsJAkcIokEM6wkCRQ/iLn2XXWoUigKatPDSRwiiRwj5SIZYr+3VqK0nC95rxrFDk57Ehy09AHmVgkOKyzaFnTsTqLxKCqs+kqClE5rR6f41oHikpU5AbtitzjicyUieBFVsesibUNYj82KnKmDRleW4focCSlWbrUNt/OdSqpeURViOcNlJrntypqE+IxpXZYbjy3eMaVV9V8rIBm+rXME02Dkd9C6qrqCKxWIOotM7KnojFlpo+gnVZmNXPplzaN0W88lZm+gM0/aTBzW52xenjrvXnTbyfgMVWmj4KdVmWb0DRMZeMqTE5SPYOFvUIYQTv8DO2ZBa106c+OqDB9vO6ECuvzetjsxald/+sjBDLTT8qcNl0Gs5FkNnUBZXbY8OKxXwC2/fv+5GIym9nj0AuDzExfU+CcNF/OWu+ZnjNQZqxH3vpyqekRdaYPWJ4ynE2a6ZIoqXGidfKHKYeYfvyug1XCKIdY7a7W0PdGQloh6ogvjv7skUTEtx69yA1o5F730hKf57USh+n8OMqzjEaSWl/Va+IO+GI2OS9DTuXZbDUMac8MlhxnMabeIj1Glbcz5awOut90teZEujl3RvH50Klyfbyy00zKHNMOGex0JqMNSDvMjWQD4zBsNYgTJz8VW/j/Pue8nI/gXIspjTfsiJQPyNR7twM/h9Ui5ka+u57dd7NehZmxGm7l63Vldl4Ls+KrXktK5yzay7pYY2+qUy/Biqt7HVKK4q+5ZVP77b7CONKX71enTe490vSgdjxqRlaSCCFDZ5tYeyo6ZjomxtHsVMaCPkGC2KYg8VDSJdv5B2vjt4afbyrtPSheTUTvHJ/mQ9DapHLujUkUpjdixzKJY35+1zTy5gz1d/t9n75Jlwt2dlesiRPIqWdvyuXeO5QqTxG1XpPWnMf86WlNjyA6WxPd73lMWcnv4ZJqssAlE598yUT/yF6/wrQn6Gk9eOKbeo/+cVKoPmzxnfklzSKu6T+r0v2x7iInAHUFh84pQaZlFyZTj7LyX785feigYen/JUved0dLj2Jp00INQEsfhvA/4tKN7sSscnmzE4B3uz/K8g5Dg+mc/svykV0wx/QwctAwLQcBDBqHgfLPu0CkO7SoXx6jHWWYGdh11KkC0EdYVtLdsg1p8lf0VZ6nOF39aOHIuOQEMB7pWPubtDlaeBwLm9aewFnYPozefr5FC4MzjXEKivmoUxHmM1zqwDaLnIPe7eHMmRff8pjyI/4P7Z3fc6M2EMf/mjzGg/hpPyZp0z7cdW6aTtt7JEaxmWJwMbkk/esrgYQBLQY7IJN405spCBCg/e6u+Hixr6y7zesvqb9df00CGl2ZRvB6Zf10ZZrEtgz2P97yVrR4C1I0rNIwEDvtGx7C/6hoFMetnsOA7mo7ZkkSZeG23rhM4pgus1qbn6bJS323pySqn3Xrr6jS8LD0I7X1rzDI1qKVuIv9hl9puFqLU89Nr9iw8eXO4k52az9IXipN1s9X1l2aJFmxtHm9oxEfPDkuxXH3LVvLC0tpnPU5wCwO+OFHz+LebsSFZW/ybncv4SbyY7Z2u842EWskbPEpibMHsZPB1pfrMAq++G/JMz/xLvOX/8i123WShv+x/X15MNucZsKupst7C6PoLomSND+lRQ3+X+3IB96jOFdKd+zYb/IuSdn0xd9l8nqSKPK3u/Axv0K+y8ZPV2F8m2RZshE7yVu7r5/+Kf9j2/0oXMWsbclORFN+muQ5Dmggb0NarzjhJlyK5ch/pNEtu+BVfoDsOk7yUdxlafIPrZzPyP/KLVJTcpjv/U0YcVf5k6aBH/ty9IvxI6ZYhzoU5qVpRl9bJUJK4TGPpcmGZukb20UcMBdSFb5q2mL9paJ8Ked1RfSmIRp94W2rsuu9INmC0CSsT0vRp4wdFYGye8vq4qyPsBj2qsakJbb+MoxXX+gTv2h73/K7uA/e9LIOM/rA2vnpXlhEY20JG9KnKLf9OgwCGufayPzMfyw9YpuEcZbfu3PL/rHrvjNmzpXDLvmOrZP9OvvHd0+ZCWN26X6YW4YyMb9QLuh+ZjRhM0q7uT3N5r7farZitSvTjbJieGO2vOLLjmxk3VXbZfNjum9Bix9vccfUZ3EHsHjDZjQObnju3dui1XzVCFaJdOwsSqS7v7fYH2tng5K+/S26y1e+V1e+0TRkd8WDeG4qdjWiV7ccbRooab8x1myewZIIzSoyV4e/Mt4OMNyyLaWRn4U/6meEbCDO8I2La29db14/Ypc8p0sqdqpmfHkcHM6b3RT3p3ST27+8x16ScIHQjbH7JE+WRtLhyd75Pfk1zLgjGzPDcMX6d+m2bFl1ZeH5xmyxsKveb7R5f39/L9xKuI4aAubnDAHEsE6LAcSqBwGlo+GiwFyVk3N7w/2ncKLcpTDfDxEliGHrCxMLaIrnb/jIxY+7LU7jhjOr1feBawCzSsKCdh3fro7GJzJCzp/WwQl6a4ouZwE9ZgCnpXOp9Wo+JwZss5ETutDQ9aKRlx3nyATfduBwCZ2oyJCfOF8ynAFDgcLeuLeFSz+6ERs2zM/5acB4sAd1OVergrpV5O92YrlDvBaTObkZhqPZDY6mRnUXpGgDOL9K0dSYjZT3oikvMYyGPrVyXqIiQwS9rZa0Dk4sdJJeAoE/FfXytIqsd0yj64S9REV705hMDkd7ZcqszQ2ds8wNPwrvJSo5ROB7qjvrJL4EYHS63XkSyFc6fe0hcQEEgsU5A8FHoL4E8aC2UKEV+8p+0bAaDKsT/JoQIETDjmNYneRXJvPJTdZ1kV8oq5dVo5Ws3gZIEP2WUlI54p2iJeSIF80RG4+brtEzh5G5OUCsQ4p4xKeT06GIYPmgShFNpIgjG10nRQQKBKcxMRmwZhSgiCZSxIOqQIo4nDvrpIhQpd9FUkQTet4AKKKJFLFLUkgRtYUKrRTRQoqoz7A6KaKFFFGfYXVSROvSKSKU1S2AIlpIEbukpFLEXxUtIUW8aIqoVCP25ojDvHWOHLF/mrKmwxGtfhwRXzwf2eY6MaL1+TGiBWBECzHiQVUgRhzOnXViRAsxYt3paw8cAEa0ECN2SQoxorZQoRUj2ogR9RlWJ0a0ESPqM6xOjGhfOkaEsroNYEQbMWKXlFSM+JOiJcSIF40Rm8+bdm8YNQRFtJEi9s9S9nQooo3vNE/D6Doxov35MaINYEQbMeJBVSBGHM6ddWJEGzFi3elrDxwARrQRI3ZJCjGitlChFSM6iBH1GVYnRnQQI+ozrE6MKB8MJjdZ14URoazuABjRQYzYJSUVI94rWkKMeNEYcW6cEyM6iBH7ZylnOhjR6YcRkSKObHOtP4Pz+SmiA1BEByniQVUgRRzOnXVSRAcpYt3pa88bAEV0kCJ2SQoporZQoZUiukgR9RlWJ0V0kSLqM6xOiuheOkWEsroLUEQXKWKXlFSK+LOiJaSIF00RHbOuY72vNLtIEftnKXc6FNHt+dWI+E7zyEbXiRHdz48RXQAjuogRD6oCMeJw7qwTI7qIEetOX3vgADCiixixS1KIEbWFCq0Y0UOMqM+wOjGihxhRn2F1YkTv0jEilNU9ACN6iBG7pKRixF8ULSFGRIxY0bHe32n2ECP2z1LedDCih7+wMg2j68SI3ufHiB6AET3EiAdVgRhxOHfWiRE9xIh1p689cAAY0UOM2CUpxIjaQoVWjDhHjKjPsDox4hwxoj7D6sSI8vdPJzdZ14URoaw+BzDiHDFil5RUjHhISsvI3+04KxtETRbbk9xU5EFmBvGOmysaxnyouSIBRDWZmaLQlNWY8Fm2caSmREe21+zIHk1jKgg8h8bKiDUz9iHseyEia15R4bVxjAwHEpqhKq34RrFzKc0hdYE4zolKc9xGR024PKDSIHT5caIZF17e81jhDPpt0TMV0MivXbUbLMtohKHeKiMdHQ2osuNY6fgqK3lLv5wJxr7hRAZ9ZZx71lBmNyZi5edi702abjP7DigyFb2eV2RFYDpNZMMKTBa3TuBtYqELrxl8Tp2VeY1c6S7GE9hxiHhkgfV5MKzO4Oqz/usRwhj0AzrnzZXeYiCVzW19KoOo8fnm/vupfX9kMVsszGGwBaAy6JsRrLMmy0XjCdOxTlQZMRrlJ/Z8NJlJAU8kmM2quZLU8uJMmd+fJhwC/dBfC6PUIxxiNKdZpz4xEtIIUCM+Mi4gSN5QDi8F24rdVEq8TOKYLiWbZm1GiwFb67TmsvpCVvsUaxWzlQIfvEprYXbf/750zmgh9lU3qlbWrbijieVja+f6eFyrUaqDv+imwOD4kma8Oml8IcBafOgShD9q4+z++5zwdv6Jy7WoX7xhe0T8A5Rya7PMqm8vohDy3f0cvpqiEAzohlvwepeblPfCLPSq9hLRFYvSHXVlrDm/1lNaL07Yc0DXzYR+kqwnwXR7pM4eYzRqTqwFdkJOrfMwOjoaMCG2l39yM/RxbmJCzv2Q0Q3b+Dsb0beKfxad9v7wOa8Wb/0cmH/Uq1R+cy8Kl350IzZswiDgx7fVelfLyN/tr31mB4UztU4PjJnlyYKut1rn7/2AUh4ier0mjUrC5OlpR98tKBWX/pYElLX85m+oYnJ8Z+GTv7PQFpHLyX+zpE2ZDRMXmq25Q6Q1lbp+Yx5G4yXX6595a3eMusgCmcLNWwtkoDcYIDMOUR+zUNFmxYp/hBs+D0YrnmBF6JWE0ax4HDr8iK8kyNRYhTiFeLVPWD/KKwnlTLj6/WmbR9Z/ghH6Xb4NvZ8wlm8Towd2u4gXFGQIqLFdw1Tjgmg8V2D4CK8olONWURV/6twmSYSVzgOFCfDdhPHihIpPv0qDovlOMR/0BsJ45jsOE36+SnU4vAOf3YnGc4HKCdaqs9U04QRxvzvzuvXXJKB8j/8B7Z1fc6M2F4c/TS7jQfy1L5N0017sdnaad9ruJTGKzRSDi8km6ad/JSxhhISNHfnYiU+6MzUCBOj8zjnSI2FfeXeL11/LeDn/ViQ0u3Kd5PXK++XKdYnvOex/vORtXRJNyLpgVqaJOGhT8JD+R0WhOG/2nCZ0pRxYFUVWpUu1cFrkOZ1WSllclsWLethTkalXXcYzqhU8TONML/0rTaq5KCXhZLPjN5rO5uLSYzda71jE8mDxJKt5nBQvrSLvy5V3VxZFtf60eL2jGW882S7r8+579jY3VtK8GnKCuz7hZ5w9i2e7ETdWvcmnXb2kiyzO2dbtvFpkrJCwj09FXj2Igxy2PZ2nWfI1fiue+YVXVTz9R27dzosy/Y8dH8uT2e6yEnZ1Q15bmmV3RVaU9SU96vD/lDMfeI3iWiVdsXO/y6ckTdHXeFXJ+ymyLF6u0sf6Dvkhi7icpfltUVXFQhwkH+1evfxT/cf2x1k6y1nZlF2IlvwyxXOe0EQ+hrTe+oKLdCo+Z/EjzW7ZDc/qE2TVeVG34qoqi39o63pO/dfskZqSzXwfL9KMu8qftEziPJatv24/4optU4XCvLSs6GuvREgjPOaxtFjQqnxjh4gTxkKqwlddX2y/tJQv5Txvid51RGEsvG3WVL0RJPsgNGnWp6fpU8aOlkDZs1WqONUWFs3e1pi0xDKepvnsK33iN+1vSv4Qz8GLXuZpRR9YOb/cC4torKxgTfqU1bafp0lC81obVVzFj41HLIs0r+pnD27ZP3bfd84ouArYLd+xbbLZZv/44SUzYc5uPU5ry1Am5hfKBT3MjK7ZjNJu4UCzhe+3mq9ZjaDVDrJa4MJZLdCsptmM5skNz58bW/Sarx2FWtGKXUWLVvf3Hvtj5axRyre/RXX1xo/2xndapuypeCCuTcXuRtQaNq1NEy11d9qa9RVYIqBVS6p687faOzA0tywraRZX6U/1iiYbiCt85+LaWDcaq2esiudySsVB7awtzzOH5G416+fTqqnt3zzjIEmEhvCLnnyQJ0sjQXhydHpPfk0r7sjOyHFCsf1Dui37rLuy8HxnNJn4be93+rx/uL+v3Uq4jh4CxqcMAcTxDosBxFODgFaRvSgw1uUU3N5w/6mdaO1SYcYd5bFkn2Ybl8EosV+UII4PFyYmhjARxgvecvnjalk/EZrVilm9oYMmC2aVfW206/HtGgCOqgg5fVo3dtB7U3TTCxjQAzgsnUutt/M5ccw2O3JCFxq6nnTychDsmeD7TrSX0ImO/fiF60+O1aG6BtC4u6XTOLsROxbM0flljAFhQ9ucLm2bZfFqJT7vUK/HdE5u7MAwXzWuq4f1yIjCLHi/jsL0oI2o9qJRLXGcjj5BYS3RuR/S2l5Lelt7FpC4lujkTxah3fa0GySwJTqeO48OoT1iK7Oe0r8LTtK/+yjMluj0D6Htoe4MSW2JgbNBu/NZYNs+m8AM4Ijipw2Q25vPksn2iux5vIvABywggAJa10R80LDHMSwkopWR/ex6blAoT/br2iyvWcrX6uv1DXiR5TVS0rnQnaYl5EIXzYU6Y4/QGRjqyNi1EOuQCu0x3XQ+VMiwHowXYXfDiiUhOZFhGdd59DYsruwzcCIXOdFWVSAnsufOkJzItB7rIjmRaxpETAyBYHLKQPARVvjhUjC4UAFKkDxEg3CGhSRIHqJBOMNCrvLzLh0NmrK6Z0CDHqLBXVLS0eBvmpYQDV40GtSWjA2Gg3be70U4ODxNeecDBz3DkjEHOxyWLAkJB73PDwc9Axz0EA5uVQXCQXvuDAkHPYSDqtMrwwgDHPQQDu6SFMJBsFABCgd9hINwhoWEgz7CQTjDQsJB/9LhoCmr+wY46CMc3CUlHQ7+omkJ4eBFw8HueNMfjJhssEEf2eDwLOWfDxv0za+TYn/DiiUh2aD/+dmgb2CDPrLBrapANmjPnSHZoI9sUHV6ZRRhYIM+ssFdkkI2CBYqQNlggGwQzrCQbDBANghnWEg2KAcGZ9dZh2KDpqweGNhggGxwl5R0NnivaQnZ4EWzwbFzSjYYIBscnqWC82GDgc4GEQ3aMiToj4V8fjQYGNBggGhwqyoQDdpzZ0g0GCAaVJ1eGUQY0GCAaHCXpBANgoUKUDQYIhqEMywkGgwRDcIZFhINhpeOBk1ZPTSgwRDR4C4p6Wjwi6YlRIMXjQYDV9Ux7CvFIaLB4VkqPB80GOpoEN8otmVISDQYfn40GBrQYIhocKsqEA3ac2dINBgiGlSdXhlEGNBgiGhwl6QQDYKFClA0GCEahDMsJBqMEA3CGRYSDUaXjgZNWT0yoMEI0eAuKelo8FdNS4gGEQ22dAz7A7URosHhWSo6HzQY4U+RHNGSkGww+vxsMDKwwQjZ4FZVIBu0586QbDBCNqg6vTKKMLDBCNngLkkhGwQLFaBscIxsEM6wkGxwjGwQzrCQbFD++ufZddah2KApq48NbHCMbHCHlIhjiv79Wppm8WrFCZgVOXnsSHLT0gcZOSTar7PoOGNbnUViUNXZdBWFqLxOj8/znT1FJSryo25F/vFEZspE8CJrYtbI2QSxH2sVeeOWDK+dfXRoSWmOLrX1N3qdSmoBURUSBAdKLQg7FXWZsU2p7Zcbzy2eceXVNR8roJl+h/NEC2Pkl5n6qjoipxOIBsuM7KjIpsz0ObXTyqxhLsPSpjH62VOZ6UvbwpMGM7/TGWsmvN6bN8NuArapMn1e7LQqW4emw1RmV2Fy2eoZvPsrhBF1w8+hPbOoky7DyREVps/gnVBhQ4aH7V6c2vW/PkIgM/0yzWnTZTSxJLOxDyiz/aYXjz0A2PTvh5OL0WTi2qEXBpmZvsnAO2m+nHTGmYF3oMxYj7zzhVTjI+pMn7A8ZTgbtdMlUVLjSOvkH6YcYvoNvR5WCaMc4nS7WoeOGwnphKgjDhzDySOZktB5DKZ+RKf+9SAt8ZVfS3GYzo+nRZ7TqaTWV650hD2+zE2uy5CLe9ZbLUO6E4Ml7byvqbfIgFnlzdo5p4fut12tvbRuxp1RfN538dwQr+w1k7LqtEcGW53JaAPSDXOWbGCchq0ncZL0p2KL8N/ngpfzGZxrscjxhh2R8QmZZu9m4me/WsRqyXfXs/1uVss4N1bDrXy9qs3Oa2FWfNVryeiMRXtZF2vsdXXqJVhxfa+HlKL4G27Z1n63r2BH+nJ8ddrkPiBNH9SOR83IShIh5NDVJs6Oio6ZjolxNjuTsWBIkCCuKUg8VHTBdv7B2vit5efrSgdPitdL03vnp/kUtLbMnHtjOo2zG7FjkSYJP79vYXl7zfq7/X5I36TPBXu7K87Ii+TSszflcu+dSpWniFqvSWfNY/H0tKJHEJ2rie73IqGs5Pd4QTVZ4EsUn/wliuGRvRnCdBfoaT14Epp6j+FxUqg+bfGd+SXNp1zTf9alu2PdRS4A6gsOvUuCTC9imExt5bsA9JvTpw5alv5fuuB9d7S0FUubXtQAtPR+CP8jvrrRn5hVLm92AvBu90d5vcPQYDqn/7J4ZBcsMD1YDhqm10EAg8Z+oPzzviDSH1rUr5PRjjKsDOw76lQB6CO8VtLfsi1p8iH6sigyXK5+tHBkfOUEMB7pWPubtDla2I6FTe+ewFnY3Y/efr6XFg7ONMYlKOajTkWYz/BVB7ZZFhz0bg5nzjz/ViSUH/F/7Z1dc6O4EoZ/TS6Tkvi0L5PMZPdiZmtqs7XnzCUB2aYWgw8mk2R//ZGwBAgJGzuy7MSdnao1AsRHv90tPZLsK/d++fpbGa0W34uEZFcOSl6v3C9XjoM9F9H/sZK3TUk4xZuCeZkm/KC24DH9l/BCft78OU3IWjqwKoqsSldyYVzkOYkrqSwqy+JFPmxWZPJVV9GcKAWPcZSppf9Jk2rBS3EwbXf8TtL5gl964oSbHctIHMyfZL2IkuKlU+R+vXLvy6KoNp+Wr/ckYy9PvJfNeQ8De5sbK0lejTnB2ZzwK8qe+bPd8hur3sTTrl/SZRbldOtuUS0zWojpx1mRV4/8IES340WaJd+it+KZXXhdRfE/YutuUZTpv/T4SJxMd5cVt6sTsNrSLLsvsqKsL+kSxP6TznxkNfJrlWRNz/0hnhI3Rd+idSXup8iyaLVOn+o7ZIcso3Ke5ndFVRVLfpB4tAf58rP6j+6PsnSe07KYXoiU7DLFc56QRDyGsN7mgss05p+z6Ilkd/SG5/UJouq8qN/iuiqLf0jneqj+a/YITYnX/BAt04y5yt+kTKI8Em9/8/6ww7d1FXLzkrIir4MSwY3wqMeSYkmq8o0ewk+YcKlyX3U8vv3SUb6Q86Ijegfxwoh727ypuhUk/cA1qdenq+hTxI6OQOmzVbI45TfMX3tXY8ISqyhO8/k3MmM37bUlf/LnYEUvi7Qij7ScXe6FRjRaVtBXOstq2y/SJCF5rY0qqqKnxiNWRZpX9bP7d/Qfve97dONf+fSW7+k2brfpP3Z4SU2Y01uP0toyhIr5hTBBjzOjozejsFsw0mzB+63mKVYDox1kNN+xZzRfMZpiM5Intyx9trYYNF83CHWCFb2KEqweHlz6R8vpSynf/surqzd+djd+kDKlT8XicG0qeje81qB52yRRMnfvXdOmAs0DpOooVX39nffta163KCtJFlXpL/mKOhvwK/xg4mqtG07kM9bFcxkTflA3aYvz9BG5X83m+ZRqavs3zzhKEoEm+oInH+TJwkg2PDk8vSe/phVzZHSDUMC3fwq3pZ9VV+aej26mU6/r/WjI+8f7+8atuOuoIWByyhCAkXtYDMCuHASUisxFgYkqJ//ulvlP7UTOxqeCjHnKU0k/zVufgTCxX5jAyLMXJ6aaOBFES/bm8qf1qn4iMKsRs7pjO00GzCooCdj1+Hb1LfaqMD59Xte20AdzdNMMGNEEOCyfC613EzpGepsdOaNzDV1Pe4nZ9/fM8EMnmsvoWMV+7ML1J2QUsCgAjblbGkfZLd+xpI7OLqMNCC1tQ33aNs+i9Zp/3qFel+oc35qBYZ5sXEcN66EWhRnwfhWFqUEbUO1Fo1qMUE+fVmEtVrkf0NpBS7pbWxY2cS1W0Z8PZjvIbDaBLVbx3Hm0B80RW5H0pOadf5Lm3UdhtlilfwBtD3Vnm9QWazibbXc+C2w7ZBM7/Tcs+WnD4/bms3i6vSJzHu8A77EWEKzyWUcHfMCwxzGsTUIrIvvZtdxskTzRruuivGYmX6etN9TfBZTXSEnFQveKlgALXTQW6vU9AjQy1OGJYyDWARTaY7TpfKCQZj4Y63lDc8OIJW1yIs00rvNobRic2afhRA5woq2qAE5kzp1tciLdfKyL5ESOrhMx1QSC6SkDwUeY4QczweyFCqsEyQU0aM+wNgmSC2jQnmFtTvJzLx0N6rK6q0GDLqDBXVJS0eDvipYADV40GlRmjI2Gg2aW9wIcHJ+m3POBg64KBxG0NwwZ0iYbdD8/G3Q1bNAFNrhVFcAGzbmzTTboAhuUnV7qRWjYoAtscJekxrBBCAwHBAarJNADEmjPsDZJoAck0J5hbZJA79JJoC6HexoS6AEJ3CUllQR+UbQEJPCiSWC/d+mN5kkmQKAHIHB8lvLOBwR62qWj0NwwYkibIND7/CDQ04BAD0DgVlUACDTnzjZBoAcgUHZ6qROhAYEegMBdkoJJgtZChVU06AMatGdYm2jQBzRoz7A20aDoGJxdY90WGtRldV+DBn1Ag7ukpKLBB0VLgAYvGg1O0CnRoA9ocHyW8s8HDfoqGgQ2aMySVn8Z5POzQV/DBn1gg1tVAWzQnDvbZIM+sEHZ6aVehIYN+sAGd0kK2KC1UGGVDQbABu0Z1iYbDIAN2jOsTTYYXDob1GX1QMMGA2CDu6SkssGvipaADV40G/QdWcd21w8HwAbHZ6ngfNhgoGGDsIDYlCVtssHg87PBQMMGA2CDW1UBbNCcO9tkgwGwQdnppV6Ehg0GwAZ3SQrYoLVQYZUNhsAG7RnWJhsMgQ3aM6xNNhheOhvUZfVQwwZDYIO7pKSywd8ULQEbBDbY0bHdX6MNgQ2Oz1Lh+bDBEH545IiWtMkGw8/PBkMNGwyBDW5VBbBBc+5skw2GwAZlp5d6ERo2GAIb3CUpDRv0726ZF21cqXYsSP1GYoVVODgBOGjPsDbh4ATgoD3D2oSD4sc+z661bgsO6tL6RAMHJwAHd0gJI130H9ZSnEXrNUNgW+XUyGSHnFwqPHzb0Qe+QTjcr7WI0MRUaxFrVHU2bUUuKrfX5HM9tKeoeEVe2K/IO57IdJnovSIbG7NakTUx6wa1QeznRkXupCPDa7SPDg0pDalS23yp16mk5mNZIb5/oNT8oFdRHxqblNp+ufFYUjs0njHl1TUfK6DpfnbzRDNjxNeZerI6QtQLRKNlhndUZFJm6qDaaWXWQJdxaVMb/cypTPe9bcFJg5nXa4w1I17vzZtBPwGbVJk6MHZalW1C02EqM6swMW/1DFb/cmGE/fBzaMss7KXLYHpEhalDeCdU2JjuYbcVJzf9r48QyHS/RHPadBlODcls4lmU2X7ji8fuALTt+/Hk4mY6dczQC43MdN9l4J40X057/UzfPVBmtEXe+06qyRF1po5YnjKc3XTTJZZS443SyD9MOVj3m3kDrNKOcjDqN7UO7Tdi3AtRR+w4BtMnHOMAPfmxF5LYux6lJTb1a8UPU/lxXOQ5iQW1vnKEI+zxfW5iYoaY3bPZ6hjSmWosaWbFpvpGRgwrt5Pn0ADd77pad27dnDkj/7zv7LkxXjloJmna6YAMtjqT1ga4H+YM2UC7RqMexEnSX5Itgv89F6ycjeBc81mOt/SIjA3INHvbgZ/9auHTJd9dz/a7Wa+iXFsNs/L1ujY7q4Va8VWtJSNzGu1FXfRlb6qTL0GL63s9pBTE33DLrvb7bQUz0hf9q9Mm9xFp+qD3eNSMLCURjA+dboJ2VHTMdIy1o9mZiAVjggR2dEHisSJLuvNP+o7fOn6+qXT0oHg9N31wfJoNQSvzzJk3pnGU3fIdyzRJ2PlDM8u7k9bf7fdj2iZDLjjYXEE3bijmnr1Jl3vvUKo4hdd6jXuTHovZbE2OIDpHEd0fRUJoyR/RkiiygFUUn3wVxfjI3nRh+jP0lBY8DnStx+A4KVQdtvhB/ZLkMdP033Xp7lh3kROAhoLD4JQg3UoMnamNfBmAenPq0EHH0n+lS9Z2B0sbsbRupYZFS++H8D/i2o3hxCxzeb0TWG92f5T1HZoXpnL6r8snesEC0oPhoKFbD2IxaOwHyj/vCpHh0CJ/n4xylGZm4NBRpwpAH2FdyfCb7UiTddFXRZHBdPWjhSPtkhOL8UjF2t+FzcHCZiysW3tiz8LOfvT28y1aODjTaKeg6I86FWH+CEsdHC90cOQ7iLZyw4REAyO870PKKG501xa6s1mtVHWUq11B2a6ePAp7fq6KNYdgHVhXj72pILoqVm1s/IttfLn2dvvZfoNN2we+XV8WlDNVm8s6PfcnQ42IXXSzLJhZWl3RqL/4XiSEHfF/7Z1fc6M2F4c/TS7jQfy1L510017sdnaad9ruJcaKzRSDi8km6ad/JSxhQAcbE1l24pPuTI0AATq/c454kODGuV+9/pqH6+W3bE6TG9uav944v9zYNnEdi/2Pl7xtS4IJ2RYs8nguNtoVPMb/UVEo9ls8x3O6aWxYZFlSxOtmYZSlKY2KRlmY59lLc7OnLGkedR0uqFLwGIWJWvpXPC+WopT4k92K32i8WIpDj+1gu2IWRv8s8uw5Fce7sZ2n8m+7ehXKusSFbpbhPHupFTlfbpz7PMuK7a/V6z1NeNvKZtvu99CxtjrvnKZFnx3s7Q4/w+RZXPpUnFjxJhtj8xKvkjBlS3fLYpWwQsJ+PmVp8Sg2sthytIyT+dfwLXvmB94UrCHk0t0yy+P/2Pah3JmtzgthdtvntcVJcp8lWV4e0qEW/6+x5yOvURwrpxu273d5laQq+hpuCnk+WZKE6008K8+Qb7IK80Wc3mVFka3ERvLSHpqHFyZz7sIkXqSsLGIHojk/DDctncvLkNbbHnAVR+J3Es5ocldpQVadZmUrboo8+4fWjmeVf9UaKTnZzA/hKk64J/1J83mYhrL1t+1HbLEMVSjMS/OCvnZKhFTCYw5NsxUt8je2idhhLKQqXNl2xfJLzTGknJc1n7AtURgKZ1xUVe8EyX4ITcL6dBR9ytBSEyi7tqIpzmYLi2ava0xaYh1Gcbr4Sp/4Sbu7kj/EdfCil2Vc0EdWzg/3wgIeK8tYkz4lpe2X8XxO01IbRViEs8oj1lmcFuW1e3fsHzvve2vk3XjslO/ZMtkts39885yZMGWnHsalZSgT8wvlgu5nRhs2o7Sb39Ns/vut5ipW89BoQ4zm2eaM5ilGU2xG0/mUZ9edLTrNVw9CtWDFjqIEq4cHh/2xctYo+dvforpy4Ud94TvNY3ZVPA6XpmJnI2r1q9amcyWxt9qa9SRYHqBFTalq89fa2wOaW5blNAmL+GfziJANxBG+c3HtrBuMm3tssuc8omKjetKW+8ERuV3N9vqUakr7V9fYSxI+EH0x/A7yZGkkE54cnN+TX+OCO7I1sixfLP+Qbst+q64sPN8aTSZu3futLu/v7+9btxKuo4aA8TlDALGcYTGAOM0goFSkLwqMVTl5d1PuP6UTsRPhPuUn3FNmOfu12PkMhonjwgSxXHNxYgLECT9c8ZZLZ5t1eUVoVi1mdfreNGkwq4QoaNfT29UzeFdFyPnzOthD78zRVTegRxdgWD6XWq8ndGLBNjtxRhcaup20ErPnHZnhu3bUl9GJiv34gctflqPzXl0BaNzd4ihMpmLFijk6PwwYEHa0zWrTtkUSbjbi9wH1OkznZKoHhrktGKaG9QBEYRq8X0VhatBGVHvVqJZYVkufRmEtUbkf0tpOSzp7exYmcS1R0R/PodhF1GJJkwyXqMTuMrqI+iCuzIONHp93lh7fR8G4RAWCyHGHurNJkEsA9GbanS+C5Eqnb9z6TYBAMDlnIPgIMJf0gX4YGAYEBqPoVtaLjM+AYU3CWxuCfGjY0xjWJL2Vqfviuuam6C2Uw6vBnbUc3sU4EN9WUlJR4L2iJUSBV40CWzeXvtUzh5GxrSHWIQg84gnj5YBAYAygjSBQlyVNgkBg6N5l9DY0juYEQKCNIHCvKhAE6nNnkyAQGoN3lSDQhm4iABBoIwg8JCkc/WcsVBhFgw6iQXOGNYkGHUSD5gxrEg06144GoazuAGjQQTR4SEoqGvxN0RKiwatGg8oowd5wUM+UboSD/dOUczlw0FHhIM7qHmY2kyTQ+fwk0AFIoIMkcK8qkATqc2eTJNBBErjfJmbuBUjDTyu+czTvk8PxuirS5/EuYiFjAcEo73MRC5kzrEne5147FnIALOQCWMhFLHRISioW+kXREmKhq8ZC7ZsPtzdc0EGFXKRC/bOUezlUyMW5oye0pElQ5H5+UOQCoMhFULRXFQiK9LmzSVDkIihqOn3jLgIYMubikLFDksIhY8ZChVGE5CEbNGdYkwjJQzZozrAmh4zJG4OL66ybYoNQVvcANughGzwkJZUNPihaQjZ41WxwbJ2TDXrIBvtnKe9y2KCnskFEg7oMafTTIJ8fDXoAGvQQDe5VBaJBfe5sEg16iAabTt+4iQDQoIdo8JCkEA0aCxVG0aCPaNCcYU2iQR/RoDnDmkSD/rWjQSir+wAa9BENHpKSiga/KFpCNHjVaNCzmzo2O5nURzTYP0v5l4MGfeBNcx72NzRZ0iQb9D8/G/QBNugjG9yrCmSD+tzZJBv0kQ02nb5xFwGwQR/Z4CFJIRs0FiqMssEA2aA5w5pkgwGyQXOGNckGg2tng1BWDwA2GCAbPCQllQ3+qmgJ2SCywZqOzX6ONkA22D9LBZfDBgP8CsUJLWmSDQafnw0GABsMkA3uVQWyQX3ubJINBsgGm07fuIsA2GCAbPCQpAA26N1NuReVrrR1LEz9WmKFUTg4RjhozrAm4eAY4aA5w5qEg/LLjxfXWzcFB6G0Pgbg4Bjh4KGvzFtQ9O/WUpSEmw1HYFrk5LAtybSmDzKySHBcb9Gyxrp6iwRQ1cX0FYWonFaXz3GtI0UlKnKDdkUne6MxsaBMZF5kVcwaWbsg9mOrImdck+GtdYwONSnNUqW2fafXuaTmkaZCPG+g1Dy/VVEbGuuU2nG58dLiGVdeWfOpAhr0DcYzjYyRrzN1m+oIhr6jva1XpSKdMlMfqp1XZhV06Zc2weinT2XQa9v8swYzt9UZq554vTdv+u0ErFNl6oOx86psG5qGqUyvwuS41QuY/SuEEbTDz9CeWdBKl/7khApTH+GdUWF9bg/rvbhm1/9WUyC7nNSofABucG4cuwY1ddzDxFP39ned+f6YYjSZ2HpQBRC6oBcXOGdNjpPWTaXnDAxdrPvdev/U+IQ6Ux9PnjN2jeq5kTTy4Ejp0Q9TDoG+n3bezytZ7X7V0JtEQloh6oR3if5kRiLiWzMvcgMaube9tMTHea3FZiosjrI0pZFE1De2dIQj3t0mR2HIoTzbpZoh7QlgST3TM9UW6fEMeTdSzupA+XVXqw+kW3BnFL+PHSrXxys7zdQYY9ohg73OBNqAtMOcJhuAEzLKJzbz+GfDFv6/zxkv549rbsWQxinbIuFPX6q1u6c8x9Uixka+u579Z7NZhylYDbfy7aY0O6+FWfFVrSWhCxbtZV2ssbfVNQ/BistzHVKK4q8gZV377b6CHunLm6nzJvceaXpQO540IzeSCCFDx5ZYByo6ZTom4KPrRMaCPkGC2FCQeCzoiq38g7XxW83Pt5X2fgJeDkTvfBjNnzcrg8q5N8ZRmEzFilU8n/P9u4aR10eov9vv+/RNulyws7tijZxADjR7axzuvc9NWx/tvCWtEY7Z09OGnkB0tiK637M5ZSW/hyuqyAKnTHzyKRP9I3t1C9Mejqf04IkP9R7906RQ9RnFd+aXNI24pv8sSw/Huqsc7dMVHDrH/0DTLiBTa5n5r56c+pygZun/xSved0dLa7E0NC3DoKWP4/UfcaJGd2JugnnYCYx3uz/KZA6gwVRO/2U1YwfMMD1oDhrQ5A+DQeM4UP55p4N0h5bmy2OUrYBhgF1bnSsAfYRJJN0tW5Mmv0VfZ1mCY9NPFo7A+SUG45GKtb9Jm6OF9VgYmmhizsL2cfT2881QGJxpwOGZ8FbnIswXOK+BLeYZB727zZkzL79lc8q3+D8=7Z1dc6M2FIZ/TS6Tkfi0L+10s73Y7ew0nbZ7iUGxmWJwMdkk/fWVQMKAhI2JLHvjk+5MQYAEOu85RzwIc2Pfr18/58Fm9TWLSHJjoej1xv7lxrKwYyP6P1byVpX4U1wVLPM44jvtCh7j/wgv5Mctn+OIbFs7FlmWFPGmXRhmaUrColUW5Hn20t7tKUvarW6CJZEKHsMgkUv/iqNixUuxN91t+JXEyxVvemL51YZFEP6zzLPnlLd3Y9lP5V+1eR2IuviFbldBlL00iuxPN/Z9nmVFtbR+vScJ61vRbdVxDz1b6/POSVoMOcCqDvgRJM/80mf8xIo30Rnbl3idBCldm6+KdUILMV18ytLike+E6Hq4ipPoS/CWPbOGtwXtCLE2X2V5/B/dPxAH0815wc1ueay2OEnusyTLyyZtgth/rSMfWY28rZxs6bHfxFXiuuhLsC3E+WRJEmy28aI8Q7bLOsiXcTrPiiJb853EpT20m+cms+dBEi9TWhbShkjOmmGmJZG4DGG9qsF1HPLlJFiQZF5rQVSdZmUvbos8+4c02kPlX71FSE5080OwjhPmSX+SPArSQPR+1X/Y4uuqCrl5SV6Q116J4Fp41KFJtiZF/kZ34QdMuFS5K1sOX39pOIaQ86rhExbihQF3xmVd9U6QdIFrUq1PW9KnCC0NgdJrK9ribPcw7/amxoQlNkEYp8sv5ImdtLMr+Z1fByt6WcUFeaTlrLkXGvBoWUa79Ckpbb+Ko4ikpTaKoAgWtUdssjgtymt35/QfPe97dOfeuPSU7+k63q3Tf2z3nJowpacexKVlCBXzC2GCHmZGS21GYTdvoNm891vNkayGwWqjrOZa5qzmSlaTbEbSaMbS684WveZrRqFGtKKtSNHq4cGmf7Scdkr+9jevrlz53lz5RvKYXhULxKWp6NnwWr26t0kkZfZOX9OhBE0EpGhIVe7+Rn+7iu4WZTlJgiL+0W5RZQPewjcmrp11/Un7iG32nIeE79TM2uI4dUjuVlNdn1RNaf/6GgdJwlOEX/DkUZ4sjGTCk/3ze/JrXDBHRncIeXz9u3Bbuiy7Mvd8dDedOk3vR33eP9zfK7firiOHgMk5QwBG9rgYgO12EJAq0hcFJrKc3PmM+U/pRHblU17CPGWR06XlzmcgTBwXJjByzMWJqSJOeMGa9Vy62G7KKwKzajGrPfSuSYNZxWAb7Hp6u7oGb6swPn9eV47Qe3N0PQwYMAQYl8+F1psJHSO1zU6c0bmGbqedxOy6R2b4vgP1ZXQscz/WcLmEHJ0jfImgMXeLwyCZ8Q1r6uisGWVA2OE21MVtyyTYbvnyAfXaVOd4poeGOW3jWnJY95UsTIP3yyxMDtrAaq+a1WKEOvo0SmuxDP4A1/Za0t47sjDJa7GM/lgRDBG1WNIkw8UysbuMIaI+iCvyYGvE555lxPezYFwsA0HguGPd2STIxQr0ZtqdL4Lk9tnEzC0dbvlpjeiORrZ4ur8ifR5vAQIyFhCMIltLxYDAsKcxrEloKyL7xY3cTME9Ma5r0r168l9jrNd3Cwx0r5aSTIruJS0BKbpqUtS59/DQwFCHJ5aGWAec6IgHUJfDiRRTxCzgRLosaZITKWZ2XcZoQ+NkPwUnsoAT7VUFcCJ97mySE6mmaF0lJ7JUNxFTRSCYnjMQ/AyT/mBymLlQYZQg2YAGzRnWJEGyAQ2aM6zJeX/2taNBVVa3FWjQBjR4SEoyGvxV0hKgwatGg9IkssFwUM8rvwAHh6cp+3LgoK2YRAZ2G2c3kyjQ/vgo0FagQBtQ4F5VAArU584mUaANKHC/TWDKmFo4DnAhYwHBKPBzgAuZM6xJ4OdcOxeyFVzIUXAhB7jQISnJXOgXSUvAha6aC3VvPpzBdEEHFnIACw3PUs7lYCEH3i08oSVNgiLn44MiRwGKHABFe1UBoEifO5sERQ6AorbTt+4iFHPGHJgzdkhSMGfMWKgwipBcYIPmDGsSIbnABs0Z1uScMXFjcHGDdVNsUJXVXQUbdIENHpKSzAYfJC0BG7xqNjhB52SDLrDB4VnKvRw26MpsENCgLkMa/XTEx0eDrgINuoAG96oC0KA+dzaJBl1Ag22nb91EKNCgC2jwkKQADRoLFUbRoAdo0JxhTaJBD9CgOcOaRIPetaNBVVb3FGjQAzR4SEoyGvwkaQnQ4FWjQddq69js26QeoMHhWcq7HDToyWgQwXBDkyFNokHv46NBT4EGPUCDe1UBaFCfO5tEgx6gwbbTt24iFGjQAzR4SFJD0CAEhhGBwSgI9AEEmjOsSRDoAwg0Z1iTINC/dhCoyuG+AgT6AAIPSUkGgZ8lLQEIBBDY0LHZb5P6AAKHZyn/ckCgD9+cOKElTZJA/+OTQF9BAn0ggXtVASRQnzubJIE+kMC207fuIhQk0AcSeEhSChLozmfMi0pXwqj0LMj9WoKFUTo4UdBBd/6ZXfOn8sLBshotaxIPTgAPmjOsSTwovvR4ceN1U3hQldgnCjw4ATx46Dv2SBH+92gpTILtlkEwLXKy6Z541tAHvkPYP268iNBE13gRK1R1MaNFLiq7M+izHXSkqHhFjt+t6GQ/YIyRKhOZF1kds+7QLoh9r1RkTxoyvEXH6FCT0pAsteonvM4lNRe3FeK6I6Xmep2KuthYp9SOy42XFs+Y8sqaTxXQVN9cPNNMGPHrpU5bHf7Yn2Tv6lWqSKfM5Mdq55VZjV2GpU1l9NOnMtWvtHlnDWZOZzBWP/N6b970uglYp8rkR2PnVVkVmsapTK/CxDzVC3jZlwvD74afsSMzv5MuvekJFSY/xDujwobcHjZHce2h/62mQHY5qVH64Nvo3DhxDGrquMeJpx7t7wbzwzHF3XRq6UEVitCl+p0C+6zJcdq5qXTtkaGLDr87Pzc1OaHO5AeU54xdd83ciFt58E4a0Y9TDlZ9Lu28X1NC3XHV2JtEjDsh6oR3id50gUPsoYUbOj4JnVuMBjwzZTO9Nnw3GRaHWZqSUCDqG0s4whE/1SbmYYjJPNVaw5DWVGFJPW9jyj2imvzf6ZHdXDnUg/KbrtacSrdkzsiXj50sN8Qre83UmmXaI4O9zqS0Ae6GOT02ECPK9hOc8olNFP9o2cL79zlj5exxzS2f1DijeyTs6Uu9dfeU57ha+OzId9ez/2y2myBVVsOsfLstzc5qoVZ8lWtJyJJGe1EX7eyqunYTtLg81zGlIP4aUja13x0raJL+RSDjAWl6VD+eNCO3kgjGY2eXoAMVnTIdY6s38DFTDQkS2FIFiceCrOnG32kfvzX8vKp08BPwcip678No9rxZmlbOvDEOg2TGN6zjKGLH900kb85Rf7ffDxmb9Llg73AF3dm+mGr21mruvc9NO9/ovMWdOY7Z09OWnEB0MtP9LYsILfktWBNJFvDSxAd/aWJ4ZK9vYboT8qQRPPZUo0fvNClUpsffqF+SNGSa/rMsPRzrrnK2T19w6J3/o3rxQmVqLW/6yycnU9yGpf+I12zsDpbWYmnVixkGLf3xX9XoT8xtMK92AuPD7p/ldQ5Fh8n89NN6QRvMID1oDhqq1z8MBg14IeRQaGn/WIy0l3LSjHqvcwWgn+E1kv6ebUiT3aJvsiyBueknC0fKF0zMxSNLxtpfhc3BwnosrHrRxKCFj6O3H+8NhbGZRrjG/kxT7XUuwnyB7zXQ1TxjoHe3O3Xm1dcsImyP/wE=7Z1dc6M2FIZ/TS6TQXyay8S72V7sdnaaTtu9JLZsM4vBxWST9NdXAgkLJNuYCOHEJ92ZGgECdN5zJB6O4MqZrl++5NFm9S2b4+TKtuYvV86nK9tGrmOR/9GS16okCFFVsMzjOdtoV/AQ/4dZIdtv+RTP8baxYZFlSRFvmoWzLE3xrGiURXmePTc3W2RJ86ibaImlgodZlMilf8fzYsVKkR/uVvyG4+WKHXpiB9WKx2j2c5lnTyk73pXtLMq/avU64nWxC92uonn2LBQ5n6+caZ5lRfVr/TLFCW1b3mzVfvd71tbnneO06LKDXe3wK0qe2KXfshMrXnljbJ/jdRKlZOluVawTUojIz0WWFg9sI4ssz1ZxMv8avWZP9MDbgjQEX7pbZXn8H9k+4juT1XnBzG77tLY4SaZZkuXlIR1s0f8aez7QGtmxcrwl+37nV4nqoq/RtuDnkyVJtNnGj+UZ0k3WUb6M07usKLI124hf2n3z8Mxkzl2UxMuUlM3IgXBOD0NNi+f8Mrj1qgOu4xn7nUSPOLmrtcCrTrOyFbdFnv3EwvGs8q9ewyXHm/k+WscJ9aS/cD6P0oi3ftV+yGbLqgqZeXFe4Je9EkG18IhD42yNi/yVbMJ2mDCpMle2Xbb8LDgGl/NK8AnbYoURc8ZlXfVOkOQH06Ran46kTx5aBIGSayua4my2MGt2UWPcEptoFqfLr3hBT9rdlfzBroMWPa/iAj+Qcnq4ZxLwSFlGmnSRlLZfxfM5TkttFFERPdYescnitCiv3bsj/8h5T60b78ojpzwly2i3TP7RzXNiwpScehSXlsFEzM+YCrqbGW21Gbnd/I5m899uNVeyGvLAan2s5tnmrOZJVpNshtP5Le1ed7bYaz4xCgnRihxFilb39w75I+WkUfLXf1h15cIPceE7zmNyVTQQl6YiZ8Nq9evWxnOpZ2+1NRlKkI4AF4JU5eYX2ttTNDcvy3ESFfGv5hFVNmBH+E7FtbNuMGnusc2e8hlmG4m9Nt9PHZLb1VTXJ1VT2r++xk6S8BXhF+JvL0/mRjLhycH4nvwSF9SRrRvL8tnyD+625LfsyszzrZswdEXvt/Z5f3d/r9yKuY4cAiZjhgBkOf1iAHKaQUCqSF8UmMhy8u5uqf+UTkQGhNSn/IR6ymNOfi13PgNh4rQwgSzXXJwIFXHCj9a05dLH7aa8IjCrFrM6Xe+aNJiVUxSw6/B29QzeViE0fr+uHKHv7aPrYUCHIUC//pxrXezQkaW22cA9OtPQddjqmD3vxB5+3476enQkcz964PKX5XqDRgeJqVEHjGdRcstWrInr08MoQ8QOwFltALdMou2W/T6iZ4coH93q4WNui4/JgT5Q0jEN8UCmY7KhgN5eNL1FltXSp1F+i2QUCAB3ryWdg2MNkwQXyTCQHgoGjVosaZLqIpnhncegUR/W5f1gYwzojTIGfC9gF8mIEMhuX3c2iXaRAsaZduezYLv7bGLmJg81/LSGdidDXBQerkijxwPsMxYQjEJcG2ifOcOaxLj2peM+Pq4TeR9vbHGsJ2TOAe9TS0nmfVNJS0CKLpoUte49fKtjqEMTW0Osg0S/Ex5J2Qc7KZOcSJHqB5hIlyFNYqJLyP6zFUMHyP87qApIANTnziYxEaQAtpy+cQ+hSAKELMCjklKRR+AMg4QKswAJyKA5w5oESA6QQXOGNZkI6Fw6GVT16o6CDDpABo9JSSaDv0laAjJ40WRQyiHrzAb1zAEGNti9m3LOhw06MA1Ym91MokDn46NA3us1xgqAAg+qAlCgPnc2iQIdQIGHbQIZY3uEA8DPWEAwCvwcAH7mDGsS+Lkq4HcOIzdTXIiP6xpcKFSM9cIxu4L3wIVcGTF+krQEXOiiuVD75sPtTBd0YCFXJpeAhfYZ0t1jyTFeDifjPMgZ02ZJk6DIlQHfeQw39IEi3g02Xhk3zsyj9wKKXBkfAijq684mQZF7BjOFzwIUcacX7yLcQBEIgjEDwXvIGXMV7LH0K/72OO5XX+jyZ7YM75PTGEGMkiUXkKE5wxolS4AMzRnWZCqZd+nIUNnZK5ChC8jwmJRkZHgvaQmQ4UUjw4k1JjLkcASQYQdDeueDDD0ZGaJhX1J5SZY0+o2Jj48MPQUy9AAZHlQFIEN97mwSGXqADJtOL95FeApk6AEyPCYpVboikIZBQoVRNugBGzRnWJNs0AM2aM6wJtmgf+lsUNmrK9igB2zwmJRkNvhZ0hKwwYtmg57d1LHZWaY+sMHuvZR/PmzQl9kgoEFdhjSJBv2PjwZ9BRr0AQ0eVAWgQX3ubBIN+oAGm04v3kT4CjToAxo8JqkuaBACQ4/AYBQE+gACzRnWJAj0AQSaM6xJEBhcOghU9uEKEOgDCDwmJRkEfpG0BCAQQKCgY7OfLA0ABHbvpYLzAYGBDAJhWrEuQ5oEgcHHB4GBAgQGAAIPqgJAoD53NgkCAwCBTacXbyICBQgMAAQek5RyWjGfU2xPkQcziPUFC6NwMFDAwd30cHsKltVpWZN0MAA6aM6wJung5NLpoLJjV9DBAOjgMSnJdPCQlGZJtN1SBKZFTQ7ZEt0K8kA3FgpOGy5a1kTXcFEhKsV3y0YaLDJNOa0xn+NaJ2qKVeQG7YoGe60x/1ytVo3VkaizxuqIdWPtQtiPSkTORFDhtXWKDPUILVAorXqv11hK81BTIJ7XU2me36qozYw1Kk0mku8pmlHhlTUPFc5U8WykLBj+RlO3hbP6vqa9LVepIo0qOw2XDq+yGrl06zOVsU+fyFQvbvNHDWVuayBWP+56a6fpt3tfjSI77Zsww4usCkz9RKZXYDxD9Qym+TJdBO3g03dUFrT6Sj8cTmCnUeKBBdblxlAcwTVH/deawtj59IvSF+B6d4wT15ykTvvwzVCSEodT1QCsO5+4CUNbD6Po+H6C6itPY8ksbN1Oek7PwIWsVgqJOxlOZqp01vEi143YMaJGJ3gjDeb7CQc5CuHY48an9piq7+0hQq0ANeT9oYqIt5RD07k2bDMZCc+yNMUzDqKvbK76E17Ixh/P8oydakkwmx0q7KYl04pXfOj6d+lv1h48L7qRmB23pI7Gfp+a/9bF4/YaRWz8yXHkq2xf1I5XvdpXRVOrJyzz+Fejnf1/nzJaTh+vXLMcxFuyRUKfltRrd09lTquFJTO+uZ7DZ7PdRKmyGmrB621pUloLsdCLXEuClyRK87pI01bVNQ9Bistz7VN6ccKeKHTd7tB7ydo+hw63Q9fZoY0G7RMbgR2hvnkd1pGK9HWIoQqYVt5EzdDFuZGtcu6HAq/Jyj9Ii74K/llV2vlJc5nxvfehL32uK2VvUy+KZ1Fyy1as4/mc7r8vX1tMBX+zv3YZHYR7xm2sJuvGCfjDgNdG5W99Gtn6IOY1amUOZovFFr9ZUDIb/T2bY1Lye7TGkslh3sEHn3ewLyLXg/92Cps0Gka+arTm6+jWZMT6nXgYTmdUr3+Vpcdj1EVmw4R7Pt19YBaCyow6kmFCmWMKVvwzXtNxMFixhxVVUxAGs+IZfDN74CkIvGsUIU44Dv17L1MQQpn0fV4/kuozCNBvcm3VdITBXLsDdLuI6Qg8ADTILr/XE6MCKxwrLLyHCQl1uwmqovecmyxLIKlZU5RQzkMYKkwgS4an37hBwXx9zKeabDCc+U6DhB8vKV0d3hWZBaxwLEz5HtLSsR8gNLED8ufPFta1Wl1vA5XWrJbQrtBZLErRyc88jn1FczdLahDO+VRkWwZlBHhUPp+RoWeRbXaR7U+68OnaPe5Ipz2QOPyY02mpzAkUTAApVN5OneoQjMhinlFr7dRGgvbqWzbHdIv/AQ==7Z3fc+I2EMf/mjwmY/knPCbc5fpw17lpOm3v0YACnjM2Nc4l6V9fyUjGstZgiBAkbHozxbIt2drv7sofS3DljRYvX4p4Of+WT2l65TrTlyvv05XrEt9z2P94yeu6JBqSdcGsSKbioE3BQ/IfFYXivNlTMqUr5cAyz9MyWaqFkzzL6KRUyuKiyJ/Vwx7zVG11Gc+oVvAwiVO99O9kWs5FKQmHmx2/0WQ2F00P3Gi9YxxPfs6K/CkT7V253mP1t969iGVd4kZX83iaPzeKvM9X3qjI83L9afEyoinvW9lt6/PuO/bW113QrOxzgrs+4VecPolbvxUXVr7Kzlg9J4s0ztjW3bxcpKyQsI+PeVY+iIMctj2ZJ+n0a/yaP/GGVyXrCLl1N8+L5D92fCxPZruLUpjdDXltSZqO8jQvqiY96vD/lDMfeI2irYKu2Lnf5V2SuuhrvCrl9eRpGi9Xybi6Qn7IIi5mSXaXl2W+EAfJW7tXmxcm8+7iNJllrGzCGqIFb4ablk7lbUjrrRtcJBPxOY3HNL2rtSCrzvKqF1dlkf+kjfac6q/eIyUnu/k+XiQp96S/aDGNs1j2/rr/iCu2oQqFeWlR0pdOiZBaeMyhab6gZfHKDhEnDIRUhSu7vth+bjiGlPO84ROuIwpj4YyzuuqNINkHoUlYn56mTxlaGgJl91aq4lR7WHR7U2PSEst4kmSzr/SRX7S/KflD3Acvep4nJX1g5by5ZxbwWFnOuvQxrWw/T6ZTmlXaKOMyHtcescyTrKzuPbhj/9h1j5yb4Cpglzxi22Szzf7xwwtmwoxdepxUlqFMzM+UC7qfGV3YjNJuYU+zhW+3mq9ZzUWrHWS1wLVntUCzmmYzmk1veXrd2KLTfM0o1IhWrBUtWt3fe+yPlbNOKV7/EdVVGz+aG99pkbC74oG4MhW7GlFrWPc2nWqZvdXXbCjBEgEtG1LVu7/R3wHQ3bKsoGlcJr/UFiEbiBa+c3FtrBsN1DNW+VMxoeKgZtaW58EhuV3N+v60air71/fYSxIhEH7Rkw/yZGkkG54cnd6TX5KSO7Jz4zih2P4h3ZZ91l1ZeL5zMxz6Te93ury/v7+v3Uq4jh4CBqcMAcTxDosBxFODgFaRuSgw0OUU3N1y/6mcyF/7VJhyTxkX7NNs4zMYJvYLE8Tx7cWJIRAnwnjBey4br5bVHaFZjZjV6/vUZMCskqKgXY9v18DiYxUhp8/r4Ai9M0fXw4AeQ4DD8rnUejOhEwe22ZEzutDQ9bCVmINgzwzfdaK5jE507scbrj45gckRvkbQuLslkzi9FTsWzNF5M2BA2OA2p43bZmm8WonPO9TrMZ2TWzM0zFeN6+phPQJZmAHv11mYHrSR1V40qyWO09KnVVpLdPCHuLbTkt7WkYVNXkt09MdpIA4RjVjSJsMlOrE7jyGiOYgr86Ay4gtOMuJ7LxiX6EAQOe6h7mwT5BIAvdl257MgudLplUe/IRAIhqcMBO8B5hIA+gV3lRd9qlwJYa65WGGV5sp6EftZMKxNnutC3A8NexzD2gS6Mpuf3WjdFtCF0no94bOR1ruwBxLdWko6HRxpWkI6eNF0sPW8GTo9cxgZuAZiHbLBPV46ng8bBKYFIho0ZUibaBCYzHcegw2D8zsBNOgiGtyqCkSD5tzZJhqEZuVdJBp0oWcIAA26iAZ3SQrnA1oLFVbJoIdk0J5hbZJBD8mgPcPaJIPepZNBKKt7ABn0kAzukpJOBn/TtIRk8KLJoDZvsDcbNLPKG9lg/zTlnQ8b9IB5g2i3w+xmEwV6Hx8FegAK9BAFblUFokBz7mwTBXqIAlWnVx4aABToIQrcJak+KBADwwGBwSr48xH82TOsTfDnI/izZ1ib4M+/dPAH5XAfAH8+gr9dUtLB3ydNSwj+Lhr8tZ8u/d74yAT385H79c9S/vlwPx/XCx/RkjZJoP/xSaAPkEAfSeBWVSAJNOfONkmgjyRQdXrlKQIggT6SwF2SAtcLN74AUvrVF779WWzjV0IajCBWkWGAyNCeYW0iwwCRoT3D2kSG8nnh7MbwtpAhlOwDABkGiAx3SUlHhvealhAZXjQyHDinRIYBIsP+WSo4H2QY6MiQIDI0ZUmrPxPz8ZFhACDDAJHhVlUgMjTnzjaRYYDIUHV65SkCQIYBIsNdksJ1xNZChVU2GCIbtGdYm2wwRDZoz7A22WB46WwQyuohwAZDZIO7pKSzwc+alpANXjQbDFxVx3aXEYfIBvtnqfB82GAIsEEHxxuGLGmTDYYfnw2GABsMkQ1uVQWyQXPubJMNhsgGVadXniIANhgiG9wlKVxYfKTAYJUERkgC7RnWJgmMkATaM6xNEhhdOgmEcngEkMAISeAuKekk8IumJSSBSAIbOrb7Q8QRksD+WSo6HxIY4Y+NHM+QNkFg9PFBYASAwAhB4FZVIAg05842QWCEIFB1euUhAgCBEYLAXZIC1xXLRcXuyMUfIjYYLKzCwQEABzfrw90RQdOaNK1NPDhAPGjPsDbxoPyJz7MbsNvCg1BmHwB4cIB4cIeUiAPE/y1amqTxasUhmBE5eexIctvQB7lxSLTfgNFxBqYGjARQ1dkMF4WovNaoz/OdPUUlKvKjdkX+8UQGZSL7Iqtj1o2zCWI/1iryBg0ZXjv76NCQ0hxdauvv9jqV1AKiKiQIDpRaELYqamNjk1LbLzeeWzzjyqtqPlZAg35t80QzYeTXmvqqOiKnFYh6y4zsqMikzPTXaqeVWc1d+qVNMPqZUxn09W3hSYOZ3xqM1e+83po3w3YCNqky/dXYaVW2Dk2HqcyswuQ81TNY7SuEEbXDz6Ejs6iVLsPhERWmv8Q7ocL6PB42R3Hq0P/6CIEM+kWa06bLaGhIZgPfosz2e8V47AeAzfi+P7m4GQ5dM/QCkBn03QXeSfPlsPWcGXgHyoyNyFvfQTU4os70l5anDGc3zXRJlNR4ow3yD1MOgX47r4NV2lEOcdpDrUOfGwlphagjPjiGwzGZkNAZBxM/ohP/upeW+OSvpThM58eTPMvoRFLrq/r3Nvf4/jY5N0PO71lvNQzpDgFLmlmhqfdIjzfLm+lzTgfdb7pac3bdjDuj+Lzv/Lk+XtlpJmXiaYcMtjoTaAPSDnOGbACuyahe4kyTX4otwn+fcl7O3+Bci3mOt+yIlL+QqfduXvzsV4uYMPnmerZfzWoZZ2A13MrXq8rsvBZmxRe9lpTOWLSXdbHOXlenNsGKq2s9pBTFX3PLpvbbYwUz0pfPV6dN7j3S9EH9eNSMrCQRQg6dceLsqOiY6ZiAb7NTGQv6BAniQkHioaQLtvMP1sevDT9fV9r7pXg1O73z/TR/Ba3NNOfemEzi9FbsWCTTKT+/a255c9r6m/2+z9ikywU7hyvOjRfJ6WevSnNvfZUqTxG1XpPWvMf88XFFjyA6VxPd7/mUspLf4wXVZIHrKD74Oor+kb1+hGlP0tNG8CSERo/hcVKo/triO/NLmk24pv+qSnfHuoucANQVHDqnBEFrMSBTG1n8r1+c/uqgYek/kwUfu6OljVgaWqxh0dL7Ifz3uHyjOzGrXB52AuvD7veyxAPoMJ3Tf16MWYM5pgfDQQNaEmIxaOwHyj/uIpHu0KJ+f4x2FDAzsOuoUwWg97C0pLtnG9Lkj+jLPE9xuvrRwhG46MRiPNKx9jdpc7SwGQtDa0/sWdjdj95+vEULB2cacAoKfNSpCPMZLnVgm0XOQe/mcObM82/5lPIj/gc=7Z1dc6M2F8c/TS6TkXi1L/Oy2V7sdnaaTtu9xBjbTDH4wWST9NM/EpYwoIONiSw78Ul3pkaAAJ3/OZJ+kuDKvl++fs2D1eJ7No2SK4tMX6/shyvLoo5N2P94ytsmxR/TTcI8j6fioG3CU/xfJBLFefPneBqtGwcWWZYU8aqZGGZpGoVFIy3I8+yledgsS5pXXQXzSEl4CoNETf07nhYLkUq98XbHb1E8X4hLjyx/s2MShP/O8+w5Fde7suxZ+bfZvQxkXuJB14tgmr3UkuwvV/Z9nmXF5tfy9T5KeNnKYtuc99ixt7rvPEqLPidYmxN+BcmzePRbcWPFmyyM9Uu8TIKUbd0timXCEin7OcvS4kkcRNh2uIiT6bfgLXvmF14XrCDk1t0iy+P/2PGBPJntzgthdsvjucVJcp8lWV5e0o4I/69x5hPPUVwrj9bs3B/yKWmV9C1YF/J+siQJVut4Ut4hP2QZ5PM4vcuKIluKg+SjPTYvL0xm3wVJPE9ZWsguFOX8Mty00VQ+hrTe5oLLOBS/k2ASJXeVFmTWaVaW4rrIs3+j2vVI+VftkZKTxfwYLOOEe9JfUT4N0kCW/qb8qCW2oQyFeaO8iF47JUIr4TGHjrJlVORv7BBxwkhIVbiy5Yjtl5pjSDkvaj5hEZEYCGecV1lvBcl+CE3C+rQVfcrQUhMoe7aiKc5mCYtir2tMWmIVhHE6/xbN+E0725Q/xHPwpJdFXERPLJ1f7oUFPJaWsSKdJaXtF/F0GqWlNoqgCCaVR6yyOC3KZ3fv2D923/fkxr1y2S3fs2263Wb/+OE5M2HKbj2IS8tETMwvERd0PzNasBml3byeZvPebzVHsZrlotWGWM21zFnNVaym2CxKp7e8et3aotN89ShUi1bsKkq0eny02R9LZ4WSv/0jsis3ftY3fkR5zJ6KB+LSVOxuRK5eVdrRVKnZW2XNmhKsIoiKmlTV4q+VtwsUt0zLoyQo4l/NK0I2EFf4wcW1ta4/ap6xzp7zMBIH1WtteR4cktvZbJ5Pyaa0f/WMvSThAeEX4+8gT5ZGMuHJ/uk9+TUuuCOTG0I8sf1Tui37rbqy8HxyMx47de8nXd7f3983biVcRw0Bo1OGAErsYTGA2s0goGSkLwqMVDm5d7fcf0onYiXBfcpLuKdMcvZrvvUZDBOHhQlKHHNxYgzECS9Y8pJLJ+tV+URoVi1mtfv2mjSYVVIUtOvx7eoa7FZRevp6HWyhd9bRVTOgRxNgWH0utV6v0CmBbXbkGl1o6Hrcqphd98AavutEfTU6Vbkfv3D5i7g6++oKQePuFodBcit2LJmj88uAAWGL20gbt82TYL0Wv/eo12Y6p7d6aJjTomFqWPdBFqbB+1UWpgZtZLUXzWopIS19GqW1VAV/iGs7LWnvbFmY5LVURX8EW4iaDGkS4VIV2J1HC1Efw5XVYKPB556kwfdRKC5VeSBi3KHubJLjUoC8mXbnswC5XTYx06OjDT+tCN3BxJaOd2ekz+MtgAC5d6WvPJTIFomtvohgFNlaEANCtnccw5qEtjK0f6CmGwD36A2xRx1VwwGNuzrhqyYA1hp8Xd1gJHyVnFRadK/oCWnRRdOiVgfEIz3DHR1ZGuIdsqIDBqHOhxUB08QowiJdljQJi4DZXefe4jh4wh8AiyyERTtVgbBInzubhEXQNK2LhEUW1IkYA4FgfMpA8BEm/uEEMXOhwihFsgE+iIY9kmFNUiQb8aA5w5qc+2efKx40NvcPqNVtAA3aiAb3SUlFg78pWkI0eNFoUJlI1hsO6ln2i3CwfzVlnw8ctFU4iCt/B9rNJAq0Pz8KtAEUaCMK3KkKRIH63NkkCrQRBTadvtFpAFCgjShwn6QAFFifUYZrgDXGCqMs0EEWaM6wJlmggyzQnGFNskDn0lkgVK07AAt0kAXuk5LKAh8ULSELvGgW2O5wOr2Jkg4U6CAK7F9LOeeDAh1cU3o8Q5pkg87nZ4MOwAYdZIM7VYFsUJ87m2SDDrLBptM3OhEAG3SQDe6TFMgGa+8IlH71lW9/EdsUkaHGEGIUGbqIDM0Z1iQydBEZmjOsSWQoOwxn14g3hQyh2t4FkKGLyHCflFRk+KhoCZHhRSPDETklMnQRGfavpdzzQYYuMHsQmaEuSxr9lMjnZ4YuwAxdZIY7VYHMUJ87m2SGLjLDptM3ehEAM3SRGe6TFC4tNhYqjLJBD9mgOcOaZIMeskFzhjXJBr1LZ4NQre4BbNBDNrhPSiob/KJoCdngRbNB12rq2OzKYg/ZYP9ayjsfNugBrx10sb2hyZIm2aD3+dmgB7BBD9ngTlUgG9TnzibZoIdssOn0jV4EwAY9ZIP7JDVoPiFOJ9QYQXojQ1tDCPERGZozbO8PAuowLCJDc4b1DPbG/EtHhlBl7wPI0EdkuE9KKjL8qmgJkSEiw5qOzX7V1kdk2L+W8s8HGfr4pZIjWtIkMvQ/PzL0AWToIzLcqQpEhvrc2SQy9BEZNp2+0YsAkKGPyHCfpEBkKHmhdW/hF281BgujEwpHSAfNGdbkhMIR0kFzhjU5oVB+HvTsmuum6CBUr48AOjhCOrhHSpRA0b9bS2ESrNecgWmRk82OpLc1fdAbQv3DmouEjHQ1FymgqrNpLApR2a02n+2QA0UlMnL8dkbO8UQG1UTmRVbFrBuyDWI/NyqqvqrOD7gmh+hQk9KIKrXNS8BOJTWXNhXiugOl5nqtjNrUWKfUDqsbzy2eceWVOR8roEEf6jzRjBn5+lOnqQ6ftAJRb5nRPRnplJk6qvZ+mVWtqwEyq6hLv2oTjH76VAa95807aTBzWo2xasjrvfWm166AdapMHRk7bTDbhKZhKtOrMDmf9QxWBQth+O3wM7Rl5reqS298RIWpY3gnVFif7mG9Fdds+l/vDGSt6QezURiF4WD5QR+5OW016o81yW/kGJTfYQOPx+4YbNv9/YnGzXhs6aEagMygdx/YJ61Hx63+p2sPlBlrqbfeYTU6os7Uocz362xwc42Dya1iaF2BYlddfsOUQ6HP8XUwTDPKoaTdBBvan6S0FaKO2KH0xhMaUo9M3NDxo9C57qUlPidsJQ5TuXKYpWkUSpp9ZUlHOOD9b3LGhpz2s9mqGdIaA5bUs8JTLZEe483bWXWkg/rXXa0+6W7OnVH8PnRaXR+v7DRTYz5qhwx2OhNoA9oOc5psAL7vpRzcmca/Grbw/vec8XQ+snMtpj/esiMSPlBT7d0OCB2Wi5hH+e58dt/NehWkYDbcytfr0uw8F2bFVzWXJJqzaC/zYoW9ya55CZZc3uuQVBR/xTMbi1mOIn3Z7zptI7JHNT2oHI9aIzcqEUqHzkMhezI6ZnVMwVHuRMaCPkGCWlCQeCqiJdv5Byvjt5qfbzLtPVheTlrvHLfmQ9PKBHTujXEYJLdixzKeTvn5XVPO67PZ3+33fdomXS7Y2VwhN7YvJ6W9NS733iFWeYrI9Zq2ZkNms9k6OoLoLEV0v2fTiKX8HiwjRRa4vOKTL6/oH9mrLkx76p7Sgqce1Hr0jlOFqsMZP5hfRmnINf1Xmbo/1l3kxKCu4NA5VQhaogGZWsvLA9SbU4cUapb+M17ytjtaWouloSUcBi19GNr/iIs6uivmJpeHncB4s/ujLPwACkzl9F+WE3bBDKsHzUEDWihiMGgcBso/79KR7tDSfP+MchQwY7DrqFMFoI+w4KS7ZGvS5F30VZYlOI39aOEIXIpiMB6pWPu7tDlaWI+FoTUp5ixsHUZvP99ihsE1DTgFBT7qVIT5IyyB8CY2oaOxN/L8mR0Sq2OE931ImYSV7raJ9mxWKlUd5dr3NrbtWsujEOnnIlsLNFZDeOWInIqni2y1jZh/8o2Ha2e/9x02BLV7ONxx3IbMXBtgLBSQeXuO1KCQpuoHGg83rJ+yYnmgqJQWdyWkOXPCGfuKVKDKb4BS2GaecbtsAxNrNiy+Z9OIH/F/7Z1dc6O4EoZ/TS6Tkvi0L5PMZPZiZmtqs7XnzCXGsk0tBh9MNsn++iNhCQNqYuzIshP37NSsESBA/Xa3eCTZV+798uVbEa0WP/IpS68cMn25cr9cOQ71XML/J0peNyXhmG4K5kUylQdtCx6Tf5kslOfNn5IpW7cOLPM8LZNVuzDOs4zFZassKor8uX3YLE/bV11Fc6YVPMZRqpf+J5mWC1lKg/F2x28smS/kpUdOuNkxieK/50X+lMnrXTnurPqz2b2MVF3yQdeLaJo/N4rcr1fufZHn5ebT8uWepaJtVbNtznvo2Vvfd8GycsgJzuaEf6L0ST76rbyx8lU1xvo5WaZRxrfuFuUy5YWUf5zlWfkoDyJ8O14k6fR79Jo/iQuvS94QautukRfJv/z4SJ3MdxelNLsTiNqSNL3P07yoLukyIv5rnfkoapTXKtian/tTPSWti75H61LdT56m0WqdTKo7FIcso2KeZHd5WeZLeZB6tIf25aXJ3LsoTeYZL4v5hVghLiNMy6bqMZT1NhdcJrH8nEYTlt7VWlBVZ3nViuuyyP9mjeuR6k+9R0lONfNDtExS4Ul/sWIaZZFq/U37UUduQxVK87KiZC+9EqG18LhDs3zJyuKVHyJPGEmpSld2PLn93HAMJedFwyccIgsj6YzzuuqtIPkHqUlYn66mTxVaGgLlz1a2xdluYdnsTY0pS6yiOMnm39lM3LS3LflDPocoel4kJXvk5eJyzzzg8bKcN+ksrWy/SKZTllXaKKMymtQescqTrKye3b/jf/l935Mb/8rnt3zPt+l2m/8VhxfchBm/9SipLMO4mJ+ZEPQwMzqwGZXdgoFmC95vNU+zGhrtIKP5jj2j+ZrRNJuxbHorsuvWFr3mawahRrDiV9GC1cODy//wct4oxet/ZXXVxq/mxk9WJPypRByuTMXvRtYa1K3Nplpi77Q170nwPMDKhlL15m+0tw80tyorWBqVyT/tK0I2kFf4KcS1tW44ap+xzp+KmMmDmklbnQdH5G41m+fTqqnsXz/jIEkEQPRFTz7Ik5WRbHhyeHpPfklK4cjkhpBAbv9Sbss/664sPZ/cjMde0/tJn/cP9/eNW0nX0UPA6JQhgBL3sBhA3XYQ0CoyFwVGupz8u1vhP5UT+RufClLhKZOCf5pvfQbDxH5hghLPXpwYA3EiiJai5bLJelU9EZrViFndoS9NBsyqIAra9fh29S2+VVF6+rwO9tB7c3TdDRjQBTgsnyutNxM6JbDNjpzRpYaux53E7Pt7Zvi+E81ldKpjP3Hh6hMJTPbwNYAm3C2Jo/RW7lhyRxeXAQPClraRLm2bp9F6LT/vUK/LdU5vzcAwr21cRw/rIYjCDHi/jsL0oI2o9qJRLSWko0+rsJbq3A9pba8l3Td7FjZxLdXRn489REOGtIlwqQ7szqOHaI7hqjTY6vD5J+nwfRSKS3UeiBj3UHe2yXEpQN5su/NZgFzl9K03vzEQCManDAQfgeVSgPn5d5UXfRH/8HdnhLnGgoVVmqvqRexnwbA2ea4DcT807HEMaxPoqnR+dt11W0AXyuv1fM9GXu/DHkh0aynpdPBe0xLSwYumg50XzoAMzGF05BiIdcgG9xh0PB82CEwLpAgHTVnSJhwEZvOdR2/D4ARPAA46CAffVAXCQXPubBMOQtPyLhIOOtBLBAAHHYSDuySFEwKthQqraNBFNGjPsDbRoIto0J5hbaJB99LRIJTVXQANuogGd0lJR4O/aVpCNHjRaFCbODgYDppZ5Y1wcHiacs8HDro6HESzHWY2myTQ/fwk0AVIoIsk8E1VIAk05842SaCLJLDt9K13BoAEukgCd0lqxzRBXPJtMFZYRYEeokB7hrWJAj1EgfYMaxMFepeOAqG07gEo0EMUuEtKOgr8omkJUeBFo8DuC6c3GCiZIIEeksDhWco7HxLo4RLi4xnSJhv0Pj8b9AA26CEbfFMVyAbNubNNNughG2w7feslAmCDHrLBXZIC2WDjKyGVX30T21/lNkVkaDCEWEWGPiJDe4a1iQx9RIb2DGsTGaoXhrPrxNtChlC29wFk6CMy3CUlHRk+aFpCZHjRyHBETokMfUSGw7OUfz7I0NeRITJDY5a0+ssxn58Z+gAz9JEZvqkKZIbm3NkmM/SRGbadvvUWATBDH5nhLknhymJrocIqGwyQDdozrE02GCAbtGdYm2wwuHQ2CGX1AGCDAbLBXVLS2eBXTUvIBi+aDfpOW8d7LCw2EeyQDQ7PUsH5sMEAYIME+xuGLGmTDQafnw0GABsMkA2+qQpkg+bc2SYbDJANtp2+9RYBsMEA2eAuSR00n7BvOqFW0ly2jD9uYjDsDOaMvoG4EyKOsmfYwCJnDM8VR9EbSv19kFR9wmFYCkooIYClQsRSuySlY6lvmqYQSyGWaujY7g/lhoilhmer8HywVIg/hnFES9rEUuHnx1IhgKVCxFJvqgKxlDl3tomlQsRSbadvvUUAWCpELLVLUiCWUkzKuXcRJhkMFlYnral8gjDJgmFtTlobISW0Z1ibk9bUL1CeXXfd1qQ1KK+PADo4Qjq4Q0qUQNG/X0txGq3XgoEZkZPLj6S3DX3QG0LD/bqLhIxMdRcpoKqz6SxKUbmdPp/rkT1FJSvywm5F3vFEBmUi+yKrY9YN2QaxXxsVuaOGDK/JPjo0pDSiS23zRVOnkppP2wrx/QOl5gedirrU2KTU9suN5xbPhPIc/4gBDfotyBPNylBfsem11RGSTiAaLDO6oyKTMtNH1U4rs5q6DEubYPQzpzLou8SCkwYzr9MZq4e83ps3g24CNqkyfWTstCpz/MNVZlZhas7kGaw8lcIIu+Hn0J5Z2EmXwfiICtPH8N6vsPotcV+FDXk9bPbi2l3/6yMEMugHU06bLsOxIZmNPIsy22+A8dgvANv+/XBycTMeO2boBSAzaB29e9J8Oe68Z/rugTLjPfLO9yGNjqgzfcjyhAlTAMjGjLg2t9A6+Ycph0I/7dbDKu0oh5JuV+vQ90ZKOyHqiC+OwXhCYxqQiR97IYu960FaEnO/VvIwnR/HeZaxWFHrq/rnIPf4LjE1M0NN79lsNQzpjAFLGpmWBbTIgHHl7ew50kP3m67WnFw3F84oP+87fW6IV/aaqTXvtEcGbzoTaAPaDXOGbAB+d0g1iDNN/mnZIvjfUy7KxQjOtZzmeMuPSMWATL23u1hgaC1yvuS763n7btarKAOrEVa+XldmF7VwK77otaRszqO9qos39qa69iV4cXWvh5Si+Gtu2dR+t69gRvrq/eq0yX1Amj6oHY+akVtJhNJD55uQHRUdMx1TcDQ7VbFgSJCgDhQkHku25Dv/4G382vDzTaWDB8Wryem949NiCFqbaC68MYmj9FbuWCbTqTi/b2p5c9b6u/1+SN+kzwV7uyvkxg3V5LPX1uXeO5SqTpG1XtPOrMd8NluzI4jO0UT3ez5lvOT3aMk0WeAyik++jGJ4ZK9fYbpT9LQefL3ArNV7DI6TQvVhi5/cL1kWC03/VZXujnUXOQGoLzj0TgmClmJApjayEF2/OX3ooGHpP5Ol6LujpY1YGlqqYdHS+yH8j7h4oz8xt7k87ATWu90fZYEH0GA6p/+6nPAL5pgeDAcNaEGIxaCxHyj/vEtE+kNL+7tMtKOAmYF9R50qAH2EhSX9LduQpnhFX+V5itPVjxaOwCUnFuORjrV/KJujhc1YGFp7Ys/Czn709vMtWjg404BTUOCjTkWYP8JSh2DiEjoaB6MgnLkxcXpGeN+HlElc625b6M5mlVL1Ua7t13FtV08ehT0/lflaQrAGrKvG3nQQXearbWz8U2x8ufZ2+9l+g007Br473CwI9PQExa7uZKgBsYtvFrkwy1ZXPOovfuRTJo74Pw==7Z3fc9o4EMf/mjyGsfwTHpO06T20N53Lzd310YACnhqbM06T3F9/kpGMZa3BECFI2F6nh2VbtrXf3ZU+luDKu1u8fCni5fxbPqXpletMX668T1euS3zPYf/jJa/rkmhE1gWzIpmKgzYFD8l/VBSK82ZPyZSulAPLPE/LZKkWTvIso5NSKYuLIn9WD3vMU/Wqy3hGtYKHSZzqpX8n03IuSkk42uz4jSazubj00I3WO8bx5OesyJ8ycb0r13us/qx3L2JZl3jQ1Tye5s+NIu/zlXdX5Hm5/rR4uaMpb1vZbOvz7jv21vdd0Kzsc4K7PuFXnD6JR78RN1a+ysZYPSeLNM7Y1u28XKSskLCPj3lWPoiDHLY9mSfp9Gv8mj/xC69K1hBy63aeF8l/7PhYnsx2F6Uwuxvy2pI0vcvTvKgu6VGH/6ec+cBrFNcq6Iqd+10+JamLvsarUt5PnqbxcpWMqzvkhyziYpZkt3lZ5gtxkHy0e/XywmTebZwms4yVTdiFaMEvw01Lp/IxpPXWF1wkE/E5jcc0va21IKvO8qoVV2WR/6SN6znVn3qPlJxs5vt4kaTck/6ixTTOYtn66/YjrtiGKhTmpUVJXzolQmrhMYem+YKWxSs7RJwwFFIVruz6Yvu54RhSzvOGT7iOKIyFM87qqjeCZB+EJmF9epo+ZWhpCJQ9W6mKU21h0exNjUlLLONJks2+0kd+0/6m5A/xHLzoeZ6U9IGV88s9s4DHynLWpI9pZft5Mp3SrNJGGZfxuPaIZZ5kZfXswS37y+77zhkEVwG75Tu2TTbb7C8/vGAmzNitx0llGcrE/Ey5oPuZ0YXNKO0W9jRb+Har+ZrVCFrtIKsFrj2rBZrVNJvRbHrD0+vGFp3ma0ahRrRiV9Gi1f29x/6wctYoxes/orpq40dz4zstEvZUPBBXpmJ3I2oN69amUy2zt9qadSVYIqBlQ6p68zfaOwCaW5YVNI3L5Jd6RcgG4grfubg21o2G6hmr/KmYUHFQM2vL8+CQ3K5m/XxaNZX962fsJYkQCL/oyQd5sjSSDU+OTu/JL0nJHdkZOE4otn9It2WfdVcWnu8MRiO/6f1Ol/f39/e1WwnX0UPA8JQhgDjeYTGAeGoQ0CoyFwWGupyC2xvuP5UThWufClPuKeOCfZptfAbDxH5hgji+vTgxAuJEGC94y2Xj1bJ6IjSrEbN6fUdNBswqO9to1+PbNbA4rCLk9Hkd7KF35ui6G9CjC3BYPpdabyZ04sA2O3JGFxq6HrUScxDsmeG7TjSX0YnO/fiFq09OZLKHrxE07m7JJE5vxI4Fc3R+GTAgbHCb08ZtszRercTnHer1mM7JjRka5qvGdfWwHkHebwCFEZ2F6UEbWe1Fs1riOC19WqW1RAd/iGs7Lelt7VnY5LVER3+8CLuIRixpk+ESndidRxfRHMSVeVDp8QUn6fG9F4xLdCCIHPdQd7YJcgmA3my781mQXOn0ytBvBASC0SkDwXuAuQSAfsFt5UWf+D9s8Iw011iwsIpzZb3I/SwY1ibQdSHwh4Y9jmFtEl2Zzs+uu26L6EJ5vZ7x2cjrXdwDkW4tJR0P3mlaQjx40XiwNeAMnZ45jAxdA7EO4eAebx3PBw4C8wJdhIOmLGkTDgLT+c6jt2FwhicAB12Eg1tVgXDQnDvbhIPQvLyLhIMuNIgA4KCLcHCXpHBGoLVQYRUNeogG7RnWJhr0EA3aM6xNNOhdOhqEsroHoEEP0eAuKelo8DdNS4gGLxoNajMHe8NBM+u8EQ72T1Pe+cBBD5g56GCHw5AlbcJB7+PDQQ+Agx7Cwa2qQDhozp1twkEP4aDq9MowAoCDHsLBXZLaNXMQ14EbDBZW8aCPeNCeYW3iQR/xoD3D2sSD/qXjQSiv+wAe9BEP7pKSjgc/aVpCPHjReLA94vR7QyYTdNBHOtg/S/nnQwd9XFd8REvapIP+x6eDPkAHfaSDW1WBdNCcO9ukgz7SQdXplVEEQAd9pIO7JAXSwcYXRUq/+sK3P4ttF5mhwRBilRkGyAztGdYmMwyQGdozrE1mKAcMZ9eJt8UMoWwfAMwwQGa4S0o6M7zXtITM8KKZ4dA5JTMMkBn2z1LB+TDDQGeGiAxNGdLqz8l8fGQYAMgwQGS4VRWIDM25s01kGCAyVJ1eGUQAyDBAZLhLUrja2FqosIoGQ0SD9gzbFw36BgZVIYAGN5D/Ewj5ke+bs3VkEQOHl04LoUQfArQwRFq4S0o6LfysaQlp4UXTwsBVddz/ywlHJhIb0sL+WSo8H1oY6rQQlx+bMqRNWhh+fFoYArQwRFq4VRVIC825s01aGCItVJ1eGUQAtDBEWrhLUgdNMOyaX6iVNFcy40+gGAw7vcljYCDuRDh3zZ5hw54jNM/AAC26dBoFJZIIoFER0qhdUtJp1BdNS0ijkEY1dGz3d3QjpFH9s1R0PjQqwp/KOKIlbeKo6OPjqAjAURHiqK2qQBxlzp1t4qgIcZTq9MooAsBREeKoXZICcZRkUe6djxDJYLCwOn1N5hOESBYMa3Nl6xDpoD3D2lzZKn+f8uy667boIJTXhwAdHCId3CEl4kDRv1tLkzRerTgDMyInjx1Jbhr6IAOHRPt1Fx1naKq7SABVnU1nUYjKa/X5vPZE576dRz9qV+QfT2RQJrIvsjpmDZxNEPuxVpE3bMjw2tlHh4aU5uhSW3/j1KmkFhBVIUFwoNSCsFVRmxqblNp+ufHc4hlXXlXzsQIa9EuRJ5qNIb9s01fVETmtQNRbZmRHRSZlpr9VO63MaurSL22C0c+cyqAvFQtPGsz8VmesfuX11rwZthOwSZXpb8ZOq7J1aDpMZWYVJudKnsEaVCGMqB1+Du2ZRa10Gban/JtUmP4O74QK6zM8bPbi1K7/9RECGfTbKadNl9HIkMyGvkWZ7feC8dgDgE3/vj+5GIxGrhl6AcgMWlHvnTRfjlrjzKA9ra33SwqnNbnEHx5RZ/ory1OGs0EzXRIlNQ60Tv5hyiHQr7x1sEo7yiFOu6t16LiRkFaIOuLAMRyNyYSEzjiY+BGd+Ne9tMTnfi3FYTo/nuRZRieSWl+50hH2+FIxOTNDTu9ZbzUM6Y4ASxqZlgW0SI/3ypvZc04H3W+6WnNy3Yw7o/i87/S5Pl7ZaSZl3mmHDLY6E2gD0g5zhmwAfotI9RJnmvxSbBH++5Tzcv4G51pMc7xhR6T8hUy9t71IoG8tYr7km+vZfjerZZyB1XArX68qs/NamBVf9FpSOmPRXtbFGntdnXoJVlzd6yGlKP6aW5qeAq/fjBxfnTa590jTB7XjUTOykkQIOXS+ibOjomOmYwK+zU5lLOgTJIgLBYmHki7Yzj9YG782/Hxdae+X4tXk9M730/wVtDbRnHtjMonTG7FjkUyn/PyuqeXNWetv9vs+fZMuF+zsrjgDL5KTz16Vy731Vao8RdR6TVqzHvPHxxU9guhcTXS/51PKSn6PF1STBS6j+ODLKPpH9noI056ip/Xg64VlSu8xPE4K1V9bfGd+SbMJ1/RfVenuWHeRE4C6gkPnlCBoKQZkaiML0PWb018dNCz9Z7LgfXe0tBFLQ0s1LFp6P4T/HhdvdCdmlcvDTmC92/1eFngADaZz+s+LMbtgjunBcNCAFoRYDBr7gfKPu0SkO7So32GiHQXMDOw66lQB6D0sLOlu2YY0+RB9mecpTlc/WjgCl5xYjEc61v4mbY4WNmNhaO2JPQu7+9Hbj7do4eBMA05BgY86FWE+w6UObLPIOejdHM6cef4tn1J+xP8=7Z1dc6O4EoZ/TS7jkvi0L5PsZPZiZmtqc2rPmUtiFJtaDF5MJsn++iOBhBGSDXZk4cSdnao1AiRQv90tHiT7yr1bvX4tovXyex6T9MpB8euV+9uV42DPRfR/rOStLglnuC5YFEnMD9oWPCT/El7Iz1s8JzHZSAeWeZ6WyVounOdZRualVBYVRf4iH/aUp3Kr62hBlIKHeZSqpf9N4nLJS3Ew2+74nSSLJW966oT1jsdo/veiyJ8z3t6V4z5Vf/XuVSTq4je6WUZx/tIqcr9cuXdFnpf1p9XrHUlZ34puq8+737G3ue6CZOWQE5z6hF9R+sxv/YZfWPkmOmPzkqzSKKNbt8tyldJCTD8+5Vn5wA9CdHu+TNL4W/SWP7OGNyXtCLF1u8yL5F96fCROpruLkpvdCVhtSZre5WleVE26BLH/pDMfWI28rYJs6Lk/xF3ipuhbtCnF9eRpGq03yWN1heyQVVQskuw2L8t8xQ8St3YvN89N5t5GabLIaNmcNkQK1gwzLYnFbQjr1Q2ukjn/nEaPJL1ttCCqzvKqFzdlkf9NWu2h6q/ZIyQnuvk+WiUp86S/SBFHWSR6v+4/7PBtXYXcvKQoyetOieBGeNShSb4iZfFGD+EnTLlUuSs7Ht9+aTmGkPOy5RMO4oURd8ZFU/VWkPQD16Ren66iTxFaWgKl91bK4pR7mHd7W2PCEutonmSLb+SJXbS3LfmT3wcrelkmJXmg5ay5FxrwaFlOu/QprWy/TOKYZJU2yqiMHhuPWOdJVlb37t/Sf/S679DEv/LpJd/Rbbzdpv/Y4QU1YUYvPUoqyxAq5hfCBD3MjI7ejMJuwUCzBe+3mqdYDYPVjrKa79izmq9YTbEZyeIbll63tthpvnYUakUr2ooSre7vXfpHy2mnFG//49VVGz/bGz9IkdC7YoG4MhW9Gl5r0PQ2iZXM3ulrOpSgiYCULamq3d/qb1/T3aKsIGlUJr/kFnU24C38YOLaWjecymds8udiTvhB7awtztOH5G419f0p1VT2b+5xkCQCTfgFTz7Kk4WRbHhyOL4nvyYlc2Q0QSjg2z+F29LPqitzz0eT2cxrez/a5f3D/b12K+46agiYjhkCMHKPiwHYlYOAUpG5KDDVyCmIVswPs8fNurJFkDI/eSzop8XWYyBIHBYkMPLsRYkZmNWWWd2hz0wGzCqG2m27Vp1ww+6amkh0wle2/QXzTgBTmzG1b/E5C+PxE712yL4zaTfjggFjguMSvJB/O8NjpLfZiVM819D1rJOpff/AlL/rRHMpHqsgkDVcfUKhySG/gtSYuyXzKL3hO1bU0Vkz2oCw5W+oy98WabTZ8M896nWpzvGNGTzmycZ11Egf6rzfABvDKhxTgzbA24uGtxihjj6t4luskkDgtzst6e4dWdgEuFhlgawIhohGLGkT6mIV4Z3HENEc1RV5UBrx+aOM+D4K18UqIQSwe6w72yS7WMfiLhHtCqeXHv1mmkAwGzMQfAS6i4EDWgsVVvmuqBcMa8GwNgmvo8F+QHjt2dom4hX5/ezG77YQry7RN3NCW4l+FwgBxttISeWFd4qWgBdeNC/sPIEGaGBaw1PHQKwDWnjAa8jzoYWamYMO0EJTlrRJCzUT/s5jtGFwDqiGFjpAC/eqAmihOXe2SQu1M/cukRY6uocIDS10gBb2SQpoobVQYZUWukAL7RnWJi10gRaOamubtNC9dFqoS/Suhha6QAv7pKTSwt8VLQEtvGhaqMwuHMwLzSwOB144PE2558MLXc3sQgQDDkOWtMkL3c/PC10NL3SBF+5VBfBCc+5skxe6wAtlp5ceIzS80AVe2Ccp4IXWQoVVXugBL7RnWJu80ANeOKqtbfJC79J5oS7Rexpe6AEv7JOSygt/U7QEvPCieWH3EdQbTJ1M4EIPcOHwLOWdDy70YDHyCS1pExd6nx8Xehpc6AEu3KsKwIXm3NkmLvQAF8pOLz1FaHChB7iwT1KAC62FCqu40AdcaM+wNnGhD7hwVFvbxIXiWeHsxu+2cKEu0fsaXOgDLuyTkooL7xUtAS68aFw4RWPiQh9w4fAs5Z8PLvRVXAi00JQhrf4ezeenhb6GFvpAC/eqAmihOXe2SQt9oIWy00sPERpa6AMt7JMU0EJrocIqLQyAFtoz7FBa6Bl4qAqAFo5q69AiGQ4unRbqEn2goYUB0MI+Kam08IuiJaCFF00LfUfW8QHfXWgi2AEtHJ6lgvOhhYFKC2EpsilD2qSFweenhYGGFgZAC/eqAmihOXe2SQsDoIWy00sPERpaGAAt7JMU0EJroWIwLfQNxIoQoNKotg4sQqXw0qGSLh+EGqgUAlTqk5IKlb4qWgKoBFCppWO7P58bAlQanqXC84FKIfwgxgktaZMqhZ+fKoUaqhQCVdqrCqBK5tzZJlUKgSrJTi89RWioUghUqU9SQJWshQqrc9BENgHDWjCszRWrU8CFo9ra5opV8bOUZzd+t4ULdYl+qsGFU8CFfVJSceE+Kc3TaLNhTMyImlx6JL5pyQNPEA4PGz4iNDU1fMQaUZ3N4JFryu2MAd3u/OWhg0kv7FbknUxjKvAbQ2NNxJqgbQj7WYvInbZUeI0OkaEhoSFVafVXSI2lNB/LAvH9I5XmB52KuhDZoNJURPmRohkTXlXzqcKZ7tchR5piIb480+vgLdQJQ4NVhnsqMqiyw/Dp6VXWIJhhOVMb+8yJTPcdYcGooczrDMSa91/vTZpBN/saFJlKY8cVWR2YjhOZWYGJ6Y9nsKyU6yLsBp9jR2VhJ1cGs9MJ7DBqfGKBDXkwbI/g5FH/9QnCmO6XUcbNleHMkMqmnj2V6UDyeGP/7dB+OLKYzGaOGWyhUZluibw7arKcdZ4wffdIlWHUmWbiTU8mMyHgMwlmk3auxFJenCjj++OEg3W/4LaDUdoRDkbdYdaxT4wYdwLUCR8ZZxpu3lUOm/K15oeplHieZxmZCzZ95QjVH/CVYGJChpjVU2+1zNYI3PhsrJnTf//bKXJoB7Fvu1F7Bt2CORr/fOgcuSEet9Mo7c6f9VNgbf/ibrw6qn91gLV+6RInv6R+Dv55zlk5e+Nyzecp3tAjUvYCpdm7fVFzWC18wuO769l/NZt1lGmrYRa83lQmZbVQC72qtaRkQaO0qIt2bV2d3AQtrq71mNKLE/ZUo+tuQj9K1mfBdAekzgF9dNKcKAV2jI+d+oF6KjKYEHUMtfYmZoYhzo0dnXM/lGRFd/5Je/St5Z91pYNfPlezwne+B2avepUZ3syLknmU3vAdqySO2fm75nS3p4u/21+HjA5qZ9o5PEATNxRzvN6kyt/7glKcwmu9xp3JhfnT04a8W1AqLv0jjwkt+SNaEcXksDbhk69N2BWRm8F/d5abMhpu1mZJo7XARFpTqesP6mEkmzO9/lWV9seoi5wgU7v5zgkyupUKOjOamB8zU9Fmy4r/SVZsHAxWPMKKulUKJ7PiYejwI65SEKmxDXFq8VofsH6UVQrNSLj9rVmrR1p/DhH6Xb6tW7JwKt/GaAB2u4g1CyIESGwXOWpc4IVjBYaPsGqh6beWqthT5zrPU5jpbChMaJcrnC5OqPj0uzAomO8Y8+kWJZzOfIdhws83U10f3jXv7njhWKDyDOeq080iZwRxezj1uuX3PCbsiP8D \ No newline at end of file diff --git a/doc/dandelion/images/t0.png b/doc/dandelion/images/t0.png index ff7b7636e..8cfa06b1f 100644 Binary files a/doc/dandelion/images/t0.png and b/doc/dandelion/images/t0.png differ diff --git a/doc/dandelion/images/t10.png b/doc/dandelion/images/t10.png index 4f56a4613..3d61076ac 100644 Binary files a/doc/dandelion/images/t10.png and b/doc/dandelion/images/t10.png differ diff --git a/doc/dandelion/images/t30.png b/doc/dandelion/images/t30.png index 316bed298..914d4c3d1 100644 Binary files a/doc/dandelion/images/t30.png and b/doc/dandelion/images/t30.png differ diff --git a/doc/dandelion/images/t40.png b/doc/dandelion/images/t40.png index 228ce14cc..d05ead93f 100644 Binary files a/doc/dandelion/images/t40.png and b/doc/dandelion/images/t40.png differ diff --git a/doc/dandelion/images/t45.png b/doc/dandelion/images/t45.png new file mode 100644 index 000000000..38c4d090e Binary files /dev/null and b/doc/dandelion/images/t45.png differ diff --git a/doc/dandelion/images/t5.png b/doc/dandelion/images/t5.png index c350527e5..999ee5f7e 100644 Binary files a/doc/dandelion/images/t5.png and b/doc/dandelion/images/t5.png differ diff --git a/doc/dandelion/images/t50.png b/doc/dandelion/images/t50.png new file mode 100644 index 000000000..4c3c63999 Binary files /dev/null and b/doc/dandelion/images/t50.png differ diff --git a/doc/dandelion/images/t55.png b/doc/dandelion/images/t55.png index 1b776a632..5affdaa4b 100644 Binary files a/doc/dandelion/images/t55.png and b/doc/dandelion/images/t55.png differ diff --git a/doc/dandelion/images/t60.png b/doc/dandelion/images/t60.png new file mode 100644 index 000000000..50e3a3569 Binary files /dev/null and b/doc/dandelion/images/t60.png differ diff --git a/doc/dandelion/images/t65.png b/doc/dandelion/images/t65.png deleted file mode 100644 index 35541d010..000000000 Binary files a/doc/dandelion/images/t65.png and /dev/null differ diff --git a/doc/dandelion/images/t70.png b/doc/dandelion/images/t70.png deleted file mode 100644 index d5146aa69..000000000 Binary files a/doc/dandelion/images/t70.png and /dev/null differ diff --git a/doc/dandelion/images/t70_1.png b/doc/dandelion/images/t70_1.png new file mode 100644 index 000000000..8b4cadb4e Binary files /dev/null and b/doc/dandelion/images/t70_1.png differ diff --git a/doc/dandelion/images/t70_2.png b/doc/dandelion/images/t70_2.png new file mode 100644 index 000000000..3b749c7ab Binary files /dev/null and b/doc/dandelion/images/t70_2.png differ diff --git a/doc/dandelion/images/t80.png b/doc/dandelion/images/t80.png deleted file mode 100644 index d81818bdf..000000000 Binary files a/doc/dandelion/images/t80.png and /dev/null differ diff --git a/doc/dandelion/images/t85.png b/doc/dandelion/images/t85.png deleted file mode 100644 index 9bb04ac5d..000000000 Binary files a/doc/dandelion/images/t85.png and /dev/null differ diff --git a/doc/dandelion/images/t95_1.png b/doc/dandelion/images/t95_1.png deleted file mode 100644 index bbe092fee..000000000 Binary files a/doc/dandelion/images/t95_1.png and /dev/null differ diff --git a/doc/dandelion/images/t95_2.png b/doc/dandelion/images/t95_2.png deleted file mode 100644 index e8d3fa550..000000000 Binary files a/doc/dandelion/images/t95_2.png and /dev/null differ diff --git a/doc/dandelion/images/t_i.png b/doc/dandelion/images/t_i.png deleted file mode 100644 index 368b1ce39..000000000 Binary files a/doc/dandelion/images/t_i.png and /dev/null differ diff --git a/doc/dandelion/simulation.md b/doc/dandelion/simulation.md index e275f319b..0c3cc07c3 100644 --- a/doc/dandelion/simulation.md +++ b/doc/dandelion/simulation.md @@ -1,8 +1,8 @@ Dandelion Simulation ================== -This document describes a network of node with Dandelion. +This document describes a network of node using the Dandelion protocol with transaction aggregation. -In this scenario, we simulate a successful aggregation but a failed transaction cut-through forcing a node to revert its stempool state. +In this scenario, we simulate a successful aggregation. This document also helps visualizing all the timers in a simple way. @@ -12,77 +12,66 @@ This document also helps visualizing all the timers in a simple way. ## T = 5 -A sends grins to B. -B flips a coin and decides to add it to its stempool and starts the embargo timer for this transaction. +A sends grins to B. A adds the transaction to its stempool and starts the embargo timer for this transaction. ![t = 5](images/t5.png) ## T = 10 -B waits until he runs out of patience. +A waits until he runs out of patience. ![t = 10](images/t10.png) ## T = 30 -B runs out of patience and broadcasts the aggregated stem transaction to its Dandelion relay H. -H receives the stem transaction, flips a coin and decides to add it to its stempool and starts the embargo timer for this transaction. - +A runs out of patience, flips a coin and broadcasts the stem transaction to its Dandelion relay G. +G receives the stem transaction, add it to its stempool and starts the embargo timer for this transaction. + ![t = 30](images/t30.png) ## T = 40 G sends grins to E. -E flips a coin and decides to add it to its stempool and starts the embargo timer for this transaction. -B and H wait. +G adds the transaction it to its stempool and starts the embargo timer for this transaction. ![t = 40](images/t40.png) -## T = 55 +## T = 45 + +G runs out of patience, flips a coin and broadcasts the stem transaction to its Dandelion relay D. + +![t = 45](images/t45.png) + +## T = 50 B spends B1 to D. -D flips a coin and decides to add it to its stempool and starts the embargo timer for this transaction. -H runs out of patience broadcasts the aggregated stem transaction to its Dandelion relay E. -E receives the stem transaction, flips a coin and decides to add it to its stempool and starts the embargo timer for this transaction. +B add it to its stempool and starts the embargo timer for this transaction. ![t = 55](images/t55.png) -## T = 65 +## T = 55 -Nodes are waiting. +B runs out of patience, flips a coin and broadcasts the stem transaction to its Dandelion relay H. +D runs out of patience, flips a coin and broadcasts the aggregated stem transaction to its Dandelion relay E. +E receives the stem transaction, add it to its stempool and starts the embargo timer for this transaction. -![t = 65](images/t65.png) +![t = 55](images/t55.png) -## T = 70 +## T = 60 -E runs out of patience broadcasts the aggregated stem transaction to its Dandelion relay F. -F receives the stem transaction, flips a coin and decides to add it to its stempool and starts the embargo timer for this transaction. +H runs out of patience, flips a coin broadcasts the stem transaction to its Dandelion relay E. +E receives the stem transaction, add it to its stempool and starts the embargo timer for this transaction. -![t = 70](images/t70.png) +![t = 60](images/t60.png) -## T = 80 +## T = 70 - Step 1 -D runs out of patience, broadcasts the aggregated stem transaction to its Dandelion relay. -E receives the stem transaction, flips a coin and decides to add it to its stempool and starts the embargo timer for this transaction. aggregates them (thus removing duplicate input/output pair B1) and starts its patience timer. +E runs out of patience, flips a coin and decide to broadcast the transaction to all its peers (fluff in the mempool). -![t = 80](images/t80.png) +![t = 70_1](images/t70_1.png) -## T = 85 - -Nodes are waiting. - -![t = 85](images/t85.png) - -## T = 95 - Step 1 - -F runs out of patience, broadcasts the aggregated stem transaction to its Dandelion relay H. -H receives the transaction, flips a coin and decide to broadcast the transaction to all its peers (fluff in the mempool). - -![t = 95_1](images/t95_1.png) - -## T = 95 - Step 2 +## T = 70 - Step 2 All the nodes add this transaction to their mempool and remove the related transactions from their stempool. -E receives the transaction in its mempool and reverts the state of its stempool to avoid conflicting transactions. -![t = 95_2](images/t95_2.png) +![t = 70_2](images/t70_2.png) \ No newline at end of file