Merge pull request #4 from merope07/cleanup-oct2016

Modularize several data structures in core
This commit is contained in:
Ignotus Peverell 2016-10-23 15:58:56 -04:00 committed by GitHub
commit 0855d7b41e
19 changed files with 1367 additions and 1062 deletions

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! The block chain itself, validates and accepts new blocks, handles reorgs.
#![deny(non_upper_case_globals)]

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of the chain block acceptance (or refusal) pipeline.
use secp;

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implements storage primitives required by the chain
use byteorder::{WriteBytesExt, BigEndian};

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Base types that the block chain pipeline requires.
use core::core::{Hash, Block};

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
extern crate grin_core;
extern crate grin_chain;
extern crate rand;

470
core/src/core/block.rs Normal file
View file

@ -0,0 +1,470 @@
// Copyright 2016 The Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Blocks and blockheaders
use time;
use secp;
use secp::{Secp256k1, Signature, Message};
use secp::key::SecretKey;
use std::collections::HashSet;
use core::Committed;
use core::{Input, Output, Proof, TxProof, Transaction};
use core::transaction::merkle_inputs_outputs;
use core::{PROOFSIZE, REWARD};
use core::hash::{Hash, Hashed, ZERO_HASH};
use core::transaction::MAX_IN_OUT_LEN;
use ser::{self, Readable, Reader, Writeable, Writer, ser_vec};
/// Block header, fairly standard compared to other blockchains.
pub struct BlockHeader {
pub height: u64,
pub previous: Hash,
pub timestamp: time::Tm,
pub td: u64, // total difficulty up to this block
pub utxo_merkle: Hash,
pub tx_merkle: Hash,
pub total_fees: u64,
pub nonce: u64,
pub pow: Proof,
}
impl Default for BlockHeader {
fn default() -> BlockHeader {
BlockHeader {
height: 0,
previous: ZERO_HASH,
timestamp: time::at_utc(time::Timespec { sec: 0, nsec: 0 }),
td: 0,
utxo_merkle: ZERO_HASH,
tx_merkle: ZERO_HASH,
total_fees: 0,
nonce: 0,
pow: Proof::zero(),
}
}
}
// Only Writeable implementation is required for hashing, which is part of
// core. Readable is in the ser package.
impl Writeable for BlockHeader {
fn write(&self, writer: &mut Writer) -> Option<ser::Error> {
try_m!(writer.write_u64(self.height));
try_m!(writer.write_fixed_bytes(&self.previous));
try_m!(writer.write_i64(self.timestamp.to_timespec().sec));
try_m!(writer.write_fixed_bytes(&self.utxo_merkle));
try_m!(writer.write_fixed_bytes(&self.tx_merkle));
try_m!(writer.write_u64(self.total_fees));
// make sure to not introduce any variable length data before the nonce to
// avoid complicating PoW
try_m!(writer.write_u64(self.nonce));
// cuckoo cycle of 42 nodes
for n in 0..42 {
try_m!(writer.write_u32(self.pow.0[n]));
}
writer.write_u64(self.td)
}
}
impl Hashed for BlockHeader {
fn bytes(&self) -> Vec<u8> {
// no serialization errors are applicable in this specific case
ser_vec(self).unwrap()
}
}
/// A block as expressed in the MimbleWimble protocol. The reward is
/// non-explicit, assumed to be deductible from block height (similar to
/// bitcoin's schedule) and expressed as a global transaction fee (added v.H),
/// additive to the total of fees ever collected.
pub struct Block {
// hash_mem: Hash,
pub header: BlockHeader,
pub inputs: Vec<Input>,
pub outputs: Vec<Output>,
pub proofs: Vec<TxProof>,
}
/// Implementation of Writeable for a block, defines how to write the full
/// block as binary.
impl Writeable for Block {
fn write(&self, writer: &mut Writer) -> Option<ser::Error> {
try_m!(self.header.write(writer));
try_m!(writer.write_u64(self.inputs.len() as u64));
try_m!(writer.write_u64(self.outputs.len() as u64));
try_m!(writer.write_u64(self.proofs.len() as u64));
for inp in &self.inputs {
try_m!(inp.write(writer));
}
for out in &self.outputs {
try_m!(out.write(writer));
}
for proof in &self.proofs {
try_m!(proof.write(writer));
}
None
}
}
/// Implementation of Readable for a block, defines how to read a full block
/// from a binary stream.
impl Readable<Block> for Block {
fn read(reader: &mut Reader) -> Result<Block, ser::Error> {
let height = try!(reader.read_u64());
let previous = try!(reader.read_fixed_bytes(32));
let timestamp = try!(reader.read_i64());
let utxo_merkle = try!(reader.read_fixed_bytes(32));
let tx_merkle = try!(reader.read_fixed_bytes(32));
let total_fees = try!(reader.read_u64());
let nonce = try!(reader.read_u64());
// cuckoo cycle of 42 nodes
let mut pow = [0; PROOFSIZE];
for n in 0..PROOFSIZE {
pow[n] = try!(reader.read_u32());
}
let td = try!(reader.read_u64());
let input_len = try!(reader.read_u64());
let output_len = try!(reader.read_u64());
let proof_len = try!(reader.read_u64());
if input_len > MAX_IN_OUT_LEN || output_len > MAX_IN_OUT_LEN || proof_len > MAX_IN_OUT_LEN {
return Err(ser::Error::TooLargeReadErr("Too many inputs, outputs or proofs.".to_string()));
}
let inputs = try!((0..input_len).map(|_| Input::read(reader)).collect());
let outputs = try!((0..output_len).map(|_| Output::read(reader)).collect());
let proofs = try!((0..proof_len).map(|_| TxProof::read(reader)).collect());
Ok(Block {
header: BlockHeader {
height: height,
previous: Hash::from_vec(previous),
timestamp: time::at_utc(time::Timespec {
sec: timestamp,
nsec: 0,
}),
td: td,
utxo_merkle: Hash::from_vec(utxo_merkle),
tx_merkle: Hash::from_vec(tx_merkle),
total_fees: total_fees,
pow: Proof(pow),
nonce: nonce,
},
inputs: inputs,
outputs: outputs,
proofs: proofs,
..Default::default()
})
}
}
/// Provides all information from a block that allows the calculation of total
/// Pedersen commitment.
impl Committed for Block {
fn inputs_committed(&self) -> &Vec<Input> {
&self.inputs
}
fn outputs_committed(&self) -> &Vec<Output> {
&self.outputs
}
fn overage(&self) -> i64 {
(REWARD as i64) - (self.header.total_fees as i64)
}
}
/// Default properties for a block, everything zeroed out and empty vectors.
impl Default for Block {
fn default() -> Block {
Block {
header: Default::default(),
inputs: vec![],
outputs: vec![],
proofs: vec![],
}
}
}
impl Block {
/// Builds a new block from the header of the previous block, a vector of
/// transactions and the private key that will receive the reward. Checks
/// that all transactions are valid and calculates the Merkle tree.
pub fn new(prev: BlockHeader,
txs: Vec<&mut Transaction>,
reward_key: SecretKey)
-> Result<Block, secp::Error> {
let secp = Secp256k1::with_caps(secp::ContextFlag::Commit);
let (reward_out, reward_proof) = try!(Block::reward_output(reward_key, &secp));
// note: the following reads easily but may not be the most efficient due to
// repeated iterations, revisit if a problem
// validate each transaction and gather their proofs
let mut proofs = try_map_vec!(txs, |tx| tx.verify_sig(&secp));
proofs.push(reward_proof);
// build vectors with all inputs and all outputs, ordering them by hash
// needs to be a fold so we don't end up with a vector of vectors and we
// want to fullt own the refs (not just a pointer like flat_map).
let mut inputs = txs.iter()
.fold(vec![], |mut acc, ref tx| {
let mut inputs = tx.inputs.clone();
acc.append(&mut inputs);
acc
});
let mut outputs = txs.iter()
.fold(vec![], |mut acc, ref tx| {
let mut outputs = tx.outputs.clone();
acc.append(&mut outputs);
acc
});
outputs.push(reward_out);
inputs.sort_by_key(|inp| inp.hash());
outputs.sort_by_key(|out| out.hash());
// calculate the overall Merkle tree and fees
let fees = txs.iter().map(|tx| tx.fee).sum();
Ok(Block {
header: BlockHeader {
height: prev.height + 1,
total_fees: fees,
timestamp: time::now(),
..Default::default()
},
inputs: inputs,
outputs: outputs,
proofs: proofs,
}
.compact())
}
pub fn hash(&self) -> Hash {
self.header.hash()
}
/// Matches any output with a potential spending input, eliminating them
/// from the block. Provides a simple way to compact the block. The
/// elimination is stable with respect to inputs and outputs order.
pub fn compact(&self) -> Block {
// the chosen ones
let mut new_inputs = vec![];
// build a set of all output hashes
let mut out_set = HashSet::new();
for out in &self.outputs {
out_set.insert(out.hash());
}
// removes from the set any hash referenced by an input, keeps the inputs that
// don't have a match
for inp in &self.inputs {
if !out_set.remove(&inp.output_hash()) {
new_inputs.push(*inp);
}
}
// we got ourselves a keep list in that set
let new_outputs = self.outputs
.iter()
.filter(|out| out_set.contains(&(out.hash())))
.map(|&out| out)
.collect::<Vec<Output>>();
let tx_merkle = merkle_inputs_outputs(&new_inputs, &new_outputs);
Block {
header: BlockHeader {
tx_merkle: tx_merkle,
pow: self.header.pow.clone(),
..self.header
},
inputs: new_inputs,
outputs: new_outputs,
proofs: self.proofs.clone(),
}
}
// Merges the 2 blocks, essentially appending the inputs, outputs and proofs.
// Also performs a compaction on the result.
pub fn merge(&self, other: Block) -> Block {
let mut all_inputs = self.inputs.clone();
all_inputs.append(&mut other.inputs.clone());
let mut all_outputs = self.outputs.clone();
all_outputs.append(&mut other.outputs.clone());
let mut all_proofs = self.proofs.clone();
all_proofs.append(&mut other.proofs.clone());
all_inputs.sort_by_key(|inp| inp.hash());
all_outputs.sort_by_key(|out| out.hash());
Block {
// compact will fix the merkle tree
header: BlockHeader {
total_fees: self.header.total_fees + other.header.total_fees,
pow: self.header.pow.clone(),
..self.header
},
inputs: all_inputs,
outputs: all_outputs,
proofs: all_proofs,
}
.compact()
}
/// Checks the block is valid by verifying the overall commitments sums and
/// proofs.
pub fn verify(&self, secp: &Secp256k1) -> Result<(), secp::Error> {
// sum all inputs and outs commitments
let io_sum = try!(self.sum_commitments(secp));
// sum all proofs commitments
let proof_commits = map_vec!(self.proofs, |proof| proof.remainder);
let proof_sum = try!(secp.commit_sum(proof_commits, vec![]));
// both should be the same
if proof_sum != io_sum {
// TODO more specific error
return Err(secp::Error::IncorrectCommitSum);
}
// verify all signatures with the commitment as pk
let msg = try!(Message::from_slice(&[0; 32]));
for proof in &self.proofs {
let pubk = try!(proof.remainder.to_pubkey(secp));
let sig = try!(Signature::from_der(secp, &proof.sig));
try!(secp.verify(&msg, &sig, &pubk));
}
Ok(())
}
// Builds the blinded output and related signature proof for the block reward.
fn reward_output(skey: secp::key::SecretKey,
secp: &Secp256k1)
-> Result<(Output, TxProof), secp::Error> {
let msg = try!(secp::Message::from_slice(&[0; 32]));
let sig = try!(secp.sign(&msg, &skey));
let output = Output::OvertOutput {
value: REWARD,
blindkey: skey,
}
.blind(&secp);
let over_commit = try!(secp.commit_value(REWARD as u64));
let out_commit = output.commitment().unwrap();
let remainder = try!(secp.commit_sum(vec![over_commit], vec![out_commit]));
let proof = TxProof {
remainder: remainder,
sig: sig.serialize_der(&secp),
};
Ok((output, proof))
}
}
#[cfg(test)]
mod test {
use super::*;
use core::{Input, Output, Transaction};
use core::hash::{Hash, Hashed};
use core::test::{tx1i1o, tx2i1o};
use secp::{self, Secp256k1};
use secp::key::SecretKey;
use rand::Rng;
use rand::os::OsRng;
fn new_secp() -> Secp256k1 {
secp::Secp256k1::with_caps(secp::ContextFlag::Commit)
}
// utility to create a block without worrying about the key or previous header
fn new_block(txs: Vec<&mut Transaction>, secp: &Secp256k1) -> Block {
let mut rng = OsRng::new().unwrap();
let skey = SecretKey::new(secp, &mut rng);
Block::new(BlockHeader::default(), txs, skey).unwrap()
}
// utility producing a transaction that spends the above
fn txspend1i1o<R: Rng>(secp: &Secp256k1, rng: &mut R, oout: Output, outh: Hash) -> Transaction {
if let Output::OvertOutput { blindkey, value } = oout {
Transaction::new(vec![Input::OvertInput {
output: outh,
value: value,
blindkey: blindkey,
}],
vec![Output::OvertOutput {
value: 3,
blindkey: SecretKey::new(secp, rng),
}],
1)
} else {
panic!();
}
}
#[test]
// builds a block with a tx spending another and check if merging occurred
fn compactable_block() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx1 = tx2i1o(secp, &mut rng);
let mut btx1 = tx1.blind(&secp).unwrap();
let tx2 = tx1i1o(secp, &mut rng);
let mut btx2 = tx2.blind(&secp).unwrap();
// spending tx2
let spending = txspend1i1o(secp, &mut rng, tx2.outputs[0], btx2.outputs[0].hash());
let mut btx3 = spending.blind(&secp).unwrap();
let b = new_block(vec![&mut btx1, &mut btx2, &mut btx3], secp);
// block should have been automatically compacted (including reward output) and
// should still be valid
b.verify(&secp).unwrap();
assert_eq!(b.inputs.len(), 3);
assert_eq!(b.outputs.len(), 3);
}
#[test]
// builds 2 different blocks with a tx spending another and check if merging
// occurs
fn mergeable_blocks() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx1 = tx2i1o(secp, &mut rng);
let mut btx1 = tx1.blind(&secp).unwrap();
let tx2 = tx1i1o(secp, &mut rng);
let mut btx2 = tx2.blind(&secp).unwrap();
// spending tx2
let spending = txspend1i1o(secp, &mut rng, tx2.outputs[0], btx2.outputs[0].hash());
let mut btx3 = spending.blind(&secp).unwrap();
let b1 = new_block(vec![&mut btx1, &mut btx2], secp);
b1.verify(&secp).unwrap();
let b2 = new_block(vec![&mut btx3], secp);
b2.verify(&secp).unwrap();
// block should have been automatically compacted and should still be valid
let b3 = b1.merge(b2);
assert_eq!(b3.inputs.len(), 3);
assert_eq!(b3.outputs.len(), 4);
}
}

83
core/src/core/hash.rs Normal file
View file

@ -0,0 +1,83 @@
// Copyright 2016 The Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Hash Function
//!
//! Primary hash function used in the protocol
//!
use std::fmt;
use tiny_keccak::Keccak;
/// A hash to uniquely (or close enough) identify one of the main blockchain
/// constructs. Used pervasively for blocks, transactions and ouputs.
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub struct Hash(pub [u8; 32]);
impl fmt::Display for Hash {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for i in self.0[..].iter().cloned() {
try!(write!(f, "{:02x}", i));
}
Ok(())
}
}
impl Hash {
/// Creates a new hash from a vector
pub fn from_vec(v: Vec<u8>) -> Hash {
let mut a = [0; 32];
for i in 0..a.len() {
a[i] = v[i];
}
Hash(a)
}
/// Converts the hash to a byte vector
pub fn to_vec(&self) -> Vec<u8> {
self.0.to_vec()
}
/// Converts the hash to a byte slice
pub fn to_slice(&self) -> &[u8] {
&self.0
}
}
pub const ZERO_HASH: Hash = Hash([0; 32]);
/// A trait for types that get their hash (double SHA256) from their byte
/// serialzation.
pub trait Hashed {
fn hash(&self) -> Hash {
let data = self.bytes();
Hash(sha3(data))
}
fn bytes(&self) -> Vec<u8>;
}
fn sha3(data: Vec<u8>) -> [u8; 32] {
let mut sha3 = Keccak::new_sha3_256();
let mut buf = [0; 32];
sha3.update(&data);
sha3.finalize(&mut buf);
buf
}
impl Hashed for [u8] {
fn bytes(&self) -> Vec<u8> {
self.to_owned()
}
}

View file

@ -1,15 +1,34 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Core types
pub mod block;
pub mod hash;
pub mod transaction;
#[allow(dead_code)]
#[macro_use]
mod ser;
pub use self::block::{Block, BlockHeader};
pub use self::transaction::{Transaction, Input, Output, TxProof};
use self::hash::{Hash, Hashed, ZERO_HASH};
use ser::{Writeable, Writer, Error, ser_vec};
use time;
use std::fmt;
use std::cmp::Ordering;
use std::collections::HashSet;
use secp;
use secp::{Secp256k1, Signature, Message};
@ -18,64 +37,15 @@ use secp::pedersen::*;
use tiny_keccak::Keccak;
/// The block subsidy amount
pub const REWARD: u64 = 1_000_000_000;
/// Block interval, in seconds
pub const BLOCK_TIME_SEC: u8 = 15;
/// Cuckoo-cycle proof size (cycle length)
pub const PROOFSIZE: usize = 42;
/// A hash to uniquely (or close enough) identify one of the main blockchain
/// constructs. Used pervasively for blocks, transactions and ouputs.
#[derive(Debug, Copy, Clone, PartialEq, PartialOrd, Eq, Ord, Hash)]
pub struct Hash(pub [u8; 32]);
impl fmt::Display for Hash {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
for i in self.0[..].iter().cloned() {
try!(write!(f, "{:02x}", i));
}
Ok(())
}
}
impl Hash {
/// Creates a new hash from a vector
pub fn from_vec(v: Vec<u8>) -> Hash {
let mut a = [0; 32];
for i in 0..a.len() {
a[i] = v[i];
}
Hash(a)
}
/// Converts the hash to a byte vector
pub fn to_vec(&self) -> Vec<u8> {
self.0.to_vec()
}
/// Converts the hash to a byte slice
pub fn to_slice(&self) -> &[u8] {
&self.0
}
}
pub const ZERO_HASH: Hash = Hash([0; 32]);
/// A trait for types that get their hash (double SHA256) from their byte
/// serialzation.
pub trait Hashed {
fn hash(&self) -> Hash {
let data = self.bytes();
Hash(sha3(data))
}
fn bytes(&self) -> Vec<u8>;
}
fn sha3(data: Vec<u8>) -> [u8; 32] {
let mut sha3 = Keccak::new_sha3_256();
let mut buf = [0; 32];
sha3.update(&data);
sha3.finalize(&mut buf);
buf
}
/// Implemented by types that hold inputs and outputs including Pedersen
/// commitments. Handles the collection of the commitments as well as their
/// summing, taking potential explicit overages of fees into account.
@ -119,14 +89,6 @@ pub trait Committed {
fn overage(&self) -> i64;
}
/// A proof that a transaction did not create (or remove) funds. Includes both
/// the transaction's Pedersen commitment and the signature that guarantees
/// that the commitment amounts to zero.
#[derive(Debug, Clone)]
pub struct TxProof {
remainder: Commitment,
sig: Vec<u8>,
}
/// Proof of work
#[derive(Copy)]
@ -189,520 +151,6 @@ impl Proof {
}
}
/// Block header, fairly standard compared to other blockchains.
pub struct BlockHeader {
pub height: u64,
pub previous: Hash,
pub timestamp: time::Tm,
pub td: u64, // total difficulty up to this block
pub utxo_merkle: Hash,
pub tx_merkle: Hash,
pub total_fees: u64,
pub nonce: u64,
pub pow: Proof,
}
impl Default for BlockHeader {
fn default() -> BlockHeader {
BlockHeader {
height: 0,
previous: ZERO_HASH,
timestamp: time::at_utc(time::Timespec { sec: 0, nsec: 0 }),
td: 0,
utxo_merkle: ZERO_HASH,
tx_merkle: ZERO_HASH,
total_fees: 0,
nonce: 0,
pow: Proof::zero(),
}
}
}
// Only Writeable implementation is required for hashing, which is part of
// core. Readable is in the ser package.
impl Writeable for BlockHeader {
fn write(&self, writer: &mut Writer) -> Option<Error> {
try_m!(writer.write_u64(self.height));
try_m!(writer.write_fixed_bytes(&self.previous));
try_m!(writer.write_i64(self.timestamp.to_timespec().sec));
try_m!(writer.write_fixed_bytes(&self.utxo_merkle));
try_m!(writer.write_fixed_bytes(&self.tx_merkle));
try_m!(writer.write_u64(self.total_fees));
// make sure to not introduce any variable length data before the nonce to
// avoid complicating PoW
try_m!(writer.write_u64(self.nonce));
// cuckoo cycle of 42 nodes
for n in 0..42 {
try_m!(writer.write_u32(self.pow.0[n]));
}
writer.write_u64(self.td)
}
}
impl Hashed for BlockHeader {
fn bytes(&self) -> Vec<u8> {
// no serialization errors are applicable in this specific case
ser_vec(self).unwrap()
}
}
/// A block as expressed in the MimbleWimble protocol. The reward is
/// non-explicit, assumed to be deductible from block height (similar to
/// bitcoin's schedule) and expressed as a global transaction fee (added v.H),
/// additive to the total of fees ever collected.
pub struct Block {
// hash_mem: Hash,
pub header: BlockHeader,
pub inputs: Vec<Input>,
pub outputs: Vec<Output>,
pub proofs: Vec<TxProof>,
}
/// Provides all information from a block that allows the calculation of total
/// Pedersen commitment.
impl Committed for Block {
fn inputs_committed(&self) -> &Vec<Input> {
&self.inputs
}
fn outputs_committed(&self) -> &Vec<Output> {
&self.outputs
}
fn overage(&self) -> i64 {
(REWARD as i64) - (self.header.total_fees as i64)
}
}
/// Default properties for a block, everything zeroed out and empty vectors.
impl Default for Block {
fn default() -> Block {
Block {
header: Default::default(),
inputs: vec![],
outputs: vec![],
proofs: vec![],
}
}
}
impl Block {
/// Builds a new block from the header of the previous block, a vector of
/// transactions and the private key that will receive the reward. Checks
/// that all transactions are valid and calculates the Merkle tree.
pub fn new(prev: BlockHeader,
txs: Vec<&mut Transaction>,
reward_key: SecretKey)
-> Result<Block, secp::Error> {
let secp = secp::Secp256k1::with_caps(secp::ContextFlag::Commit);
let (reward_out, reward_proof) = try!(Block::reward_output(reward_key, &secp));
// note: the following reads easily but may not be the most efficient due to
// repeated iterations, revisit if a problem
// validate each transaction and gather their proofs
let mut proofs = try_map_vec!(txs, |tx| tx.verify_sig(&secp));
proofs.push(reward_proof);
// build vectors with all inputs and all outputs, ordering them by hash
// needs to be a fold so we don't end up with a vector of vectors and we
// want to fullt own the refs (not just a pointer like flat_map).
let mut inputs = txs.iter()
.fold(vec![], |mut acc, ref tx| {
let mut inputs = tx.inputs.clone();
acc.append(&mut inputs);
acc
});
let mut outputs = txs.iter()
.fold(vec![], |mut acc, ref tx| {
let mut outputs = tx.outputs.clone();
acc.append(&mut outputs);
acc
});
outputs.push(reward_out);
inputs.sort_by_key(|inp| inp.hash());
outputs.sort_by_key(|out| out.hash());
// calculate the overall Merkle tree and fees
let fees = txs.iter().map(|tx| tx.fee).sum();
Ok(Block {
header: BlockHeader {
height: prev.height + 1,
total_fees: fees,
timestamp: time::now(),
..Default::default()
},
inputs: inputs,
outputs: outputs,
proofs: proofs,
}
.compact())
}
pub fn hash(&self) -> Hash {
self.header.hash()
}
/// Matches any output with a potential spending input, eliminating them
/// from the block. Provides a simple way to compact the block. The
/// elimination is stable with respect to inputs and outputs order.
pub fn compact(&self) -> Block {
// the chosen ones
let mut new_inputs = vec![];
// build a set of all output hashes
let mut out_set = HashSet::new();
for out in &self.outputs {
out_set.insert(out.hash());
}
// removes from the set any hash referenced by an input, keeps the inputs that
// don't have a match
for inp in &self.inputs {
if !out_set.remove(&inp.output_hash()) {
new_inputs.push(*inp);
}
}
// we got ourselves a keep list in that set
let new_outputs = self.outputs
.iter()
.filter(|out| out_set.contains(&(out.hash())))
.map(|&out| out)
.collect::<Vec<Output>>();
let tx_merkle = merkle_inputs_outputs(&new_inputs, &new_outputs);
Block {
header: BlockHeader {
tx_merkle: tx_merkle,
pow: self.header.pow.clone(),
..self.header
},
inputs: new_inputs,
outputs: new_outputs,
proofs: self.proofs.clone(),
}
}
// Merges the 2 blocks, essentially appending the inputs, outputs and proofs.
// Also performs a compaction on the result.
pub fn merge(&self, other: Block) -> Block {
let mut all_inputs = self.inputs.clone();
all_inputs.append(&mut other.inputs.clone());
let mut all_outputs = self.outputs.clone();
all_outputs.append(&mut other.outputs.clone());
let mut all_proofs = self.proofs.clone();
all_proofs.append(&mut other.proofs.clone());
all_inputs.sort_by_key(|inp| inp.hash());
all_outputs.sort_by_key(|out| out.hash());
Block {
// compact will fix the merkle tree
header: BlockHeader {
total_fees: self.header.total_fees + other.header.total_fees,
pow: self.header.pow.clone(),
..self.header
},
inputs: all_inputs,
outputs: all_outputs,
proofs: all_proofs,
}
.compact()
}
/// Checks the block is valid by verifying the overall commitments sums and
/// proofs.
pub fn verify(&self, secp: &Secp256k1) -> Result<(), secp::Error> {
// sum all inputs and outs commitments
let io_sum = try!(self.sum_commitments(secp));
// sum all proofs commitments
let proof_commits = map_vec!(self.proofs, |proof| proof.remainder);
let proof_sum = try!(secp.commit_sum(proof_commits, vec![]));
// both should be the same
if proof_sum != io_sum {
// TODO more specific error
return Err(secp::Error::IncorrectCommitSum);
}
// verify all signatures with the commitment as pk
let msg = try!(Message::from_slice(&[0; 32]));
for proof in &self.proofs {
let pubk = try!(proof.remainder.to_pubkey(secp));
let sig = try!(Signature::from_der(secp, &proof.sig));
try!(secp.verify(&msg, &sig, &pubk));
}
Ok(())
}
// Builds the blinded output and related signature proof for the block reward.
fn reward_output(skey: secp::key::SecretKey,
secp: &Secp256k1)
-> Result<(Output, TxProof), secp::Error> {
let msg = try!(secp::Message::from_slice(&[0; 32]));
let sig = try!(secp.sign(&msg, &skey));
let output = Output::OvertOutput {
value: REWARD,
blindkey: skey,
}
.blind(&secp);
let over_commit = try!(secp.commit_value(REWARD as u64));
let out_commit = output.commitment().unwrap();
let remainder = try!(secp.commit_sum(vec![over_commit], vec![out_commit]));
let proof = TxProof {
remainder: remainder,
sig: sig.serialize_der(&secp),
};
Ok((output, proof))
}
}
#[derive(Debug)]
pub struct Transaction {
hash_mem: Option<Hash>,
pub fee: u64,
pub zerosig: Vec<u8>,
pub inputs: Vec<Input>,
pub outputs: Vec<Output>,
}
impl Committed for Transaction {
fn inputs_committed(&self) -> &Vec<Input> {
&self.inputs
}
fn outputs_committed(&self) -> &Vec<Output> {
&self.outputs
}
fn overage(&self) -> i64 {
-(self.fee as i64)
}
}
impl Default for Transaction {
fn default() -> Transaction {
Transaction::empty()
}
}
impl Transaction {
/// Creates a new empty transaction (no inputs or outputs, zero fee).
pub fn empty() -> Transaction {
Transaction {
hash_mem: None,
fee: 0,
zerosig: vec![],
inputs: vec![],
outputs: vec![],
}
}
/// Creates a new transaction initialized with the provided inputs,
/// outputs and fee.
pub fn new(inputs: Vec<Input>, outputs: Vec<Output>, fee: u64) -> Transaction {
Transaction {
hash_mem: None,
fee: fee,
zerosig: vec![],
inputs: inputs,
outputs: outputs,
}
}
/// The hash of a transaction is the Merkle tree of its inputs and outputs
/// hashes. None of the rest is required.
fn hash(&mut self) -> Hash {
if let None = self.hash_mem {
self.hash_mem = Some(merkle_inputs_outputs(&self.inputs, &self.outputs));
}
self.hash_mem.unwrap()
}
/// Takes a transaction and fully blinds it. Following the MW
/// algorithm: calculates the commitments for each inputs and outputs
/// using the values and blinding factors, takes the blinding factors
/// remainder and uses it for an empty signature.
pub fn blind(&self, secp: &Secp256k1) -> Result<Transaction, secp::Error> {
// we compute the sum of blinding factors to get the k remainder
let remainder = try!(self.blind_sum(secp));
// next, blind the inputs and outputs if they haven't been yet
let blind_inputs = map_vec!(self.inputs, |inp| inp.blind(secp));
let blind_outputs = map_vec!(self.outputs, |out| out.blind(secp));
// and sign with the remainder so the signature can be checked to match with
// the k.G commitment leftover, that should also be the pubkey
let msg = try!(Message::from_slice(&[0; 32]));
let sig = try!(secp.sign(&msg, &remainder));
Ok(Transaction {
hash_mem: None,
fee: self.fee,
zerosig: sig.serialize_der(secp),
inputs: blind_inputs,
outputs: blind_outputs,
})
}
/// Compute the sum of blinding factors on all overt inputs and outputs
/// of the transaction to get the k remainder.
pub fn blind_sum(&self, secp: &Secp256k1) -> Result<SecretKey, secp::Error> {
let inputs_blinding_fact = filter_map_vec!(self.inputs, |inp| inp.blinding_factor());
let outputs_blinding_fact = filter_map_vec!(self.outputs, |out| out.blinding_factor());
secp.blind_sum(inputs_blinding_fact, outputs_blinding_fact)
}
/// The verification for a MimbleWimble transaction involves getting the
/// remainder of summing all commitments and using it as a public key
/// to verify the embedded signature. The rational is that if the values
/// sum to zero as they should in r.G + v.H then only k.G the remainder
/// of the sum of r.G should be left. And r.G is the definition of a
/// public key generated using r as a private key.
pub fn verify_sig(&self, secp: &Secp256k1) -> Result<TxProof, secp::Error> {
let rsum = try!(self.sum_commitments(secp));
// pretend the sum is a public key (which it is, being of the form r.G) and
// verify the transaction sig with it
let pubk = try!(rsum.to_pubkey(secp));
let msg = try!(Message::from_slice(&[0; 32]));
let sig = try!(Signature::from_der(secp, &self.zerosig));
try!(secp.verify(&msg, &sig, &pubk));
Ok(TxProof {
remainder: rsum,
sig: self.zerosig.clone(),
})
}
}
/// A transaction input, mostly a reference to an output being spent by the
/// transaction.
#[derive(Debug, Copy, Clone)]
pub enum Input {
BareInput { output: Hash },
BlindInput { output: Hash, commit: Commitment },
OvertInput {
output: Hash,
value: u64,
blindkey: SecretKey,
},
}
impl Input {
pub fn commitment(&self) -> Option<Commitment> {
match self {
&Input::BlindInput { commit, .. } => Some(commit),
_ => None,
}
}
pub fn blind(&self, secp: &Secp256k1) -> Input {
match self {
&Input::OvertInput { output, value, blindkey } => {
let commit = secp.commit(value, blindkey).unwrap();
Input::BlindInput {
output: output,
commit: commit,
}
}
_ => *self,
}
}
pub fn blinding_factor(&self) -> Option<SecretKey> {
match self {
&Input::OvertInput { blindkey, .. } => Some(blindkey),
_ => None,
}
}
pub fn output_hash(&self) -> Hash {
match self {
&Input::BlindInput { output, .. } => output,
&Input::OvertInput { output, .. } => output,
&Input::BareInput { output, .. } => output,
}
}
}
/// The hash of an input is the hash of the output hash it references.
impl Hashed for Input {
fn bytes(&self) -> Vec<u8> {
self.output_hash().to_vec()
}
}
#[derive(Debug, Copy, Clone)]
pub enum Output {
BlindOutput {
commit: Commitment,
proof: RangeProof,
},
OvertOutput { value: u64, blindkey: SecretKey },
}
impl Output {
pub fn commitment(&self) -> Option<Commitment> {
match self {
&Output::BlindOutput { commit, .. } => Some(commit),
_ => None,
}
}
pub fn proof(&self) -> Option<RangeProof> {
match self {
&Output::BlindOutput { proof, .. } => Some(proof),
_ => None,
}
}
pub fn blinding_factor(&self) -> Option<SecretKey> {
match self {
&Output::OvertOutput { blindkey, .. } => Some(blindkey),
_ => None,
}
}
pub fn blind(&self, secp: &Secp256k1) -> Output {
match self {
&Output::OvertOutput { value, blindkey } => {
let commit = secp.commit(value, blindkey).unwrap();
let rproof = secp.range_proof(0, value, blindkey, commit);
Output::BlindOutput {
commit: commit,
proof: rproof,
}
}
_ => *self,
}
}
/// Validates the range proof using the commitment
pub fn verify_proof(&self, secp: &Secp256k1) -> Result<(), secp::Error> {
match self {
&Output::BlindOutput { commit, proof } => {
secp.verify_range_proof(commit, proof).map(|_| ())
}
_ => Ok(()),
}
}
}
/// The hash of an output is the hash of its commitment.
impl Hashed for Output {
fn bytes(&self) -> Vec<u8> {
if let &Output::BlindOutput { commit, .. } = self {
return commit.bytes().to_vec();
} else {
panic!("cannot hash an overt output");
}
}
}
/// Utility function to calculate the Merkle root of vectors of inputs and
/// outputs.
pub fn merkle_inputs_outputs(inputs: &Vec<Input>, outputs: &Vec<Output>) -> Hash {
let mut all_hs = map_vec!(inputs, |inp| inp.hash());
all_hs.append(&mut map_vec!(outputs, |out| out.hash()));
MerkleRow::new(all_hs).root()
}
/// Two hashes that will get hashed together in a Merkle tree to build the next
/// level up.
struct HPair(Hash, Hash);
@ -736,7 +184,7 @@ impl MerkleRow {
}
fn root(&self) -> Hash {
if self.0.len() == 0 {
Hash(sha3(vec![]))
vec![].hash()
} else if self.0.len() == 1 {
self.0[0].hash()
} else {
@ -748,6 +196,7 @@ impl MerkleRow {
#[cfg(test)]
mod test {
use super::*;
use super::hash::{Hash, Hashed, ZERO_HASH};
use secp;
use secp::Secp256k1;
use secp::key::SecretKey;
@ -758,104 +207,6 @@ mod test {
secp::Secp256k1::with_caps(secp::ContextFlag::Commit)
}
// utility to create a block without worrying about the key or previous header
fn new_block(txs: Vec<&mut Transaction>, secp: &Secp256k1) -> Block {
let mut rng = OsRng::new().unwrap();
let skey = SecretKey::new(secp, &mut rng);
Block::new(BlockHeader::default(), txs, skey).unwrap()
}
#[test]
fn blind_overt_output() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let oo = Output::OvertOutput {
value: 42,
blindkey: SecretKey::new(secp, &mut rng),
};
if let Output::BlindOutput { commit, proof } = oo.blind(secp) {
// checks the blind output is sane and verifies
assert!(commit.len() > 0);
assert!(proof.bytes().len() > 5000);
secp.verify_range_proof(commit, proof).unwrap();
// checks that changing the value changes the proof and commitment
let oo2 = Output::OvertOutput {
value: 32,
blindkey: SecretKey::new(secp, &mut rng),
};
if let Output::BlindOutput { commit: c2, proof: p2 } = oo2.blind(secp) {
assert!(c2 != commit);
assert!(p2.bytes() != proof.bytes());
secp.verify_range_proof(c2, p2).unwrap();
// checks that swapping the proofs fails the validation
if let Ok(_) = secp.verify_range_proof(commit, p2) {
panic!("verification successful on wrong proof");
}
} else {
panic!("not a blind output");
}
} else {
panic!("not a blind output");
}
}
#[test]
fn hash_output() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let oo = Output::OvertOutput {
value: 42,
blindkey: SecretKey::new(secp, &mut rng),
}
.blind(secp);
let oo2 = Output::OvertOutput {
value: 32,
blindkey: SecretKey::new(secp, &mut rng),
}
.blind(secp);
let h = oo.hash();
assert!(h != ZERO_HASH);
let h2 = oo2.hash();
assert!(h != h2);
}
#[test]
fn blind_tx() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let tx = tx2i1o(secp, &mut rng);
let btx = tx.blind(&secp).unwrap();
btx.verify_sig(&secp).unwrap(); // unwrap will panic if invalid
// checks that the range proof on our blind output is sufficiently hiding
if let Output::BlindOutput { proof, .. } = btx.outputs[0] {
let info = secp.range_proof_info(proof);
assert!(info.min == 0);
assert!(info.max == u64::max_value());
}
}
#[test]
fn tx_hash_diff() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let tx1 = tx2i1o(secp, &mut rng);
let mut btx1 = tx1.blind(&secp).unwrap();
let tx2 = tx1i1o(secp, &mut rng);
let mut btx2 = tx2.blind(&secp).unwrap();
if btx1.hash() == btx2.hash() {
panic!("diff txs have same hash")
}
}
#[test]
#[should_panic(expected = "InvalidSecretKey")]
fn zero_commit() {
@ -921,60 +272,8 @@ mod test {
b.verify(&secp).unwrap();
}
#[test]
// builds a block with a tx spending another and check if merging occurred
fn compactable_block() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx1 = tx2i1o(secp, &mut rng);
let mut btx1 = tx1.blind(&secp).unwrap();
let tx2 = tx1i1o(secp, &mut rng);
let mut btx2 = tx2.blind(&secp).unwrap();
// spending tx2
let spending = txspend1i1o(secp, &mut rng, tx2.outputs[0], btx2.outputs[0].hash());
let mut btx3 = spending.blind(&secp).unwrap();
let b = new_block(vec![&mut btx1, &mut btx2, &mut btx3], secp);
// block should have been automatically compacted (including reward output) and
// should still be valid
b.verify(&secp).unwrap();
assert_eq!(b.inputs.len(), 3);
assert_eq!(b.outputs.len(), 3);
}
#[test]
// builds 2 different blocks with a tx spending another and check if merging
// occurs
fn mergeable_blocks() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx1 = tx2i1o(secp, &mut rng);
let mut btx1 = tx1.blind(&secp).unwrap();
let tx2 = tx1i1o(secp, &mut rng);
let mut btx2 = tx2.blind(&secp).unwrap();
// spending tx2
let spending = txspend1i1o(secp, &mut rng, tx2.outputs[0], btx2.outputs[0].hash());
let mut btx3 = spending.blind(&secp).unwrap();
let b1 = new_block(vec![&mut btx1, &mut btx2], secp);
b1.verify(&secp).unwrap();
let b2 = new_block(vec![&mut btx3], secp);
b2.verify(&secp).unwrap();
// block should have been automatically compacted and should still be valid
let b3 = b1.merge(b2);
assert_eq!(b3.inputs.len(), 3);
assert_eq!(b3.outputs.len(), 4);
}
// utility producing a transaction with 2 inputs and a single outputs
fn tx2i1o<R: Rng>(secp: &Secp256k1, rng: &mut R) -> Transaction {
pub fn tx2i1o<R: Rng>(secp: &Secp256k1, rng: &mut R) -> Transaction {
let outh = ZERO_HASH;
Transaction::new(vec![Input::OvertInput {
output: outh,
@ -994,7 +293,7 @@ mod test {
}
// utility producing a transaction with a single input and output
fn tx1i1o<R: Rng>(secp: &Secp256k1, rng: &mut R) -> Transaction {
pub fn tx1i1o<R: Rng>(secp: &Secp256k1, rng: &mut R) -> Transaction {
let outh = ZERO_HASH;
Transaction::new(vec![Input::OvertInput {
output: outh,
@ -1007,22 +306,4 @@ mod test {
}],
1)
}
// utility producing a transaction that spends the above
fn txspend1i1o<R: Rng>(secp: &Secp256k1, rng: &mut R, oout: Output, outh: Hash) -> Transaction {
if let Output::OvertOutput { blindkey, value } = oout {
Transaction::new(vec![Input::OvertInput {
output: outh,
value: value,
blindkey: blindkey,
}],
vec![Output::OvertOutput {
value: 3,
blindkey: SecretKey::new(secp, rng),
}],
1)
} else {
panic!();
}
}
}

View file

@ -1,308 +0,0 @@
//! Binary stream serialization and deserialzation for core types from trusted
//! Write or Read implementations. Issues like starvation or too big sends are
//! expected to be handled upstream.
use time;
use std::io::{Write, Read};
use core;
use ser::*;
use secp::Signature;
use secp::key::SecretKey;
use secp::pedersen::{Commitment, RangeProof};
const MAX_IN_OUT_LEN: u64 = 50000;
macro_rules! impl_slice_bytes {
($byteable: ty) => {
impl AsFixedBytes for $byteable {
fn as_fixed_bytes(&self) -> &[u8] {
&self[..]
}
}
}
}
impl_slice_bytes!(SecretKey);
impl_slice_bytes!(Signature);
impl_slice_bytes!(Commitment);
impl_slice_bytes!(Vec<u8>);
impl AsFixedBytes for core::Hash {
fn as_fixed_bytes(&self) -> &[u8] {
self.to_slice()
}
}
impl AsFixedBytes for RangeProof {
fn as_fixed_bytes(&self) -> &[u8] {
&self.bytes()
}
}
/// Implementation of Writeable for a transaction Input, defines how to write
/// an Input as binary.
impl Writeable for core::Input {
fn write(&self, writer: &mut Writer) -> Option<Error> {
writer.write_fixed_bytes(&self.output_hash())
}
}
/// Implementation of Writeable for a transaction Output, defines how to write
/// an Output as binary.
impl Writeable for core::Output {
fn write(&self, writer: &mut Writer) -> Option<Error> {
try_m!(writer.write_fixed_bytes(&self.commitment().unwrap()));
writer.write_vec(&mut self.proof().unwrap().bytes().to_vec())
}
}
/// Implementation of Writeable for a fully blinded transaction, defines how to
/// write the transaction as binary.
impl Writeable for core::Transaction {
fn write(&self, writer: &mut Writer) -> Option<Error> {
try_m!(writer.write_u64(self.fee));
try_m!(writer.write_vec(&mut self.zerosig.clone()));
try_m!(writer.write_u64(self.inputs.len() as u64));
try_m!(writer.write_u64(self.outputs.len() as u64));
for inp in &self.inputs {
try_m!(inp.write(writer));
}
for out in &self.outputs {
try_m!(out.write(writer));
}
None
}
}
impl Writeable for core::TxProof {
fn write(&self, writer: &mut Writer) -> Option<Error> {
try_m!(writer.write_fixed_bytes(&self.remainder));
writer.write_vec(&mut self.sig.clone())
}
}
/// Implementation of Writeable for a block, defines how to write the full
/// block as binary.
impl Writeable for core::Block {
fn write(&self, writer: &mut Writer) -> Option<Error> {
try_m!(self.header.write(writer));
try_m!(writer.write_u64(self.inputs.len() as u64));
try_m!(writer.write_u64(self.outputs.len() as u64));
try_m!(writer.write_u64(self.proofs.len() as u64));
for inp in &self.inputs {
try_m!(inp.write(writer));
}
for out in &self.outputs {
try_m!(out.write(writer));
}
for proof in &self.proofs {
try_m!(proof.write(writer));
}
None
}
}
/// Implementation of Readable for a transaction Input, defines how to read
/// an Input from a binary stream.
impl Readable<core::Input> for core::Input {
fn read(reader: &mut Reader) -> Result<core::Input, Error> {
reader.read_fixed_bytes(32)
.map(|h| core::Input::BareInput { output: core::Hash::from_vec(h) })
}
}
/// Implementation of Readable for a transaction Output, defines how to read
/// an Output from a binary stream.
impl Readable<core::Output> for core::Output {
fn read(reader: &mut Reader) -> Result<core::Output, Error> {
let commit = try!(reader.read_fixed_bytes(33));
let proof = try!(reader.read_vec());
Ok(core::Output::BlindOutput {
commit: Commitment::from_vec(commit),
proof: RangeProof::from_vec(proof),
})
}
}
/// Implementation of Readable for a transaction, defines how to read a full
/// transaction from a binary stream.
impl Readable<core::Transaction> for core::Transaction {
fn read(reader: &mut Reader) -> Result<core::Transaction, Error> {
let fee = try!(reader.read_u64());
let zerosig = try!(reader.read_vec());
let input_len = try!(reader.read_u64());
let output_len = try!(reader.read_u64());
// in case a facetious miner sends us more than what we can allocate
if input_len > MAX_IN_OUT_LEN || output_len > MAX_IN_OUT_LEN {
return Err(Error::TooLargeReadErr("Too many inputs or outputs.".to_string()));
}
let inputs = try!((0..input_len).map(|_| core::Input::read(reader)).collect());
let outputs = try!((0..output_len).map(|_| core::Output::read(reader)).collect());
Ok(core::Transaction {
fee: fee,
zerosig: zerosig,
inputs: inputs,
outputs: outputs,
..Default::default()
})
}
}
impl Readable<core::TxProof> for core::TxProof {
fn read(reader: &mut Reader) -> Result<core::TxProof, Error> {
let remainder = try!(reader.read_fixed_bytes(33));
let sig = try!(reader.read_vec());
Ok(core::TxProof {
remainder: Commitment::from_vec(remainder),
sig: sig,
})
}
}
/// Implementation of Readable for a block, defines how to read a full block
/// from a binary stream.
impl Readable<core::Block> for core::Block {
fn read(reader: &mut Reader) -> Result<core::Block, Error> {
let height = try!(reader.read_u64());
let previous = try!(reader.read_fixed_bytes(32));
let timestamp = try!(reader.read_i64());
let utxo_merkle = try!(reader.read_fixed_bytes(32));
let tx_merkle = try!(reader.read_fixed_bytes(32));
let total_fees = try!(reader.read_u64());
let nonce = try!(reader.read_u64());
// cuckoo cycle of 42 nodes
let mut pow = [0; core::PROOFSIZE];
for n in 0..core::PROOFSIZE {
pow[n] = try!(reader.read_u32());
}
let td = try!(reader.read_u64());
let input_len = try!(reader.read_u64());
let output_len = try!(reader.read_u64());
let proof_len = try!(reader.read_u64());
if input_len > MAX_IN_OUT_LEN || output_len > MAX_IN_OUT_LEN || proof_len > MAX_IN_OUT_LEN {
return Err(Error::TooLargeReadErr("Too many inputs, outputs or proofs.".to_string()));
}
let inputs = try!((0..input_len).map(|_| core::Input::read(reader)).collect());
let outputs = try!((0..output_len).map(|_| core::Output::read(reader)).collect());
let proofs = try!((0..proof_len).map(|_| core::TxProof::read(reader)).collect());
Ok(core::Block {
header: core::BlockHeader {
height: height,
previous: core::Hash::from_vec(previous),
timestamp: time::at_utc(time::Timespec {
sec: timestamp,
nsec: 0,
}),
td: td,
utxo_merkle: core::Hash::from_vec(utxo_merkle),
tx_merkle: core::Hash::from_vec(tx_merkle),
total_fees: total_fees,
pow: core::Proof(pow),
nonce: nonce,
},
inputs: inputs,
outputs: outputs,
proofs: proofs,
..Default::default()
})
}
}
#[cfg(test)]
mod test {
use ser::{serialize, deserialize};
use secp;
use secp::*;
use secp::key::*;
use core::*;
use rand::Rng;
use rand::os::OsRng;
fn new_secp() -> Secp256k1 {
secp::Secp256k1::with_caps(secp::ContextFlag::Commit)
}
#[test]
fn simple_tx_ser() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
if let Some(e) = serialize(&mut vec, &btx) {
panic!(e);
}
assert!(vec.len() > 5320);
assert!(vec.len() < 5340);
}
#[test]
fn simple_tx_ser_deser() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let mut btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
if let Some(e) = serialize(&mut vec, &btx) {
panic!(e);
}
// let mut dtx = Transaction::read(&mut BinReader { source: &mut &vec[..]
// }).unwrap();
let mut dtx: Transaction = deserialize(&mut &vec[..]).unwrap();
assert_eq!(dtx.fee, 1);
assert_eq!(dtx.inputs.len(), 2);
assert_eq!(dtx.outputs.len(), 1);
assert_eq!(btx.hash(), dtx.hash());
}
#[test]
fn tx_double_ser_deser() {
// checks serializing doesn't mess up the tx and produces consistent results
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let mut btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
assert!(serialize(&mut vec, &btx).is_none());
let mut dtx: Transaction = deserialize(&mut &vec[..]).unwrap();
let mut vec2 = Vec::new();
assert!(serialize(&mut vec2, &btx).is_none());
let mut dtx2: Transaction = deserialize(&mut &vec2[..]).unwrap();
assert_eq!(btx.hash(), dtx.hash());
assert_eq!(dtx.hash(), dtx2.hash());
}
// utility producing a transaction with 2 inputs and a single outputs
fn tx2i1o<R: Rng>(secp: &Secp256k1, rng: &mut R) -> Transaction {
let outh = ZERO_HASH;
Transaction::new(vec![Input::OvertInput {
output: outh,
value: 10,
blindkey: SecretKey::new(secp, rng),
},
Input::OvertInput {
output: outh,
value: 11,
blindkey: SecretKey::new(secp, rng),
}],
vec![Output::OvertOutput {
value: 20,
blindkey: SecretKey::new(secp, rng),
}],
1)
}
}

View file

@ -0,0 +1,553 @@
// Copyright 2016 The Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Transactions
use core::Committed;
use core::MerkleRow;
use core::hash::{Hashed, Hash};
use ser::{self, Reader, Writer, Readable, Writeable};
use secp::{self, Secp256k1, Message, Signature};
use secp::key::SecretKey;
use secp::pedersen::{RangeProof, Commitment};
/// The maximum number of inputs or outputs a transaction may have
/// and be deserializable.
pub const MAX_IN_OUT_LEN: u64 = 50000;
/// A proof that a transaction did not create (or remove) funds. Includes both
/// the transaction's Pedersen commitment and the signature that guarantees
/// that the commitment amounts to zero.
#[derive(Debug, Clone)]
pub struct TxProof {
/// temporarily public
pub remainder: Commitment,
/// temporarily public
pub sig: Vec<u8>,
}
impl Writeable for TxProof {
fn write(&self, writer: &mut Writer) -> Option<ser::Error> {
try_m!(writer.write_fixed_bytes(&self.remainder));
writer.write_vec(&mut self.sig.clone())
}
}
impl Readable<TxProof> for TxProof {
fn read(reader: &mut Reader) -> Result<TxProof, ser::Error> {
let remainder = try!(reader.read_fixed_bytes(33));
let sig = try!(reader.read_vec());
Ok(TxProof {
remainder: Commitment::from_vec(remainder),
sig: sig,
})
}
}
/// A transaction
#[derive(Debug)]
pub struct Transaction {
hash_mem: Option<Hash>,
pub fee: u64,
pub zerosig: Vec<u8>,
pub inputs: Vec<Input>,
pub outputs: Vec<Output>,
}
/// Implementation of Writeable for a fully blinded transaction, defines how to
/// write the transaction as binary.
impl Writeable for Transaction {
fn write(&self, writer: &mut Writer) -> Option<ser::Error> {
try_m!(writer.write_u64(self.fee));
try_m!(writer.write_vec(&mut self.zerosig.clone()));
try_m!(writer.write_u64(self.inputs.len() as u64));
try_m!(writer.write_u64(self.outputs.len() as u64));
for inp in &self.inputs {
try_m!(inp.write(writer));
}
for out in &self.outputs {
try_m!(out.write(writer));
}
None
}
}
/// Implementation of Readable for a transaction, defines how to read a full
/// transaction from a binary stream.
impl Readable<Transaction> for Transaction {
fn read(reader: &mut Reader) -> Result<Transaction, ser::Error> {
let fee = try!(reader.read_u64());
let zerosig = try!(reader.read_vec());
let input_len = try!(reader.read_u64());
let output_len = try!(reader.read_u64());
// in case a facetious miner sends us more than what we can allocate
if input_len > MAX_IN_OUT_LEN || output_len > MAX_IN_OUT_LEN {
return Err(ser::Error::TooLargeReadErr("Too many inputs or outputs.".to_string()));
}
let inputs = try!((0..input_len).map(|_| Input::read(reader)).collect());
let outputs = try!((0..output_len).map(|_| Output::read(reader)).collect());
Ok(Transaction {
fee: fee,
zerosig: zerosig,
inputs: inputs,
outputs: outputs,
..Default::default()
})
}
}
impl Committed for Transaction {
fn inputs_committed(&self) -> &Vec<Input> {
&self.inputs
}
fn outputs_committed(&self) -> &Vec<Output> {
&self.outputs
}
fn overage(&self) -> i64 {
-(self.fee as i64)
}
}
impl Default for Transaction {
fn default() -> Transaction {
Transaction::empty()
}
}
impl Transaction {
/// Creates a new empty transaction (no inputs or outputs, zero fee).
pub fn empty() -> Transaction {
Transaction {
hash_mem: None,
fee: 0,
zerosig: vec![],
inputs: vec![],
outputs: vec![],
}
}
/// Creates a new transaction initialized with the provided inputs,
/// outputs and fee.
pub fn new(inputs: Vec<Input>, outputs: Vec<Output>, fee: u64) -> Transaction {
Transaction {
hash_mem: None,
fee: fee,
zerosig: vec![],
inputs: inputs,
outputs: outputs,
}
}
/// The hash of a transaction is the Merkle tree of its inputs and outputs
/// hashes. None of the rest is required.
fn hash(&mut self) -> Hash {
if let None = self.hash_mem {
self.hash_mem = Some(merkle_inputs_outputs(&self.inputs, &self.outputs));
}
self.hash_mem.unwrap()
}
/// Takes a transaction and fully blinds it. Following the MW
/// algorithm: calculates the commitments for each inputs and outputs
/// using the values and blinding factors, takes the blinding factors
/// remainder and uses it for an empty signature.
pub fn blind(&self, secp: &Secp256k1) -> Result<Transaction, secp::Error> {
// we compute the sum of blinding factors to get the k remainder
let remainder = try!(self.blind_sum(secp));
// next, blind the inputs and outputs if they haven't been yet
let blind_inputs = map_vec!(self.inputs, |inp| inp.blind(secp));
let blind_outputs = map_vec!(self.outputs, |out| out.blind(secp));
// and sign with the remainder so the signature can be checked to match with
// the k.G commitment leftover, that should also be the pubkey
let msg = try!(Message::from_slice(&[0; 32]));
let sig = try!(secp.sign(&msg, &remainder));
Ok(Transaction {
hash_mem: None,
fee: self.fee,
zerosig: sig.serialize_der(secp),
inputs: blind_inputs,
outputs: blind_outputs,
})
}
/// Compute the sum of blinding factors on all overt inputs and outputs
/// of the transaction to get the k remainder.
pub fn blind_sum(&self, secp: &Secp256k1) -> Result<SecretKey, secp::Error> {
let inputs_blinding_fact = filter_map_vec!(self.inputs, |inp| inp.blinding_factor());
let outputs_blinding_fact = filter_map_vec!(self.outputs, |out| out.blinding_factor());
secp.blind_sum(inputs_blinding_fact, outputs_blinding_fact)
}
/// The verification for a MimbleWimble transaction involves getting the
/// remainder of summing all commitments and using it as a public key
/// to verify the embedded signature. The rational is that if the values
/// sum to zero as they should in r.G + v.H then only k.G the remainder
/// of the sum of r.G should be left. And r.G is the definition of a
/// public key generated using r as a private key.
pub fn verify_sig(&self, secp: &Secp256k1) -> Result<TxProof, secp::Error> {
let rsum = try!(self.sum_commitments(secp));
// pretend the sum is a public key (which it is, being of the form r.G) and
// verify the transaction sig with it
let pubk = try!(rsum.to_pubkey(secp));
let msg = try!(Message::from_slice(&[0; 32]));
let sig = try!(Signature::from_der(secp, &self.zerosig));
try!(secp.verify(&msg, &sig, &pubk));
Ok(TxProof {
remainder: rsum,
sig: self.zerosig.clone(),
})
}
}
/// A transaction input, mostly a reference to an output being spent by the
/// transaction.
#[derive(Debug, Copy, Clone)]
pub enum Input {
BareInput { output: Hash },
BlindInput { output: Hash, commit: Commitment },
OvertInput {
output: Hash,
value: u64,
blindkey: SecretKey,
},
}
/// Implementation of Writeable for a transaction Input, defines how to write
/// an Input as binary.
impl Writeable for Input {
fn write(&self, writer: &mut Writer) -> Option<ser::Error> {
writer.write_fixed_bytes(&self.output_hash())
}
}
/// Implementation of Readable for a transaction Input, defines how to read
/// an Input from a binary stream.
impl Readable<Input> for Input {
fn read(reader: &mut Reader) -> Result<Input, ser::Error> {
reader.read_fixed_bytes(32)
.map(|h| Input::BareInput { output: Hash::from_vec(h) })
}
}
impl Input {
pub fn commitment(&self) -> Option<Commitment> {
match self {
&Input::BlindInput { commit, .. } => Some(commit),
_ => None,
}
}
pub fn blind(&self, secp: &Secp256k1) -> Input {
match self {
&Input::OvertInput { output, value, blindkey } => {
let commit = secp.commit(value, blindkey).unwrap();
Input::BlindInput {
output: output,
commit: commit,
}
}
_ => *self,
}
}
pub fn blinding_factor(&self) -> Option<SecretKey> {
match self {
&Input::OvertInput { blindkey, .. } => Some(blindkey),
_ => None,
}
}
pub fn output_hash(&self) -> Hash {
match self {
&Input::BlindInput { output, .. } => output,
&Input::OvertInput { output, .. } => output,
&Input::BareInput { output, .. } => output,
}
}
}
/// The hash of an input is the hash of the output hash it references.
impl Hashed for Input {
fn bytes(&self) -> Vec<u8> {
self.output_hash().to_vec()
}
}
#[derive(Debug, Copy, Clone)]
pub enum Output {
BlindOutput {
commit: Commitment,
proof: RangeProof,
},
OvertOutput { value: u64, blindkey: SecretKey },
}
/// Implementation of Writeable for a transaction Output, defines how to write
/// an Output as binary.
impl Writeable for Output {
fn write(&self, writer: &mut Writer) -> Option<ser::Error> {
try_m!(writer.write_fixed_bytes(&self.commitment().unwrap()));
writer.write_vec(&mut self.proof().unwrap().bytes().to_vec())
}
}
/// Implementation of Readable for a transaction Output, defines how to read
/// an Output from a binary stream.
impl Readable<Output> for Output {
fn read(reader: &mut Reader) -> Result<Output, ser::Error> {
let commit = try!(reader.read_fixed_bytes(33));
let proof = try!(reader.read_vec());
Ok(Output::BlindOutput {
commit: Commitment::from_vec(commit),
proof: RangeProof::from_vec(proof),
})
}
}
impl Output {
pub fn commitment(&self) -> Option<Commitment> {
match self {
&Output::BlindOutput { commit, .. } => Some(commit),
_ => None,
}
}
pub fn proof(&self) -> Option<RangeProof> {
match self {
&Output::BlindOutput { proof, .. } => Some(proof),
_ => None,
}
}
pub fn blinding_factor(&self) -> Option<SecretKey> {
match self {
&Output::OvertOutput { blindkey, .. } => Some(blindkey),
_ => None,
}
}
pub fn blind(&self, secp: &Secp256k1) -> Output {
match self {
&Output::OvertOutput { value, blindkey } => {
let commit = secp.commit(value, blindkey).unwrap();
let rproof = secp.range_proof(0, value, blindkey, commit);
Output::BlindOutput {
commit: commit,
proof: rproof,
}
}
_ => *self,
}
}
/// Validates the range proof using the commitment
pub fn verify_proof(&self, secp: &Secp256k1) -> Result<(), secp::Error> {
match self {
&Output::BlindOutput { commit, proof } => {
secp.verify_range_proof(commit, proof).map(|_| ())
}
_ => Ok(()),
}
}
}
/// The hash of an output is the hash of its commitment.
impl Hashed for Output {
fn bytes(&self) -> Vec<u8> {
if let &Output::BlindOutput { commit, .. } = self {
return commit.bytes().to_vec();
} else {
panic!("cannot hash an overt output");
}
}
}
/// Utility function to calculate the Merkle root of vectors of inputs and
/// outputs.
pub fn merkle_inputs_outputs(inputs: &Vec<Input>, outputs: &Vec<Output>) -> Hash {
let mut all_hs = map_vec!(inputs, |inp| inp.hash());
all_hs.append(&mut map_vec!(outputs, |out| out.hash()));
MerkleRow::new(all_hs).root()
}
#[cfg(test)]
mod test {
use super::*;
use core::hash::Hashed;
use core::hash::ZERO_HASH;
use core::test::{tx1i1o, tx2i1o};
use ser::{deserialize, serialize};
use secp::{self, Secp256k1};
use secp::key::SecretKey;
use rand::Rng;
use rand::os::OsRng;
fn new_secp() -> Secp256k1 {
secp::Secp256k1::with_caps(secp::ContextFlag::Commit)
}
#[test]
fn simple_tx_ser() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
if let Some(e) = serialize(&mut vec, &btx) {
panic!(e);
}
assert!(vec.len() > 5320);
assert!(vec.len() < 5340);
}
#[test]
fn simple_tx_ser_deser() {
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let mut btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
if let Some(e) = serialize(&mut vec, &btx) {
panic!(e);
}
// let mut dtx = Transaction::read(&mut BinReader { source: &mut &vec[..]
// }).unwrap();
let mut dtx: Transaction = deserialize(&mut &vec[..]).unwrap();
assert_eq!(dtx.fee, 1);
assert_eq!(dtx.inputs.len(), 2);
assert_eq!(dtx.outputs.len(), 1);
assert_eq!(btx.hash(), dtx.hash());
}
#[test]
fn tx_double_ser_deser() {
// checks serializing doesn't mess up the tx and produces consistent results
let mut rng = OsRng::new().unwrap();
let ref secp = new_secp();
let tx = tx2i1o(secp, &mut rng);
let mut btx = tx.blind(&secp).unwrap();
let mut vec = Vec::new();
assert!(serialize(&mut vec, &btx).is_none());
let mut dtx: Transaction = deserialize(&mut &vec[..]).unwrap();
let mut vec2 = Vec::new();
assert!(serialize(&mut vec2, &btx).is_none());
let mut dtx2: Transaction = deserialize(&mut &vec2[..]).unwrap();
assert_eq!(btx.hash(), dtx.hash());
assert_eq!(dtx.hash(), dtx2.hash());
}
#[test]
fn blind_overt_output() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let oo = Output::OvertOutput {
value: 42,
blindkey: SecretKey::new(secp, &mut rng),
};
if let Output::BlindOutput { commit, proof } = oo.blind(secp) {
// checks the blind output is sane and verifies
assert!(commit.len() > 0);
assert!(proof.bytes().len() > 5000);
secp.verify_range_proof(commit, proof).unwrap();
// checks that changing the value changes the proof and commitment
let oo2 = Output::OvertOutput {
value: 32,
blindkey: SecretKey::new(secp, &mut rng),
};
if let Output::BlindOutput { commit: c2, proof: p2 } = oo2.blind(secp) {
assert!(c2 != commit);
assert!(p2.bytes() != proof.bytes());
secp.verify_range_proof(c2, p2).unwrap();
// checks that swapping the proofs fails the validation
if let Ok(_) = secp.verify_range_proof(commit, p2) {
panic!("verification successful on wrong proof");
}
} else {
panic!("not a blind output");
}
} else {
panic!("not a blind output");
}
}
#[test]
fn hash_output() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let oo = Output::OvertOutput {
value: 42,
blindkey: SecretKey::new(secp, &mut rng),
}
.blind(secp);
let oo2 = Output::OvertOutput {
value: 32,
blindkey: SecretKey::new(secp, &mut rng),
}
.blind(secp);
let h = oo.hash();
assert!(h != ZERO_HASH);
let h2 = oo2.hash();
assert!(h != h2);
}
#[test]
fn blind_tx() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let tx = tx2i1o(secp, &mut rng);
let btx = tx.blind(&secp).unwrap();
btx.verify_sig(&secp).unwrap(); // unwrap will panic if invalid
// checks that the range proof on our blind output is sufficiently hiding
if let Output::BlindOutput { proof, .. } = btx.outputs[0] {
let info = secp.range_proof_info(proof);
assert!(info.min == 0);
assert!(info.max == u64::max_value());
}
}
#[test]
fn tx_hash_diff() {
let ref secp = new_secp();
let mut rng = OsRng::new().unwrap();
let tx1 = tx2i1o(secp, &mut rng);
let mut btx1 = tx1.blind(&secp).unwrap();
let tx2 = tx1i1o(secp, &mut rng);
let mut btx2 = tx2.blind(&secp).unwrap();
if btx1.hash() == btx2.hash() {
panic!("diff txs have same hash")
}
}
}

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Definition of the genesis block. Placeholder for now.
use time;
@ -17,7 +31,7 @@ pub fn genesis() -> core::Block {
core::Block {
header: core::BlockHeader {
height: 0,
previous: core::ZERO_HASH,
previous: core::hash::ZERO_HASH,
timestamp: time::Tm {
tm_year: 1997,
tm_mon: 7,
@ -25,8 +39,8 @@ pub fn genesis() -> core::Block {
..time::empty_tm()
},
td: 0,
utxo_merkle: core::Hash::from_vec(empty_h.to_vec()),
tx_merkle: core::Hash::from_vec(empty_h.to_vec()),
utxo_merkle: core::hash::Hash::from_vec(empty_h.to_vec()),
tx_merkle: core::hash::Hash::from_vec(empty_h.to_vec()),
total_fees: 0,
nonce: 0,
pow: core::Proof::zero(), // TODO get actual PoW solution

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of the MimbleWimble paper.
//! https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Generic macros used here and there to simplify and make code more
//! readable.

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of Cuckoo Cycle designed by John Tromp. Ported to Rust from
//! the C and Java code at https://github.com/tromp/cuckoo. Note that only the
//! simple miner is included, mostly for testing purposes. John Tromp's Tomato

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! The proof of work needs to strike a balance between fast header
//! verification to avoid DoS attacks and difficulty for block verifiers to
//! build new blocks. In addition, mining new blocks should also be as
@ -13,7 +27,8 @@ mod cuckoo;
use time;
use core::{Block, BlockHeader, Hashed, Hash, Proof, PROOFSIZE};
use core::{Block, BlockHeader, Proof, PROOFSIZE};
use core::hash::{Hash, Hashed};
use pow::cuckoo::{Cuckoo, Miner, Error};
use ser;
@ -161,7 +176,8 @@ fn pow_size(b: &Block, target: Proof, sizeshift: u32) -> Result<(Proof, u64), Er
#[cfg(test)]
mod test {
use super::*;
use core::{BlockHeader, Hash, Proof};
use core::{BlockHeader, Proof};
use core::hash::Hash;
use std::time::Instant;
use genesis;

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Simple implementation of the siphash 2-4 hashing function from
//! Jean-Philippe Aumasson and Daniel J. Bernstein.

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Serialization and deserialization layer specialized for binary encoding.
//! Ensures consistency and safety. Basically a minimal subset or
//! rustc_serialize customized for our need.
@ -156,3 +170,31 @@ impl<'a> Writer for BinWriter<'a> {
self.sink.write_all(bs).err().map(Error::IOErr)
}
}
macro_rules! impl_slice_bytes {
($byteable: ty) => {
impl AsFixedBytes for $byteable {
fn as_fixed_bytes(&self) -> &[u8] {
&self[..]
}
}
}
}
impl_slice_bytes!(::secp::key::SecretKey);
impl_slice_bytes!(::secp::Signature);
impl_slice_bytes!(::secp::pedersen::Commitment);
impl_slice_bytes!(Vec<u8>);
impl AsFixedBytes for ::core::hash::Hash {
fn as_fixed_bytes(&self) -> &[u8] {
self.to_slice()
}
}
impl AsFixedBytes for ::secp::pedersen::RangeProof {
fn as_fixed_bytes(&self) -> &[u8] {
&self.bytes()
}
}

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Main crate putting together all the other crates that compose Grin into a
//! binary.

View file

@ -1,3 +1,17 @@
// Copyright 2016 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Storage of core types using RocksDB.
#![deny(non_upper_case_globals)]