grin/keychain/src/extkey_bip32.rs

822 lines
26 KiB
Rust
Raw Normal View History

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Rust Bitcoin Library
// Written in 2014 by
// Andrew Poelstra <apoelstra@wpsoftware.net>
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//
//! Implementation of BIP32 hierarchical deterministic wallets, as defined
//! at https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
//! Modified from above to integrate into grin and allow for different
//! hashing algorithms if desired
#[cfg(feature = "serde")]
use serde;
use std::default::Default;
use std::io::Cursor;
use std::str::FromStr;
use std::{error, fmt};
use byteorder::{BigEndian, ByteOrder, ReadBytesExt};
use util::secp::key::{PublicKey, SecretKey};
use util::secp::{self, ContextFlag, Secp256k1};
use digest::generic_array::GenericArray;
use digest::Digest;
use hmac::{Hmac, Mac};
use ripemd160::Ripemd160;
use sha2::{Sha256, Sha512};
use base58;
// Create alias for HMAC-SHA256
type HmacSha512 = Hmac<Sha512>;
/// A chain code
pub struct ChainCode([u8; 32]);
impl_array_newtype!(ChainCode, u8, 32);
impl_array_newtype_show!(ChainCode);
impl_array_newtype_encodable!(ChainCode, u8, 32);
/// A fingerprint
pub struct Fingerprint([u8; 4]);
impl_array_newtype!(Fingerprint, u8, 4);
impl_array_newtype_show!(Fingerprint);
impl_array_newtype_encodable!(Fingerprint, u8, 4);
impl Default for Fingerprint {
fn default() -> Fingerprint {
Fingerprint([0, 0, 0, 0])
}
}
/// Allow different implementations of hash functions used in BIP32 Derivations
/// Grin uses blake2 everywhere but the spec calls for SHA512/Ripemd160, so allow
/// this in future and allow us to unit test against published BIP32 test vectors
/// The function names refer to the place of the hash in the reference BIP32 spec,
/// not what the actual implementation is
pub trait BIP32Hasher {
fn network_priv() -> [u8; 4];
fn network_pub() -> [u8; 4];
fn master_seed() -> [u8; 12];
fn init_sha512(&mut self, seed: &[u8]);
fn append_sha512(&mut self, value: &[u8]);
fn result_sha512(&mut self) -> [u8; 64];
fn sha_256(&self, input: &[u8]) -> [u8; 32];
fn ripemd_160(&self, input: &[u8]) -> [u8; 20];
}
/// Implementation of the above that uses the standard BIP32 Hash algorithms
pub struct BIP32ReferenceHasher {
hmac_sha512: Hmac<Sha512>,
}
impl BIP32ReferenceHasher {
/// New empty hasher
pub fn new() -> BIP32ReferenceHasher {
BIP32ReferenceHasher {
hmac_sha512: HmacSha512::new(GenericArray::from_slice(&[0u8; 128])),
}
}
}
impl BIP32Hasher for BIP32ReferenceHasher {
fn network_priv() -> [u8; 4] {
// bitcoin network (xprv) (for test vectors)
[0x04, 0x88, 0xAD, 0xE4]
}
fn network_pub() -> [u8; 4] {
// bitcoin network (xpub) (for test vectors)
[0x04, 0x88, 0xB2, 0x1E]
}
fn master_seed() -> [u8; 12] {
b"Bitcoin seed".to_owned()
}
fn init_sha512(&mut self, seed: &[u8]) {
self.hmac_sha512 = HmacSha512::new_varkey(seed).expect("HMAC can take key of any size");;
}
fn append_sha512(&mut self, value: &[u8]) {
self.hmac_sha512.input(value);
}
fn result_sha512(&mut self) -> [u8; 64] {
let mut result = [0; 64];
result.copy_from_slice(self.hmac_sha512.result().code().as_slice());
result
}
fn sha_256(&self, input: &[u8]) -> [u8; 32] {
let mut sha2_res = [0; 32];
let mut sha2 = Sha256::new();
sha2.input(input);
sha2_res.copy_from_slice(sha2.result().as_slice());
sha2_res
}
fn ripemd_160(&self, input: &[u8]) -> [u8; 20] {
let mut ripemd_res = [0; 20];
let mut ripemd = Ripemd160::new();
ripemd.input(input);
ripemd_res.copy_from_slice(ripemd.result().as_slice());
ripemd_res
}
}
/// Extended private key
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct ExtendedPrivKey {
/// The network this key is to be used on
pub network: [u8; 4],
/// How many derivations this key is from the master (which is 0)
pub depth: u8,
/// Fingerprint of the parent key (0 for master)
pub parent_fingerprint: Fingerprint,
/// Child number of the key used to derive from parent (0 for master)
pub child_number: ChildNumber,
/// Secret key
pub secret_key: SecretKey,
/// Chain code
pub chain_code: ChainCode,
}
/// Extended public key
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub struct ExtendedPubKey {
/// The network this key is to be used on
pub network: [u8; 4],
/// How many derivations this key is from the master (which is 0)
pub depth: u8,
/// Fingerprint of the parent key
pub parent_fingerprint: Fingerprint,
/// Child number of the key used to derive from parent (0 for master)
pub child_number: ChildNumber,
/// Public key
pub public_key: PublicKey,
/// Chain code
pub chain_code: ChainCode,
}
/// A child number for a derived key
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum ChildNumber {
/// Non-hardened key
Normal {
/// Key index, within [0, 2^31 - 1]
index: u32,
},
/// Hardened key
Hardened {
/// Key index, within [0, 2^31 - 1]
index: u32,
},
}
impl ChildNumber {
/// Create a [`Normal`] from an index, panics if the index is not within
/// [0, 2^31 - 1].
///
/// [`Normal`]: #variant.Normal
pub fn from_normal_idx(index: u32) -> Self {
assert_eq!(
index & (1 << 31),
0,
"ChildNumber indices have to be within [0, 2^31 - 1], is: {}",
index
);
ChildNumber::Normal { index: index }
}
/// Create a [`Hardened`] from an index, panics if the index is not within
/// [0, 2^31 - 1].
///
/// [`Hardened`]: #variant.Hardened
pub fn from_hardened_idx(index: u32) -> Self {
assert_eq!(
index & (1 << 31),
0,
"ChildNumber indices have to be within [0, 2^31 - 1], is: {}",
index
);
ChildNumber::Hardened { index: index }
}
/// Returns `true` if the child number is a [`Normal`] value.
///
/// [`Normal`]: #variant.Normal
pub fn is_normal(&self) -> bool {
!self.is_hardened()
}
/// Returns `true` if the child number is a [`Hardened`] value.
///
/// [`Hardened`]: #variant.Hardened
pub fn is_hardened(&self) -> bool {
match *self {
ChildNumber::Hardened { .. } => true,
ChildNumber::Normal { .. } => false,
}
}
}
impl From<u32> for ChildNumber {
fn from(number: u32) -> Self {
if number & (1 << 31) != 0 {
ChildNumber::Hardened {
index: number ^ (1 << 31),
}
} else {
ChildNumber::Normal { index: number }
}
}
}
impl From<ChildNumber> for u32 {
fn from(cnum: ChildNumber) -> Self {
match cnum {
ChildNumber::Normal { index } => index,
ChildNumber::Hardened { index } => index | (1 << 31),
}
}
}
impl fmt::Display for ChildNumber {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
ChildNumber::Hardened { index } => write!(f, "{}'", index),
ChildNumber::Normal { index } => write!(f, "{}", index),
}
}
}
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for ChildNumber {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
u32::deserialize(deserializer).map(ChildNumber::from)
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for ChildNumber {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
u32::from(*self).serialize(serializer)
}
}
/// A BIP32 error
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Error {
/// A pk->pk derivation was attempted on a hardened key
CannotDeriveFromHardenedKey,
/// A secp256k1 error occured
Ecdsa(secp::Error),
/// A child number was provided that was out of range
InvalidChildNumber(ChildNumber),
/// Error creating a master seed --- for application use
RngError(String),
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Error::CannotDeriveFromHardenedKey => {
f.write_str("cannot derive hardened key from public key")
}
Error::Ecdsa(ref e) => fmt::Display::fmt(e, f),
Error::InvalidChildNumber(ref n) => write!(f, "child number {} is invalid", n),
Error::RngError(ref s) => write!(f, "rng error {}", s),
}
}
}
impl error::Error for Error {
fn cause(&self) -> Option<&error::Error> {
if let Error::Ecdsa(ref e) = *self {
Some(e)
} else {
None
}
}
fn description(&self) -> &str {
match *self {
Error::CannotDeriveFromHardenedKey => "cannot derive hardened key from public key",
Error::Ecdsa(ref e) => error::Error::description(e),
Error::InvalidChildNumber(_) => "child number is invalid",
Error::RngError(_) => "rng error",
}
}
}
impl From<secp::Error> for Error {
fn from(e: secp::Error) -> Error {
Error::Ecdsa(e)
}
}
impl ExtendedPrivKey {
/// Construct a new master key from a seed value
pub fn new_master<H>(
secp: &Secp256k1,
hasher: &mut H,
seed: &[u8],
) -> Result<ExtendedPrivKey, Error>
where
H: BIP32Hasher,
{
hasher.init_sha512(&H::master_seed());
hasher.append_sha512(seed);
let result = hasher.result_sha512();
Ok(ExtendedPrivKey {
network: H::network_priv(),
depth: 0,
parent_fingerprint: Default::default(),
child_number: ChildNumber::from_normal_idx(0),
secret_key: SecretKey::from_slice(secp, &result[..32]).map_err(Error::Ecdsa)?,
chain_code: ChainCode::from(&result[32..]),
})
}
/// Attempts to derive an extended private key from a path.
pub fn derive_priv<H>(
&self,
secp: &Secp256k1,
hasher: &mut H,
cnums: &[ChildNumber],
) -> Result<ExtendedPrivKey, Error>
where
H: BIP32Hasher,
{
let mut sk: ExtendedPrivKey = *self;
for cnum in cnums {
sk = sk.ckd_priv(secp, hasher, *cnum)?;
}
Ok(sk)
}
/// Private->Private child key derivation
pub fn ckd_priv<H>(
&self,
secp: &Secp256k1,
hasher: &mut H,
i: ChildNumber,
) -> Result<ExtendedPrivKey, Error>
where
H: BIP32Hasher,
{
hasher.init_sha512(&self.chain_code[..]);
let mut be_n = [0; 4];
match i {
ChildNumber::Normal { .. } => {
// Non-hardened key: compute public data and use that
hasher.append_sha512(
&PublicKey::from_secret_key(secp, &self.secret_key)?.serialize_vec(secp, true)
[..],
);
}
ChildNumber::Hardened { .. } => {
// Hardened key: use only secret data to prevent public derivation
hasher.append_sha512(&[0u8]);
hasher.append_sha512(&self.secret_key[..]);
}
}
BigEndian::write_u32(&mut be_n, u32::from(i));
hasher.append_sha512(&be_n);
let result = hasher.result_sha512();
let mut sk = SecretKey::from_slice(secp, &result[..32]).map_err(Error::Ecdsa)?;
sk.add_assign(secp, &self.secret_key)
.map_err(Error::Ecdsa)?;
Ok(ExtendedPrivKey {
network: self.network,
depth: self.depth + 1,
parent_fingerprint: self.fingerprint(hasher),
child_number: i,
secret_key: sk,
chain_code: ChainCode::from(&result[32..]),
})
}
/// Returns the HASH160 of the chaincode
pub fn identifier<H>(&self, hasher: &mut H) -> [u8; 20]
where
H: BIP32Hasher,
{
let secp = Secp256k1::with_caps(ContextFlag::SignOnly);
// Compute extended public key
let pk: ExtendedPubKey = ExtendedPubKey::from_private::<H>(&secp, self);
// Do SHA256 of just the ECDSA pubkey
let sha2_res = hasher.sha_256(&pk.public_key.serialize_vec(&secp, true)[..]);
// do RIPEMD160
let ripemd_res = hasher.ripemd_160(&sha2_res);
// Return
ripemd_res
}
/// Returns the first four bytes of the identifier
pub fn fingerprint<H>(&self, hasher: &mut H) -> Fingerprint
where
H: BIP32Hasher,
{
Fingerprint::from(&self.identifier(hasher)[0..4])
}
}
impl ExtendedPubKey {
/// Derives a public key from a private key
pub fn from_private<H>(secp: &Secp256k1, sk: &ExtendedPrivKey) -> ExtendedPubKey
where
H: BIP32Hasher,
{
ExtendedPubKey {
network: H::network_pub(),
depth: sk.depth,
parent_fingerprint: sk.parent_fingerprint,
child_number: sk.child_number,
public_key: PublicKey::from_secret_key(secp, &sk.secret_key).unwrap(),
chain_code: sk.chain_code,
}
}
/// Attempts to derive an extended public key from a path.
pub fn derive_pub<H>(
&self,
secp: &Secp256k1,
hasher: &mut H,
cnums: &[ChildNumber],
) -> Result<ExtendedPubKey, Error>
where
H: BIP32Hasher,
{
let mut pk: ExtendedPubKey = *self;
for cnum in cnums {
pk = pk.ckd_pub(secp, hasher, *cnum)?
}
Ok(pk)
}
/// Compute the scalar tweak added to this key to get a child key
pub fn ckd_pub_tweak<H>(
&self,
secp: &Secp256k1,
hasher: &mut H,
i: ChildNumber,
) -> Result<(SecretKey, ChainCode), Error>
where
H: BIP32Hasher,
{
match i {
ChildNumber::Hardened { .. } => Err(Error::CannotDeriveFromHardenedKey),
ChildNumber::Normal { index: n } => {
hasher.init_sha512(&self.chain_code[..]);
hasher.append_sha512(&self.public_key.serialize_vec(secp, true)[..]);
let mut be_n = [0; 4];
BigEndian::write_u32(&mut be_n, n);
hasher.append_sha512(&be_n);
let mut result = hasher.result_sha512();
let secret_key = SecretKey::from_slice(secp, &result[..32])?;
let chain_code = ChainCode::from(&result[32..]);
Ok((secret_key, chain_code))
}
}
}
/// Public->Public child key derivation
pub fn ckd_pub<H>(
&self,
secp: &Secp256k1,
hasher: &mut H,
i: ChildNumber,
) -> Result<ExtendedPubKey, Error>
where
H: BIP32Hasher,
{
let (sk, chain_code) = self.ckd_pub_tweak(secp, hasher, i)?;
let mut pk = self.public_key.clone();
pk.add_exp_assign(secp, &sk).map_err(Error::Ecdsa)?;
Ok(ExtendedPubKey {
network: self.network,
depth: self.depth + 1,
parent_fingerprint: self.fingerprint(secp, hasher),
child_number: i,
public_key: pk,
chain_code: chain_code,
})
}
/// Returns the HASH160 of the chaincode
pub fn identifier<H>(&self, secp: &Secp256k1, hasher: &mut H) -> [u8; 20]
where
H: BIP32Hasher,
{
// Do SHA256 of just the ECDSA pubkey
let sha2_res = hasher.sha_256(&self.public_key.serialize_vec(secp, true)[..]);
// do RIPEMD160
let ripemd_res = hasher.ripemd_160(&sha2_res);
// Return
ripemd_res
}
/// Returns the first four bytes of the identifier
pub fn fingerprint<H>(&self, secp: &Secp256k1, hasher: &mut H) -> Fingerprint
where
H: BIP32Hasher,
{
Fingerprint::from(&self.identifier(secp, hasher)[0..4])
}
}
impl fmt::Display for ExtendedPrivKey {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let mut ret = [0; 78];
ret[0..4].copy_from_slice(&self.network[0..4]);
ret[4] = self.depth as u8;
ret[5..9].copy_from_slice(&self.parent_fingerprint[..]);
BigEndian::write_u32(&mut ret[9..13], u32::from(self.child_number));
ret[13..45].copy_from_slice(&self.chain_code[..]);
ret[45] = 0;
ret[46..78].copy_from_slice(&self.secret_key[..]);
fmt.write_str(&base58::check_encode_slice(&ret[..]))
}
}
impl FromStr for ExtendedPrivKey {
type Err = base58::Error;
fn from_str(inp: &str) -> Result<ExtendedPrivKey, base58::Error> {
let s = Secp256k1::without_caps();
let data = base58::from_check(inp)?;
if data.len() != 78 {
return Err(base58::Error::InvalidLength(data.len()));
}
let cn_int: u32 = Cursor::new(&data[9..13]).read_u32::<BigEndian>().unwrap();
let child_number: ChildNumber = ChildNumber::from(cn_int);
let mut network = [0; 4];
network.copy_from_slice(&data[0..4]);
Ok(ExtendedPrivKey {
network: network,
depth: data[4],
parent_fingerprint: Fingerprint::from(&data[5..9]),
child_number: child_number,
chain_code: ChainCode::from(&data[13..45]),
secret_key: SecretKey::from_slice(&s, &data[46..78])
.map_err(|e| base58::Error::Other(e.to_string()))?,
})
}
}
impl fmt::Display for ExtendedPubKey {
fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
let secp = Secp256k1::without_caps();
let mut ret = [0; 78];
ret[0..4].copy_from_slice(&self.network[0..4]);
ret[4] = self.depth as u8;
ret[5..9].copy_from_slice(&self.parent_fingerprint[..]);
BigEndian::write_u32(&mut ret[9..13], u32::from(self.child_number));
ret[13..45].copy_from_slice(&self.chain_code[..]);
ret[45..78].copy_from_slice(&self.public_key.serialize_vec(&secp, true)[..]);
fmt.write_str(&base58::check_encode_slice(&ret[..]))
}
}
impl FromStr for ExtendedPubKey {
type Err = base58::Error;
fn from_str(inp: &str) -> Result<ExtendedPubKey, base58::Error> {
let s = Secp256k1::without_caps();
let data = base58::from_check(inp)?;
if data.len() != 78 {
return Err(base58::Error::InvalidLength(data.len()));
}
let cn_int: u32 = Cursor::new(&data[9..13]).read_u32::<BigEndian>().unwrap();
let child_number: ChildNumber = ChildNumber::from(cn_int);
let mut network = [0; 4];
network.copy_from_slice(&data[0..4]);
Ok(ExtendedPubKey {
network: network,
depth: data[4],
parent_fingerprint: Fingerprint::from(&data[5..9]),
child_number: child_number,
chain_code: ChainCode::from(&data[13..45]),
public_key: PublicKey::from_slice(&s, &data[45..78])
.map_err(|e| base58::Error::Other(e.to_string()))?,
})
}
}
#[cfg(test)]
mod tests {
use std::str::FromStr;
use std::string::ToString;
use util::from_hex;
use util::secp::Secp256k1;
use super::ChildNumber::{Hardened, Normal};
use super::Error;
use super::{ChildNumber, ExtendedPrivKey, ExtendedPubKey};
use super::BIP32ReferenceHasher;
fn test_path(
secp: &Secp256k1,
seed: &[u8],
path: &[ChildNumber],
expected_sk: &str,
expected_pk: &str,
) {
let mut h = BIP32ReferenceHasher::new();
let mut sk = ExtendedPrivKey::new_master(secp, &mut h, seed).unwrap();
let mut pk = ExtendedPubKey::from_private::<BIP32ReferenceHasher>(secp, &sk);
// Check derivation convenience method for ExtendedPrivKey
assert_eq!(
&sk.derive_priv(secp, &mut h, path).unwrap().to_string()[..],
expected_sk
);
// Check derivation convenience method for ExtendedPubKey, should error
// appropriately if any ChildNumber is hardened
if path.iter().any(|cnum| cnum.is_hardened()) {
assert_eq!(
pk.derive_pub(secp, &mut h, path),
Err(Error::CannotDeriveFromHardenedKey)
);
} else {
assert_eq!(
&pk.derive_pub(secp, &mut h, path).unwrap().to_string()[..],
expected_pk
);
}
// Derive keys, checking hardened and non-hardened derivation one-by-one
for &num in path.iter() {
sk = sk.ckd_priv(secp, &mut h, num).unwrap();
match num {
Normal { .. } => {
let pk2 = pk.ckd_pub(secp, &mut h, num).unwrap();
pk = ExtendedPubKey::from_private::<BIP32ReferenceHasher>(secp, &sk);
assert_eq!(pk, pk2);
}
Hardened { .. } => {
assert_eq!(
pk.ckd_pub(secp, &mut h, num),
Err(Error::CannotDeriveFromHardenedKey)
);
pk = ExtendedPubKey::from_private::<BIP32ReferenceHasher>(secp, &sk);
}
}
}
// Check result against expected base58
assert_eq!(&sk.to_string()[..], expected_sk);
assert_eq!(&pk.to_string()[..], expected_pk);
// Check decoded base58 against result
let decoded_sk = ExtendedPrivKey::from_str(expected_sk);
let decoded_pk = ExtendedPubKey::from_str(expected_pk);
assert_eq!(Ok(sk), decoded_sk);
assert_eq!(Ok(pk), decoded_pk);
}
#[test]
fn test_vector_1() {
let secp = Secp256k1::new();
let seed = from_hex("000102030405060708090a0b0c0d0e0f".to_owned()).unwrap();
// m
test_path(&secp, &seed, &[],
"xprv9s21ZrQH143K3QTDL4LXw2F7HEK3wJUD2nW2nRk4stbPy6cq3jPPqjiChkVvvNKmPGJxWUtg6LnF5kejMRNNU3TGtRBeJgk33yuGBxrMPHi",
"xpub661MyMwAqRbcFtXgS5sYJABqqG9YLmC4Q1Rdap9gSE8NqtwybGhePY2gZ29ESFjqJoCu1Rupje8YtGqsefD265TMg7usUDFdp6W1EGMcet8");
// m/0h
test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0)],
"xprv9uHRZZhk6KAJC1avXpDAp4MDc3sQKNxDiPvvkX8Br5ngLNv1TxvUxt4cV1rGL5hj6KCesnDYUhd7oWgT11eZG7XnxHrnYeSvkzY7d2bhkJ7",
"xpub68Gmy5EdvgibQVfPdqkBBCHxA5htiqg55crXYuXoQRKfDBFA1WEjWgP6LHhwBZeNK1VTsfTFUHCdrfp1bgwQ9xv5ski8PX9rL2dZXvgGDnw");
// m/0h/1
test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0), ChildNumber::from_normal_idx(1)],
"xprv9wTYmMFdV23N2TdNG573QoEsfRrWKQgWeibmLntzniatZvR9BmLnvSxqu53Kw1UmYPxLgboyZQaXwTCg8MSY3H2EU4pWcQDnRnrVA1xe8fs",
"xpub6ASuArnXKPbfEwhqN6e3mwBcDTgzisQN1wXN9BJcM47sSikHjJf3UFHKkNAWbWMiGj7Wf5uMash7SyYq527Hqck2AxYysAA7xmALppuCkwQ");
// m/0h/1/2h
test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0), ChildNumber::from_normal_idx(1), ChildNumber::from_hardened_idx(2)],
"xprv9z4pot5VBttmtdRTWfWQmoH1taj2axGVzFqSb8C9xaxKymcFzXBDptWmT7FwuEzG3ryjH4ktypQSAewRiNMjANTtpgP4mLTj34bhnZX7UiM",
"xpub6D4BDPcP2GT577Vvch3R8wDkScZWzQzMMUm3PWbmWvVJrZwQY4VUNgqFJPMM3No2dFDFGTsxxpG5uJh7n7epu4trkrX7x7DogT5Uv6fcLW5");
// m/0h/1/2h/2
test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0), ChildNumber::from_normal_idx(1), ChildNumber::from_hardened_idx(2), ChildNumber::from_normal_idx(2)],
"xprvA2JDeKCSNNZky6uBCviVfJSKyQ1mDYahRjijr5idH2WwLsEd4Hsb2Tyh8RfQMuPh7f7RtyzTtdrbdqqsunu5Mm3wDvUAKRHSC34sJ7in334",
"xpub6FHa3pjLCk84BayeJxFW2SP4XRrFd1JYnxeLeU8EqN3vDfZmbqBqaGJAyiLjTAwm6ZLRQUMv1ZACTj37sR62cfN7fe5JnJ7dh8zL4fiyLHV");
// m/0h/1/2h/2/1000000000
test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0), ChildNumber::from_normal_idx(1), ChildNumber::from_hardened_idx(2), ChildNumber::from_normal_idx(2), ChildNumber::from_normal_idx(1000000000)],
"xprvA41z7zogVVwxVSgdKUHDy1SKmdb533PjDz7J6N6mV6uS3ze1ai8FHa8kmHScGpWmj4WggLyQjgPie1rFSruoUihUZREPSL39UNdE3BBDu76",
"xpub6H1LXWLaKsWFhvm6RVpEL9P4KfRZSW7abD2ttkWP3SSQvnyA8FSVqNTEcYFgJS2UaFcxupHiYkro49S8yGasTvXEYBVPamhGW6cFJodrTHy");
}
#[test]
fn test_vector_2() {
let secp = Secp256k1::new();
let seed = from_hex("fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542".to_owned()).unwrap();
// m
test_path(&secp, &seed, &[],
"xprv9s21ZrQH143K31xYSDQpPDxsXRTUcvj2iNHm5NUtrGiGG5e2DtALGdso3pGz6ssrdK4PFmM8NSpSBHNqPqm55Qn3LqFtT2emdEXVYsCzC2U",
"xpub661MyMwAqRbcFW31YEwpkMuc5THy2PSt5bDMsktWQcFF8syAmRUapSCGu8ED9W6oDMSgv6Zz8idoc4a6mr8BDzTJY47LJhkJ8UB7WEGuduB");
// m/0
test_path(&secp, &seed, &[ChildNumber::from_normal_idx(0)],
"xprv9vHkqa6EV4sPZHYqZznhT2NPtPCjKuDKGY38FBWLvgaDx45zo9WQRUT3dKYnjwih2yJD9mkrocEZXo1ex8G81dwSM1fwqWpWkeS3v86pgKt",
"xpub69H7F5d8KSRgmmdJg2KhpAK8SR3DjMwAdkxj3ZuxV27CprR9LgpeyGmXUbC6wb7ERfvrnKZjXoUmmDznezpbZb7ap6r1D3tgFxHmwMkQTPH");
// m/0/2147483647h
test_path(&secp, &seed, &[ChildNumber::from_normal_idx(0), ChildNumber::from_hardened_idx(2147483647)],
"xprv9wSp6B7kry3Vj9m1zSnLvN3xH8RdsPP1Mh7fAaR7aRLcQMKTR2vidYEeEg2mUCTAwCd6vnxVrcjfy2kRgVsFawNzmjuHc2YmYRmagcEPdU9",
"xpub6ASAVgeehLbnwdqV6UKMHVzgqAG8Gr6riv3Fxxpj8ksbH9ebxaEyBLZ85ySDhKiLDBrQSARLq1uNRts8RuJiHjaDMBU4Zn9h8LZNnBC5y4a");
// m/0/2147483647h/1
test_path(&secp, &seed, &[ChildNumber::from_normal_idx(0), ChildNumber::from_hardened_idx(2147483647), ChildNumber::from_normal_idx(1)],
"xprv9zFnWC6h2cLgpmSA46vutJzBcfJ8yaJGg8cX1e5StJh45BBciYTRXSd25UEPVuesF9yog62tGAQtHjXajPPdbRCHuWS6T8XA2ECKADdw4Ef",
"xpub6DF8uhdarytz3FWdA8TvFSvvAh8dP3283MY7p2V4SeE2wyWmG5mg5EwVvmdMVCQcoNJxGoWaU9DCWh89LojfZ537wTfunKau47EL2dhHKon");
// m/0/2147483647h/1/2147483646h
test_path(&secp, &seed, &[ChildNumber::from_normal_idx(0), ChildNumber::from_hardened_idx(2147483647), ChildNumber::from_normal_idx(1), ChildNumber::from_hardened_idx(2147483646)],
"xprvA1RpRA33e1JQ7ifknakTFpgNXPmW2YvmhqLQYMmrj4xJXXWYpDPS3xz7iAxn8L39njGVyuoseXzU6rcxFLJ8HFsTjSyQbLYnMpCqE2VbFWc",
"xpub6ERApfZwUNrhLCkDtcHTcxd75RbzS1ed54G1LkBUHQVHQKqhMkhgbmJbZRkrgZw4koxb5JaHWkY4ALHY2grBGRjaDMzQLcgJvLJuZZvRcEL");
// m/0/2147483647h/1/2147483646h/2
test_path(&secp, &seed, &[ChildNumber::from_normal_idx(0), ChildNumber::from_hardened_idx(2147483647), ChildNumber::from_normal_idx(1), ChildNumber::from_hardened_idx(2147483646), ChildNumber::from_normal_idx(2)],
"xprvA2nrNbFZABcdryreWet9Ea4LvTJcGsqrMzxHx98MMrotbir7yrKCEXw7nadnHM8Dq38EGfSh6dqA9QWTyefMLEcBYJUuekgW4BYPJcr9E7j",
"xpub6FnCn6nSzZAw5Tw7cgR9bi15UV96gLZhjDstkXXxvCLsUXBGXPdSnLFbdpq8p9HmGsApME5hQTZ3emM2rnY5agb9rXpVGyy3bdW6EEgAtqt");
}
#[test]
fn test_vector_3() {
let secp = Secp256k1::new();
let seed = from_hex("4b381541583be4423346c643850da4b320e46a87ae3d2a4e6da11eba819cd4acba45d239319ac14f863b8d5ab5a0d0c64d2e8a1e7d1457df2e5a3c51c73235be".to_owned()).unwrap();
// m
test_path(&secp, &seed, &[],
"xprv9s21ZrQH143K25QhxbucbDDuQ4naNntJRi4KUfWT7xo4EKsHt2QJDu7KXp1A3u7Bi1j8ph3EGsZ9Xvz9dGuVrtHHs7pXeTzjuxBrCmmhgC6",
"xpub661MyMwAqRbcEZVB4dScxMAdx6d4nFc9nvyvH3v4gJL378CSRZiYmhRoP7mBy6gSPSCYk6SzXPTf3ND1cZAceL7SfJ1Z3GC8vBgp2epUt13");
// m/0h
test_path(&secp, &seed, &[ChildNumber::from_hardened_idx(0)],
"xprv9uPDJpEQgRQfDcW7BkF7eTya6RPxXeJCqCJGHuCJ4GiRVLzkTXBAJMu2qaMWPrS7AANYqdq6vcBcBUdJCVVFceUvJFjaPdGZ2y9WACViL4L",
"xpub68NZiKmJWnxxS6aaHmn81bvJeTESw724CRDs6HbuccFQN9Ku14VQrADWgqbhhTHBaohPX4CjNLf9fq9MYo6oDaPPLPxSb7gwQN3ih19Zm4Y");
}
#[test]
#[cfg(all(feature = "serde", feature = "strason"))]
pub fn encode_decode_childnumber() {
serde_round_trip!(ChildNumber::from_normal_idx(0));
serde_round_trip!(ChildNumber::from_normal_idx(1));
serde_round_trip!(ChildNumber::from_normal_idx((1 << 31) - 1));
serde_round_trip!(ChildNumber::from_hardened_idx(0));
serde_round_trip!(ChildNumber::from_hardened_idx(1));
serde_round_trip!(ChildNumber::from_hardened_idx((1 << 31) - 1));
}
}