grin/core/tests/core.rs

527 lines
14 KiB
Rust
Raw Normal View History

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Core tests
extern crate grin_core;
extern crate grin_keychain as keychain;
extern crate grin_util as util;
extern crate grin_wallet as wallet;
use std::sync::Arc;
use util::RwLock;
pub mod common;
use common::{new_block, tx1i1o, tx1i2o, tx2i1o};
use grin_core::core::block::BlockHeader;
use grin_core::core::block::Error::KernelLockHeight;
use grin_core::core::hash::{Hashed, ZERO_HASH};
use grin_core::core::verifier_cache::{LruVerifierCache, VerifierCache};
Minimal Transaction Pool (#1067) * verify a tx like we verify a block (experimental) * first minimal_pool test up and running but not testing what we need to * rework tx_pool validation to use txhashset extension * minimal tx pool wired up but rough * works locally (rough statew though) delete "legacy" pool and graph code * rework the new pool into TransactionPool and Pool impls * rework pool to store pool entries with associated timer and source etc. * all_transactions * extra_txs so we can validate stempool against existing txpool * rework reconcile_block * txhashset apply_raw_tx can now rewind to a checkpoint (prev raw tx) * wip - txhashset tx tests * more flexible rewind on MMRs * add tests to cover apply_raw_txs on txhashset extension * add_to_stempool and add_to_txpool * deaggregate multi kernel tx when adding to txpoool * handle freshness in stempool handle propagation of stempool txs via dandelion monitor * patience timer and fluff if we cannot propagate to next relay * aggregate and fluff stempool is we have no relay * refactor coinbase maturity * rewrote basic tx pool tests to use a real txhashset via chain adapter * rework dandelion monitor to reflect recent discussion works locally but needs a cleanup * refactor dandelion_monitor - split out phases * more pool test coverage * remove old test code from pool (still wip) * block_building and block_reconciliation tests * tracked down chain test failure... * fix test_coinbase_maturity * dandelion_monitor now runs... * refactor dandelion config, shared across p2p and pool components * fix pool tests with new config * fix p2p tests * rework tx pool to deal with duplicate commitments (testnet2 limitation) * cleanup and address some PR feedback * add big comment about pre_tx...
2018-05-30 23:57:13 +03:00
use grin_core::core::{aggregate, deaggregate, KernelFeatures, Output, Transaction};
use grin_core::ser;
use keychain::{BlindingFactor, ExtKeychain, Keychain};
use util::static_secp_instance;
use wallet::libtx::build::{
self, initial_tx, input, output, with_excess, with_fee, with_lock_height,
};
#[test]
fn simple_tx_ser() {
let tx = tx2i1o();
let mut vec = Vec::new();
ser::serialize(&mut vec, &tx).expect("serialization failed");
2018-06-25 14:28:56 +03:00
let target_len = 955;
assert_eq!(vec.len(), target_len,);
}
#[test]
fn simple_tx_ser_deser() {
let tx = tx2i1o();
let mut vec = Vec::new();
ser::serialize(&mut vec, &tx).expect("serialization failed");
let dtx: Transaction = ser::deserialize(&mut &vec[..]).unwrap();
assert_eq!(dtx.fee(), 2);
assert_eq!(dtx.inputs().len(), 2);
assert_eq!(dtx.outputs().len(), 1);
assert_eq!(tx.hash(), dtx.hash());
}
#[test]
fn tx_double_ser_deser() {
// checks serializing doesn't mess up the tx and produces consistent results
let btx = tx2i1o();
let mut vec = Vec::new();
assert!(ser::serialize(&mut vec, &btx).is_ok());
let dtx: Transaction = ser::deserialize(&mut &vec[..]).unwrap();
let mut vec2 = Vec::new();
assert!(ser::serialize(&mut vec2, &btx).is_ok());
let dtx2: Transaction = ser::deserialize(&mut &vec2[..]).unwrap();
assert_eq!(btx.hash(), dtx.hash());
assert_eq!(dtx.hash(), dtx2.hash());
}
#[test]
#[should_panic(expected = "Keychain Error")]
fn test_zero_commit_fails() {
let keychain = ExtKeychain::from_random_seed().unwrap();
2018-10-10 12:11:01 +03:00
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
// blinding should fail as signing with a zero r*G shouldn't work
build::transaction(
vec![
input(10, key_id1.clone()),
output(9, key_id1.clone()),
with_fee(1),
],
&keychain,
).unwrap();
}
fn verifier_cache() -> Arc<RwLock<VerifierCache>> {
Arc::new(RwLock::new(LruVerifierCache::new()))
}
#[test]
fn build_tx_kernel() {
let keychain = ExtKeychain::from_random_seed().unwrap();
2018-10-10 12:11:01 +03:00
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
// first build a valid tx with corresponding blinding factor
let tx = build::transaction(
vec![
input(10, key_id1),
output(5, key_id2),
output(3, key_id3),
with_fee(2),
],
&keychain,
).unwrap();
// check the tx is valid
tx.validate(verifier_cache()).unwrap();
// check the kernel is also itself valid
assert_eq!(tx.kernels().len(), 1);
let kern = &tx.kernels()[0];
kern.verify().unwrap();
assert_eq!(kern.features, KernelFeatures::DEFAULT_KERNEL);
assert_eq!(kern.fee, tx.fee());
}
// Combine two transactions into one big transaction (with multiple kernels)
// and check it still validates.
#[test]
fn transaction_cut_through() {
let tx1 = tx1i2o();
let tx2 = tx2i1o();
assert!(tx1.validate(verifier_cache()).is_ok());
assert!(tx2.validate(verifier_cache()).is_ok());
let vc = verifier_cache();
// now build a "cut_through" tx from tx1 and tx2
let tx3 = aggregate(vec![tx1, tx2]).unwrap();
assert!(tx3.validate(vc.clone()).is_ok());
}
// Attempt to deaggregate a multi-kernel transaction in a different way
#[test]
fn multi_kernel_transaction_deaggregation() {
let tx1 = tx1i1o();
let tx2 = tx1i1o();
let tx3 = tx1i1o();
let tx4 = tx1i1o();
let vc = verifier_cache();
assert!(tx1.validate(vc.clone()).is_ok());
assert!(tx2.validate(vc.clone()).is_ok());
assert!(tx3.validate(vc.clone()).is_ok());
assert!(tx4.validate(vc.clone()).is_ok());
let tx1234 = aggregate(vec![tx1.clone(), tx2.clone(), tx3.clone(), tx4.clone()]).unwrap();
let tx12 = aggregate(vec![tx1.clone(), tx2.clone()]).unwrap();
let tx34 = aggregate(vec![tx3.clone(), tx4.clone()]).unwrap();
assert!(tx1234.validate(vc.clone()).is_ok());
assert!(tx12.validate(vc.clone()).is_ok());
assert!(tx34.validate(vc.clone()).is_ok());
let deaggregated_tx34 = deaggregate(tx1234.clone(), vec![tx12.clone()]).unwrap();
assert!(deaggregated_tx34.validate(vc.clone()).is_ok());
assert_eq!(tx34, deaggregated_tx34);
let deaggregated_tx12 = deaggregate(tx1234.clone(), vec![tx34.clone()]).unwrap();
assert!(deaggregated_tx12.validate(vc.clone()).is_ok());
assert_eq!(tx12, deaggregated_tx12);
}
#[test]
fn multi_kernel_transaction_deaggregation_2() {
let tx1 = tx1i1o();
let tx2 = tx1i1o();
let tx3 = tx1i1o();
let vc = verifier_cache();
assert!(tx1.validate(vc.clone()).is_ok());
assert!(tx2.validate(vc.clone()).is_ok());
assert!(tx3.validate(vc.clone()).is_ok());
let tx123 = aggregate(vec![tx1.clone(), tx2.clone(), tx3.clone()]).unwrap();
let tx12 = aggregate(vec![tx1.clone(), tx2.clone()]).unwrap();
assert!(tx123.validate(vc.clone()).is_ok());
assert!(tx12.validate(vc.clone()).is_ok());
let deaggregated_tx3 = deaggregate(tx123.clone(), vec![tx12.clone()]).unwrap();
assert!(deaggregated_tx3.validate(vc.clone()).is_ok());
assert_eq!(tx3, deaggregated_tx3);
}
#[test]
fn multi_kernel_transaction_deaggregation_3() {
let tx1 = tx1i1o();
let tx2 = tx1i1o();
let tx3 = tx1i1o();
let vc = verifier_cache();
assert!(tx1.validate(vc.clone()).is_ok());
assert!(tx2.validate(vc.clone()).is_ok());
assert!(tx3.validate(vc.clone()).is_ok());
let tx123 = aggregate(vec![tx1.clone(), tx2.clone(), tx3.clone()]).unwrap();
let tx13 = aggregate(vec![tx1.clone(), tx3.clone()]).unwrap();
let tx2 = aggregate(vec![tx2.clone()]).unwrap();
assert!(tx123.validate(vc.clone()).is_ok());
assert!(tx2.validate(vc.clone()).is_ok());
let deaggregated_tx13 = deaggregate(tx123.clone(), vec![tx2.clone()]).unwrap();
assert!(deaggregated_tx13.validate(vc.clone()).is_ok());
assert_eq!(tx13, deaggregated_tx13);
}
#[test]
fn multi_kernel_transaction_deaggregation_4() {
let tx1 = tx1i1o();
let tx2 = tx1i1o();
let tx3 = tx1i1o();
let tx4 = tx1i1o();
let tx5 = tx1i1o();
let vc = verifier_cache();
assert!(tx1.validate(vc.clone()).is_ok());
assert!(tx2.validate(vc.clone()).is_ok());
assert!(tx3.validate(vc.clone()).is_ok());
assert!(tx4.validate(vc.clone()).is_ok());
assert!(tx5.validate(vc.clone()).is_ok());
let tx12345 = aggregate(vec![
tx1.clone(),
tx2.clone(),
tx3.clone(),
tx4.clone(),
tx5.clone(),
]).unwrap();
assert!(tx12345.validate(vc.clone()).is_ok());
let deaggregated_tx5 = deaggregate(
tx12345.clone(),
vec![tx1.clone(), tx2.clone(), tx3.clone(), tx4.clone()],
).unwrap();
assert!(deaggregated_tx5.validate(vc.clone()).is_ok());
assert_eq!(tx5, deaggregated_tx5);
}
#[test]
fn multi_kernel_transaction_deaggregation_5() {
let tx1 = tx1i1o();
let tx2 = tx1i1o();
let tx3 = tx1i1o();
let tx4 = tx1i1o();
let tx5 = tx1i1o();
let vc = verifier_cache();
assert!(tx1.validate(vc.clone()).is_ok());
assert!(tx2.validate(vc.clone()).is_ok());
assert!(tx3.validate(vc.clone()).is_ok());
assert!(tx4.validate(vc.clone()).is_ok());
assert!(tx5.validate(vc.clone()).is_ok());
let tx12345 = aggregate(vec![
tx1.clone(),
tx2.clone(),
tx3.clone(),
tx4.clone(),
tx5.clone(),
]).unwrap();
let tx12 = aggregate(vec![tx1.clone(), tx2.clone()]).unwrap();
let tx34 = aggregate(vec![tx3.clone(), tx4.clone()]).unwrap();
assert!(tx12345.validate(vc.clone()).is_ok());
let deaggregated_tx5 = deaggregate(tx12345.clone(), vec![tx12.clone(), tx34.clone()]).unwrap();
assert!(deaggregated_tx5.validate(vc.clone()).is_ok());
assert_eq!(tx5, deaggregated_tx5);
}
// Attempt to deaggregate a multi-kernel transaction
#[test]
fn basic_transaction_deaggregation() {
let tx1 = tx1i2o();
let tx2 = tx2i1o();
let vc = verifier_cache();
assert!(tx1.validate(vc.clone()).is_ok());
assert!(tx2.validate(vc.clone()).is_ok());
// now build a "cut_through" tx from tx1 and tx2
let tx3 = aggregate(vec![tx1.clone(), tx2.clone()]).unwrap();
assert!(tx3.validate(vc.clone()).is_ok());
let deaggregated_tx1 = deaggregate(tx3.clone(), vec![tx2.clone()]).unwrap();
assert!(deaggregated_tx1.validate(vc.clone()).is_ok());
assert_eq!(tx1, deaggregated_tx1);
let deaggregated_tx2 = deaggregate(tx3.clone(), vec![tx1.clone()]).unwrap();
assert!(deaggregated_tx2.validate(vc.clone()).is_ok());
assert_eq!(tx2, deaggregated_tx2);
}
#[test]
fn hash_output() {
let keychain = ExtKeychain::from_random_seed().unwrap();
2018-10-10 12:11:01 +03:00
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let tx = build::transaction(
vec![
input(75, key_id1),
output(42, key_id2),
output(32, key_id3),
with_fee(1),
],
&keychain,
).unwrap();
let h = tx.outputs()[0].hash();
assert!(h != ZERO_HASH);
let h2 = tx.outputs()[1].hash();
assert!(h != h2);
}
#[ignore]
#[test]
fn blind_tx() {
let btx = tx2i1o();
assert!(btx.validate(verifier_cache()).is_ok());
// Ignored for bullet proofs, because calling range_proof_info
// with a bullet proof causes painful errors
// checks that the range proof on our blind output is sufficiently hiding
let Output { proof, .. } = btx.outputs()[0];
let secp = static_secp_instance();
let secp = secp.lock();
let info = secp.range_proof_info(proof);
assert!(info.min == 0);
assert!(info.max == u64::max_value());
}
#[test]
fn tx_hash_diff() {
let btx1 = tx2i1o();
let btx2 = tx1i1o();
if btx1.hash() == btx2.hash() {
panic!("diff txs have same hash")
}
}
/// Simulate the standard exchange between 2 parties when creating a basic
/// 2 inputs, 2 outputs transaction.
#[test]
fn tx_build_exchange() {
let keychain = ExtKeychain::from_random_seed().unwrap();
2018-10-10 12:11:01 +03:00
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let key_id4 = ExtKeychain::derive_key_id(1, 4, 0, 0, 0);
let (tx_alice, blind_sum) = {
// Alice gets 2 of her pre-existing outputs to send 5 coins to Bob, they
// become inputs in the new transaction
let (in1, in2) = (input(4, key_id1), input(3, key_id2));
// Alice builds her transaction, with change, which also produces the sum
// of blinding factors before they're obscured.
let (tx, sum) =
build::partial_transaction(vec![in1, in2, output(1, key_id3), with_fee(2)], &keychain)
.unwrap();
(tx, sum)
};
// From now on, Bob only has the obscured transaction and the sum of
// blinding factors. He adds his output, finalizes the transaction so it's
// ready for broadcast.
let tx_final = build::transaction(
vec![
initial_tx(tx_alice),
with_excess(blind_sum),
output(4, key_id4),
],
&keychain,
).unwrap();
tx_final.validate(verifier_cache()).unwrap();
}
#[test]
fn reward_empty_block() {
let keychain = keychain::ExtKeychain::from_random_seed().unwrap();
2018-10-10 12:11:01 +03:00
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let previous_header = BlockHeader::default();
let b = new_block(vec![], &keychain, &previous_header, &key_id);
b.cut_through()
.unwrap()
.validate(&BlindingFactor::zero(), verifier_cache())
.unwrap();
}
#[test]
fn reward_with_tx_block() {
let keychain = keychain::ExtKeychain::from_random_seed().unwrap();
2018-10-10 12:11:01 +03:00
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let vc = verifier_cache();
let mut tx1 = tx2i1o();
tx1.validate(vc.clone()).unwrap();
let previous_header = BlockHeader::default();
let block = new_block(vec![&mut tx1], &keychain, &previous_header, &key_id);
block
.cut_through()
.unwrap()
.validate(&BlindingFactor::zero(), vc.clone())
.unwrap();
}
#[test]
fn simple_block() {
let keychain = keychain::ExtKeychain::from_random_seed().unwrap();
2018-10-10 12:11:01 +03:00
let key_id = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let vc = verifier_cache();
let mut tx1 = tx2i1o();
let mut tx2 = tx1i1o();
let previous_header = BlockHeader::default();
let b = new_block(
vec![&mut tx1, &mut tx2],
&keychain,
&previous_header,
&key_id,
);
b.validate(&BlindingFactor::zero(), vc.clone()).unwrap();
}
#[test]
fn test_block_with_timelocked_tx() {
let keychain = keychain::ExtKeychain::from_random_seed().unwrap();
2018-10-10 12:11:01 +03:00
let key_id1 = ExtKeychain::derive_key_id(1, 1, 0, 0, 0);
let key_id2 = ExtKeychain::derive_key_id(1, 2, 0, 0, 0);
let key_id3 = ExtKeychain::derive_key_id(1, 3, 0, 0, 0);
let vc = verifier_cache();
// first check we can add a timelocked tx where lock height matches current
// block height and that the resulting block is valid
let tx1 = build::transaction(
vec![
input(5, key_id1.clone()),
output(3, key_id2.clone()),
with_fee(2),
with_lock_height(1),
],
&keychain,
).unwrap();
let previous_header = BlockHeader::default();
let b = new_block(vec![&tx1], &keychain, &previous_header, &key_id3.clone());
b.validate(&BlindingFactor::zero(), vc.clone()).unwrap();
// now try adding a timelocked tx where lock height is greater than current
// block height
let tx1 = build::transaction(
vec![
input(5, key_id1.clone()),
output(3, key_id2.clone()),
with_fee(2),
with_lock_height(2),
],
&keychain,
).unwrap();
let previous_header = BlockHeader::default();
let b = new_block(vec![&tx1], &keychain, &previous_header, &key_id3.clone());
match b.validate(&BlindingFactor::zero(), vc.clone()) {
Err(KernelLockHeight(height)) => {
assert_eq!(height, 2);
}
_ => panic!("expecting KernelLockHeight error here"),
}
}
#[test]
pub fn test_verify_1i1o_sig() {
let tx = tx1i1o();
tx.validate(verifier_cache()).unwrap();
}
#[test]
pub fn test_verify_2i1o_sig() {
let tx = tx2i1o();
tx.validate(verifier_cache()).unwrap();
}