grin/store/tests/sumtree.rs

200 lines
5.1 KiB
Rust
Raw Normal View History

Prunable MMR storage (#112) * Base MMR storage structures Implementations of the MMR append-only file structure and its remove log. The append-only file is backed by a mmap for read access. The remove log is stored in memory for quick checking and backed by a simple file to persist it. * Add PMMR backend buffer, make PMMR Backend mutable * The Backend trait now has &mut self methods, and an &mut reference in PMMR. This simplifies the implementation of all backends by not forcing them to be interior mutable. Slight drawback is that a backend can't be used directly as long as it's used by a PMMR instance. * Introduced a buffer in the PMMR persistent backend to allow reads before the underlying files are fully flushed. Implemented with a temporary VecBackend. * Implement a prune list to use with dense backends The PruneList is useful when implementing compact backends for a PMMR (for example a single large byte array or a file). As nodes get pruned and removed from the backend to free space, the backend will get more compact but positions of a node within the PMMR will not match positions in the backend storage anymore. The PruneList accounts for that mismatch and does the position translation. * PMMR store compaction Implement actual pruning of the underlying PMMR storage by flushing the remove log. This triggers a rewrite of the PMMR nodes data (hashes and sums), removing pruned nodes. The information of what has been removed is kept in a prune list and the remove log is truncated. * PMMR store pruning tests and fixes
2017-09-05 08:50:25 +03:00
// Copyright 2017 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
extern crate env_logger;
extern crate grin_core as core;
extern crate grin_store as store;
extern crate time;
use std::fs;
use core::ser::*;
use core::core::pmmr::{PMMR, Summable, HashSum, Backend};
use core::core::hash::Hashed;
#[test]
fn sumtree_append() {
let (data_dir, elems) = setup();
let mut backend = store::sumtree::PMMRBackend::new(data_dir).unwrap();
// adding first set of 4 elements and sync
let mut mmr_size = load(0, &elems[0..4], &mut backend);
backend.sync().unwrap();
// adding the rest and sync again
mmr_size = load(mmr_size, &elems[4..9], &mut backend);
backend.sync().unwrap();
// check the resulting backend store and the computation of the root
let hash = Hashed::hash(&elems[0].clone());
let sum = elems[0].sum();
let node_hash = (1 as u64, &sum, hash).hash();
assert_eq!(
backend.get(1),
Some(HashSum {
hash: node_hash,
sum: sum,
})
);
let sum2 = HashSum::from_summable(1, &elems[0]) + HashSum::from_summable(2, &elems[1]);
let sum4 = sum2 + (HashSum::from_summable(4, &elems[2]) + HashSum::from_summable(5, &elems[3]));
let sum8 = sum4 +
((HashSum::from_summable(8, &elems[4]) + HashSum::from_summable(9, &elems[5])) +
(HashSum::from_summable(11, &elems[6]) + HashSum::from_summable(12, &elems[7])));
let sum9 = sum8 + HashSum::from_summable(16, &elems[8]);
{
let pmmr = PMMR::at(&mut backend, mmr_size);
assert_eq!(pmmr.root(), sum9);
}
}
#[test]
fn sumtree_prune_compact() {
let (data_dir, elems) = setup();
// setup the mmr store with all elements
let mut backend = store::sumtree::PMMRBackend::new(data_dir).unwrap();
let mmr_size = load(0, &elems[..], &mut backend);
backend.sync().unwrap();
// save the root
let root: HashSum<TestElem>;
{
let pmmr = PMMR::at(&mut backend, mmr_size);
root = pmmr.root();
}
// pruning some choice nodes
{
let mut pmmr = PMMR::at(&mut backend, mmr_size);
pmmr.prune(1);
pmmr.prune(4);
pmmr.prune(5);
}
backend.sync().unwrap();
// check the root
{
let pmmr = PMMR::at(&mut backend, mmr_size);
assert_eq!(root, pmmr.root());
}
// compact
backend.check_compact(2).unwrap();
// recheck the root
{
let pmmr = PMMR::at(&mut backend, mmr_size);
assert_eq!(root, pmmr.root());
}
}
#[test]
fn sumtree_reload() {
let (data_dir, elems) = setup();
// set everything up with a first backend
let mmr_size: u64;
let root: HashSum<TestElem>;
{
let mut backend = store::sumtree::PMMRBackend::new(data_dir.clone()).unwrap();
mmr_size = load(0, &elems[..], &mut backend);
backend.sync().unwrap();
// save the root and prune some nodes so we have prune data
{
let mut pmmr = PMMR::at(&mut backend, mmr_size);
root = pmmr.root();
pmmr.prune(1);
pmmr.prune(4);
}
backend.sync().unwrap();
backend.check_compact(1).unwrap();
backend.sync().unwrap();
// prune some more to get rm log data
{
let mut pmmr = PMMR::at(&mut backend, mmr_size);
pmmr.prune(5);
}
backend.sync().unwrap();
}
// create a new backend and check everything is kosher
{
let mut backend = store::sumtree::PMMRBackend::new(data_dir).unwrap();
{
let pmmr = PMMR::at(&mut backend, mmr_size);
assert_eq!(root, pmmr.root());
}
assert_eq!(backend.get(5), None);
}
}
fn setup() -> (String, Vec<TestElem>) {
let _ = env_logger::init();
let t = time::get_time();
let data_dir = format!("./target/{}.{}", t.sec, t.nsec);
fs::create_dir_all(data_dir.clone()).unwrap();
let elems = vec![
TestElem([0, 0, 0, 1]),
TestElem([0, 0, 0, 2]),
TestElem([0, 0, 0, 3]),
TestElem([0, 0, 0, 4]),
TestElem([0, 0, 0, 5]),
TestElem([0, 0, 0, 6]),
TestElem([0, 0, 0, 7]),
TestElem([0, 0, 0, 8]),
TestElem([1, 0, 0, 0]),
];
(data_dir, elems)
}
fn load(pos: u64, elems: &[TestElem],
backend: &mut store::sumtree::PMMRBackend<TestElem>) -> u64 {
let mut pmmr = PMMR::at(backend, pos);
for elem in elems {
pmmr.push(elem.clone());
}
pmmr.unpruned_size()
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
struct TestElem([u32; 4]);
impl Summable for TestElem {
type Sum = u64;
fn sum(&self) -> u64 {
// sums are not allowed to overflow, so we use this simple
// non-injective "sum" function that will still be homomorphic
self.0[0] as u64 * 0x1000 + self.0[1] as u64 * 0x100 + self.0[2] as u64 * 0x10 +
self.0[3] as u64
}
fn sum_len() -> usize {
8
}
}
impl Writeable for TestElem {
fn write<W: Writer>(&self, writer: &mut W) -> Result<(), Error> {
try!(writer.write_u32(self.0[0]));
try!(writer.write_u32(self.0[1]));
try!(writer.write_u32(self.0[2]));
writer.write_u32(self.0[3])
}
}