grin/wallet/src/libwallet/transaction.rs

473 lines
13 KiB
Rust
Raw Normal View History

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Functions for building partial transactions to be passed
//! around during an interactive wallet exchange
use rand::thread_rng;
use uuid::Uuid;
use core::core::{amount_to_hr_string, Committed, Transaction};
use libwallet::{aggsig, build};
use keychain::{BlindSum, BlindingFactor, Identifier, Keychain};
use types::*; // TODO: Remove this?
use util::{secp, LOGGER};
use util::secp::key::{PublicKey, SecretKey};
use util::secp::Signature;
use failure::ResultExt;
// TODO: None of these functions should care about the wallet implementation,
/// Initiate a transaction for the aggsig exchange
/// with the given transaction data
pub fn sender_initiation(
keychain: &Keychain,
tx_id: &Uuid,
context_manager: &mut aggsig::ContextManager,
current_height: u64,
//TODO: Make this nicer, remove wallet-specific OutputData type
tx_data: (
Transaction,
BlindingFactor,
Vec<OutputData>,
Option<Identifier>,
u64,
),
) -> Result<PartialTx, Error> {
let lock_height = current_height;
let (tx, blind, coins, _change_key, amount_with_fee) = tx_data;
// TODO - wrap this up in build_send_tx or even the build() call?
// Generate a random kernel offset here
// and subtract it from the blind_sum so we create
// the aggsig context with the "split" key
let kernel_offset =
BlindingFactor::from_secret_key(SecretKey::new(&keychain.secp(), &mut thread_rng()));
let blind_offset = keychain
.blind_sum(&BlindSum::new()
.add_blinding_factor(blind)
.sub_blinding_factor(kernel_offset))
.unwrap();
//
// -Sender picks random blinding factors for all outputs it participates in,
// computes total blinding excess xS -Sender picks random nonce kS
// -Sender posts inputs, outputs, Message M=fee, xS * G and kS * G to Receiver
//
let skey = blind_offset
.secret_key(&keychain.secp())
.context(ErrorKind::Keychain)?;
// Create a new aggsig context
let mut context = context_manager.create_context(keychain.secp(), &tx_id, skey);
for coin in coins {
context.add_output(&coin.key_id);
}
let partial_tx = build_partial_tx(
&context,
keychain,
amount_with_fee,
lock_height,
kernel_offset,
None,
tx,
);
context_manager.save_context(context);
Ok(partial_tx)
}
/// Receive Part 1 of interactive transactions from sender, Sender Initiation
/// Return result of part 2, Recipient Initation, to sender
/// -Receiver receives inputs, outputs xS * G and kS * G
/// -Receiver picks random blinding factors for all outputs being received,
/// computes total blinding
/// excess xR
/// -Receiver picks random nonce kR
/// -Receiver computes Schnorr challenge e = H(M | kR * G + kS * G)
/// -Receiver computes their part of signature, sR = kR + e * xR
/// -Receiver responds with sR, blinding excess xR * G, public nonce kR * G
pub fn recipient_initiation(
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
partial_tx: &PartialTx,
output_key_id: &Identifier,
) -> Result<PartialTx, Error> {
let (amount, _lock_height, _sender_pub_blinding, sender_pub_nonce, kernel_offset, _sig, tx) =
read_partial_tx(keychain, partial_tx)?;
// double check the fee amount included in the partial tx
// we don't necessarily want to just trust the sender
// we could just overwrite the fee here (but we won't) due to the sig
let fee = tx_fee(
tx.inputs.len(),
tx.outputs.len() + 1,
tx.input_proofs_count(),
None,
);
if fee > tx.fee() {
return Err(ErrorKind::FeeDispute {
sender_fee: tx.fee(),
recipient_fee: fee,
})?;
}
if fee > amount {
info!(
LOGGER,
"Rejected the transfer because transaction fee ({}) exceeds received amount ({}).",
amount_to_hr_string(fee),
amount_to_hr_string(amount)
);
return Err(ErrorKind::FeeExceedsAmount {
sender_amount: amount,
recipient_fee: fee,
})?;
}
let out_amount = amount - tx.fee();
// First step is just to get the excess sum of the outputs we're participating
// in Output and key needs to be stored until transaction finalisation time,
// somehow
// Still handy for getting the blinding sum
let (_, blind_sum) = build::partial_transaction(
vec![build::output(out_amount, output_key_id.clone())],
keychain,
).context(ErrorKind::Keychain)?;
// Create a new aggsig context
// this will create a new blinding sum and nonce, and store them
let blind = blind_sum
.secret_key(&keychain.secp())
.context(ErrorKind::Keychain)?;
debug!(LOGGER, "Creating new aggsig context");
let mut context = context_manager.create_context(keychain.secp(), &partial_tx.id, blind);
context.add_output(output_key_id);
context.fee = tx.fee();
let sig_part = context
.calculate_partial_sig(
keychain.secp(),
&sender_pub_nonce,
tx.fee(),
tx.lock_height(),
)
.unwrap();
// Build the response, which should contain sR, blinding excess xR * G, public
// nonce kR * G
let mut partial_tx = build_partial_tx(
&context,
keychain,
amount,
partial_tx.lock_height,
kernel_offset,
Some(sig_part),
tx,
);
partial_tx.phase = PartialTxPhase::ReceiverInitiation;
context_manager.save_context(context);
Ok(partial_tx)
}
/// -Sender receives xR * G, kR * G, sR
/// -Sender computes Schnorr challenge e = H(M | kR * G + kS * G)
/// -Sender verifies receivers sig, by verifying that kR * G + e * xR * G =
/// sR * G·
/// -Sender computes their part of signature, sS = kS + e * xS
pub fn sender_confirmation(
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
partial_tx: PartialTx,
) -> Result<PartialTx, Error> {
let context = context_manager.get_context(&partial_tx.id);
let (amount, lock_height, recp_pub_blinding, recp_pub_nonce, kernel_offset, sig, tx) =
read_partial_tx(keychain, &partial_tx)?;
let res = context.verify_partial_sig(
&keychain.secp(),
&sig.unwrap(),
&recp_pub_nonce,
&recp_pub_blinding,
tx.fee(),
lock_height,
);
if !res {
error!(LOGGER, "Partial Sig from recipient invalid.");
return Err(ErrorKind::Signature("Partial Sig from recipient invalid."))?;
}
let sig_part = context
.calculate_partial_sig(
&keychain.secp(),
&recp_pub_nonce,
tx.fee(),
tx.lock_height(),
)
.unwrap();
// Build the next stage, containing sS (and our pubkeys again, for the
// recipient's convenience) offset has not been modified during tx building,
// so pass it back in
let mut partial_tx = build_partial_tx(
&context,
keychain,
amount,
lock_height,
kernel_offset,
Some(sig_part),
tx,
);
partial_tx.phase = PartialTxPhase::SenderConfirmation;
context_manager.save_context(context);
Ok(partial_tx)
}
/// Creates the final signature, callable by either the sender or recipient
/// (after phase 3: sender confirmation)
///
/// TODO: takes a partial Tx that just contains the other party's public
/// info at present, but this should be changed to something more appropriate
pub fn finalize_transaction(
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
partial_tx: &PartialTx,
other_partial_tx: &PartialTx,
output_key_id: &Identifier,
output_key_derivation: u32,
) -> Result<Transaction, Error> {
let (
_amount,
_lock_height,
other_pub_blinding,
other_pub_nonce,
kernel_offset,
other_sig_part,
tx,
) = read_partial_tx(keychain, other_partial_tx)?;
let final_sig = create_final_signature(
keychain,
context_manager,
partial_tx,
&other_pub_blinding,
&other_pub_nonce,
&other_sig_part.unwrap(),
)?;
build_final_transaction(
keychain,
partial_tx.amount,
kernel_offset,
&final_sig,
tx.clone(),
output_key_id,
output_key_derivation,
)
}
/// This should be callable by either the sender or receiver
/// once phase 3 is done
///
/// Receive Part 3 of interactive transactions from sender, Sender Confirmation
/// Return Ok/Error
/// -Receiver receives sS
/// -Receiver verifies sender's sig, by verifying that
/// kS * G + e *xS * G = sS* G
/// -Receiver calculates final sig as s=(sS+sR, kS * G+kR * G)
/// -Receiver puts into TX kernel:
///
/// Signature S
/// pubkey xR * G+xS * G
/// fee (= M)
///
/// Returns completed transaction ready for posting to the chain
fn create_final_signature(
keychain: &Keychain,
context_manager: &mut aggsig::ContextManager,
partial_tx: &PartialTx,
other_pub_blinding: &PublicKey,
other_pub_nonce: &PublicKey,
other_sig_part: &Signature,
) -> Result<Signature, Error> {
let (_amount, _lock_height, _, _, _kernel_offset, _, tx) =
read_partial_tx(keychain, partial_tx)?;
let context = context_manager.get_context(&partial_tx.id);
let res = context.verify_partial_sig(
&keychain.secp(),
&other_sig_part,
&other_pub_nonce,
&other_pub_blinding,
tx.fee(),
tx.lock_height(),
);
if !res {
error!(LOGGER, "Partial Sig from other party invalid.");
return Err(ErrorKind::Signature(
"Partial Sig from other party invalid.",
))?;
}
// Just calculate our sig part again instead of storing
let our_sig_part = context
.calculate_partial_sig(
&keychain.secp(),
&other_pub_nonce,
tx.fee(),
tx.lock_height(),
)
.unwrap();
// And the final signature
let final_sig = context
.calculate_final_sig(
&keychain.secp(),
&other_sig_part,
&our_sig_part,
&other_pub_nonce,
)
.unwrap();
// Calculate the final public key (for our own sanity check)
let final_pubkey = context
.calculate_final_pubkey(&keychain.secp(), &other_pub_blinding)
.unwrap();
// Check our final sig verifies
let res = context.verify_final_sig_build_msg(
&keychain.secp(),
&final_sig,
&final_pubkey,
tx.fee(),
tx.lock_height(),
);
if !res {
error!(LOGGER, "Final aggregated signature invalid.");
return Err(ErrorKind::Signature("Final aggregated signature invalid."))?;
}
Ok(final_sig)
}
/// builds a final transaction after the aggregated sig exchange
fn build_final_transaction(
keychain: &Keychain,
amount: u64,
kernel_offset: BlindingFactor,
excess_sig: &secp::Signature,
tx: Transaction,
output_key_id: &Identifier,
output_key_derivation: u32,
) -> Result<Transaction, Error> {
let root_key_id = keychain.root_key_id();
// double check the fee amount included in the partial tx
// we don't necessarily want to just trust the sender
// we could just overwrite the fee here (but we won't) due to the ecdsa sig
let fee = tx_fee(
tx.inputs.len(),
tx.outputs.len() + 1,
tx.input_proofs_count(),
None,
);
if fee > tx.fee() {
return Err(ErrorKind::FeeDispute {
sender_fee: tx.fee(),
recipient_fee: fee,
})?;
}
if fee > amount {
info!(
LOGGER,
"Rejected the transfer because transaction fee ({}) exceeds received amount ({}).",
amount_to_hr_string(fee),
amount_to_hr_string(amount)
);
return Err(ErrorKind::FeeExceedsAmount {
sender_amount: amount,
recipient_fee: fee,
})?;
}
let out_amount = amount - tx.fee();
// Build final transaction, the sum of which should
// be the same as the exchanged excess values
let mut final_tx = build::transaction(
vec![
build::initial_tx(tx),
build::output(out_amount, output_key_id.clone()),
build::with_offset(kernel_offset),
],
keychain,
).context(ErrorKind::Keychain)?;
// build the final excess based on final tx and offset
let final_excess = {
// TODO - do we need to verify rangeproofs here?
for x in &final_tx.outputs {
x.verify_proof().context(ErrorKind::Transaction)?;
}
// sum the input/output commitments on the final tx
let overage = final_tx.fee() as i64;
let tx_excess = final_tx
.sum_commitments(overage, None)
.context(ErrorKind::Transaction)?;
// subtract the kernel_excess (built from kernel_offset)
let offset_excess = keychain
.secp()
.commit(0, kernel_offset.secret_key(&keychain.secp()).unwrap())
.unwrap();
keychain
.secp()
.commit_sum(vec![tx_excess], vec![offset_excess])
.context(ErrorKind::Transaction)?
};
// update the tx kernel to reflect the offset excess and sig
assert_eq!(final_tx.kernels.len(), 1);
final_tx.kernels[0].excess = final_excess.clone();
final_tx.kernels[0].excess_sig = excess_sig.clone();
// confirm the kernel verifies successfully before proceeding
debug!(LOGGER, "Validating final transaction");
final_tx.kernels[0]
.verify()
.context(ErrorKind::Transaction)?;
// confirm the overall transaction is valid (including the updated kernel)
let _ = final_tx.validate().context(ErrorKind::Transaction)?;
debug!(
LOGGER,
"Finalized transaction and built output - {:?}, {:?}, {}",
root_key_id.clone(),
output_key_id.clone(),
output_key_derivation,
);
Ok(final_tx)
}