grin/wallet/src/libwallet/aggsig.rs

275 lines
7.5 KiB
Rust
Raw Normal View History

// Copyright 2018 The Grin Developers
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// Aggsig library definitions
use std::collections::HashMap;
use util::secp::key::{PublicKey, SecretKey};
use util::secp::{self, aggsig, Message, Secp256k1, Signature};
use util::secp::pedersen::Commitment;
use util::kernel_sig_msg;
use uuid::Uuid;
use keychain::Keychain;
use keychain::extkey::Identifier;
use keychain::blind::BlindingFactor;
use libwallet::error::Error;
#[derive(Clone, Debug)]
/// Holds the context for a single aggsig transaction
pub struct Context {
/// Transaction ID
pub transaction_id: Uuid,
/// Secret key (of which public is shared)
pub sec_key: SecretKey,
/// Secret nonce (of which public is shared)
/// (basically a SecretKey)
pub sec_nonce: SecretKey,
/// If I'm the sender, store change key
pub change_key: Option<Identifier>,
/// store my outputs between invocations
pub output_ids: Vec<Identifier>,
/// store the calculated fee
pub fee: u64,
}
#[derive(Clone, Debug)]
/// Holds many contexts, to support multiple transactions hitting a wallet receiver
/// at once
pub struct ContextManager {
contexts: HashMap<Uuid, Context>,
}
impl ContextManager {
/// Create
pub fn new() -> ContextManager {
ContextManager {
contexts: HashMap::new(),
}
}
/// Creates a context for a transaction id if required
/// otherwise does nothing
pub fn create_context(
&mut self,
secp: &secp::Secp256k1,
transaction_id: &Uuid,
sec_key: SecretKey,
) -> Context {
if !self.contexts.contains_key(transaction_id) {
self.contexts.insert(
transaction_id.clone(),
Context {
sec_key: sec_key,
transaction_id: transaction_id.clone(),
sec_nonce: aggsig::export_secnonce_single(secp).unwrap(),
change_key: None,
output_ids: vec![],
fee: 0,
},
);
}
self.get_context(transaction_id)
}
/// Retrieve a context by transaction id
pub fn get_context(&self, transaction_id: &Uuid) -> Context {
self.contexts.get(&transaction_id).unwrap().clone()
}
/// Save context
pub fn save_context(&mut self, c: Context) {
self.contexts.insert(c.transaction_id.clone(), c);
}
}
impl Context {
/// Tracks an output contributing to my excess value (if it needs to
/// be kept between invocations
pub fn add_output(&mut self, output_id: &Identifier) {
self.output_ids.push(output_id.clone());
}
/// Returns all stored outputs
pub fn get_outputs(&self) -> Vec<Identifier> {
self.output_ids.clone()
}
/// Returns private key, private nonce
pub fn get_private_keys(&self) -> (SecretKey, SecretKey) {
(self.sec_key.clone(), self.sec_nonce.clone())
}
/// Returns public key, public nonce
pub fn get_public_keys(&self, secp: &Secp256k1) -> (PublicKey, PublicKey) {
(
PublicKey::from_secret_key(secp, &self.sec_key).unwrap(),
PublicKey::from_secret_key(secp, &self.sec_nonce).unwrap(),
)
}
/// Note 'secnonce' here is used to perform the signature, while 'pubnonce' just allows you to
/// provide a custom public nonce to include while calculating e
/// nonce_sum is the sum used to decide whether secnonce should be inverted during sig time
pub fn sign_single(
&self,
secp: &Secp256k1,
msg: &Message,
secnonce: Option<&SecretKey>,
pubnonce: Option<&PublicKey>,
nonce_sum: Option<&PublicKey>,
) -> Result<Signature, Error> {
let sig = aggsig::sign_single(secp, msg, &self.sec_key, secnonce, pubnonce, nonce_sum)?;
Ok(sig)
}
//Verifies other final sig corresponds with what we're expecting
pub fn verify_final_sig_build_msg(
&self,
secp: &Secp256k1,
sig: &Signature,
pubkey: &PublicKey,
fee: u64,
lock_height: u64,
) -> bool {
let msg = secp::Message::from_slice(&kernel_sig_msg(fee, lock_height)).unwrap();
verify_single(secp, sig, &msg, None, pubkey, true)
}
//Verifies other party's sig corresponds with what we're expecting
pub fn verify_partial_sig(
&self,
secp: &Secp256k1,
sig: &Signature,
other_pub_nonce: &PublicKey,
pubkey: &PublicKey,
fee: u64,
lock_height: u64,
) -> bool {
let (_, sec_nonce) = self.get_private_keys();
let mut nonce_sum = other_pub_nonce.clone();
let _ = nonce_sum.add_exp_assign(secp, &sec_nonce);
let msg = secp::Message::from_slice(&kernel_sig_msg(fee, lock_height)).unwrap();
verify_single(secp, sig, &msg, Some(&nonce_sum), pubkey, true)
}
pub fn calculate_partial_sig(
&self,
secp: &Secp256k1,
other_pub_nonce: &PublicKey,
fee: u64,
lock_height: u64,
) -> Result<Signature, Error> {
// Add public nonces kR*G + kS*G
let (_, sec_nonce) = self.get_private_keys();
let mut nonce_sum = other_pub_nonce.clone();
let _ = nonce_sum.add_exp_assign(secp, &sec_nonce);
let msg = secp::Message::from_slice(&kernel_sig_msg(fee, lock_height))?;
//Now calculate signature using message M=fee, nonce in e=nonce_sum
self.sign_single(
secp,
&msg,
Some(&sec_nonce),
Some(&nonce_sum),
Some(&nonce_sum),
)
}
/// Helper function to calculate final signature
pub fn calculate_final_sig(
&self,
secp: &Secp256k1,
their_sig: &Signature,
our_sig: &Signature,
their_pub_nonce: &PublicKey,
) -> Result<Signature, Error> {
// Add public nonces kR*G + kS*G
let (_, sec_nonce) = self.get_private_keys();
let mut nonce_sum = their_pub_nonce.clone();
let _ = nonce_sum.add_exp_assign(secp, &sec_nonce);
let sig = aggsig::add_signatures_single(&secp, their_sig, our_sig, &nonce_sum)?;
Ok(sig)
}
/// Helper function to calculate final public key
pub fn calculate_final_pubkey(
&self,
secp: &Secp256k1,
their_public_key: &PublicKey,
) -> Result<PublicKey, Error> {
let (our_sec_key, _) = self.get_private_keys();
let mut pk_sum = their_public_key.clone();
let _ = pk_sum.add_exp_assign(secp, &our_sec_key);
Ok(pk_sum)
}
}
// Contextless functions
/// Just a simple sig, creates its own nonce, etc
pub fn sign_from_key_id(
secp: &Secp256k1,
k: &Keychain,
msg: &Message,
key_id: &Identifier,
) -> Result<Signature, Error> {
let skey = k.derived_key(key_id)?;
let sig = aggsig::sign_single(secp, &msg, &skey, None, None, None)?;
Ok(sig)
}
/// Verifies a sig given a commitment
pub fn verify_single_from_commit(
secp: &Secp256k1,
sig: &Signature,
msg: &Message,
commit: &Commitment,
) -> bool {
// Extract the pubkey, unfortunately we need this hack for now, (we just hope
// one is valid) TODO: Create better secp256k1 API to do this
let pubkeys = commit.to_two_pubkeys(secp);
let mut valid = false;
for i in 0..pubkeys.len() {
valid = aggsig::verify_single(secp, &sig, &msg, None, &pubkeys[i], false);
if valid {
break;
}
}
valid
}
//Verifies an aggsig signature
pub fn verify_single(
secp: &Secp256k1,
sig: &Signature,
msg: &Message,
pubnonce: Option<&PublicKey>,
pubkey: &PublicKey,
is_partial: bool,
) -> bool {
aggsig::verify_single(secp, sig, msg, pubnonce, pubkey, is_partial)
}
/// Just a simple sig, creates its own nonce, etc
pub fn sign_with_blinding(
secp: &Secp256k1,
msg: &Message,
blinding: &BlindingFactor,
) -> Result<Signature, Error> {
let skey = &blinding.secret_key(&secp)?;
let sig = aggsig::sign_single(secp, &msg, skey, None, None, None)?;
Ok(sig)
}